JPS5876744A - Laser emission spectrochemical analysis - Google Patents

Laser emission spectrochemical analysis

Info

Publication number
JPS5876744A
JPS5876744A JP17423581A JP17423581A JPS5876744A JP S5876744 A JPS5876744 A JP S5876744A JP 17423581 A JP17423581 A JP 17423581A JP 17423581 A JP17423581 A JP 17423581A JP S5876744 A JPS5876744 A JP S5876744A
Authority
JP
Japan
Prior art keywords
sample
laser
light
emission
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17423581A
Other languages
Japanese (ja)
Other versions
JPS6146774B2 (en
Inventor
Kozo Sumiyama
角山 浩三
Zenji Ohashi
大橋 善治
Yasuko Yamamoto
泰子 山本
Motoyuki Konishi
小西 元幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17423581A priority Critical patent/JPS5876744A/en
Publication of JPS5876744A publication Critical patent/JPS5876744A/en
Publication of JPS6146774B2 publication Critical patent/JPS6146774B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To facilitate the setting of a sample with limited variation in the intensity of emission spectrum due to variation in the sample position by irradiating the sample with an infrared pulse laser beam whose energy density on the surface of a sample is above 2.0X10<9>W/mm.<2>. CONSTITUTION:This laser emission spectrochemical analyzer is equipped with an Nd glass laser beam 22 for irradiating an infrared ray pulse laser beam whose energy density is above 2.0X10<9>W/mm.<2> on the surface of a sample 14 regardless of variation in the sample position, a laser oscillator power source 24 connected thereto 22 and the like. Electric energy stored in the laser oscillator power source 24 is inputted into the laser light source 22 and converted into light energy with the energy density exceeding 2.0X10<9>W/mm.<2> on the surface of the sample. According to this invention, the setting of the sample can be done easily with a limited change in the intensity of the emission spectrum due to variation in the sample position.

Description

【発明の詳細な説明】 本発明は、レーザ発光分光分析方法に係り、特に、鋼中
不純物元素の定量分析に用いるに好適な、レーザ光を試
料に照射した時に放出される光を分光分析するt/−ザ
発光分光分析方Yノ3の〔jt+’ Iuに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser emission spectroscopic analysis method, and in particular, spectroscopic analysis of light emitted when a sample is irradiated with laser light, which is suitable for quantitative analysis of impurity elements in steel. Regarding [jt+' Iu of t/-The Emission Spectroscopy Method Y-3.

l/−ザ技術の発達と共に、こfl、 (i−分光り)
伍の励起源として利用する試みが進められている。この
レーザ発光分光分析では、光エネルギを熱エネルギに変
換して、固体試料を蒸発、プラズマ化させることを基本
としており、プラズマから放出される光を適当な光導入
系を用いて分光器に伝達し、回折格子等により分光して
スペクトルを分離した後、写真フィルム、光電子増信管
、フォトダイオード等により検出することによって、目
的元素の含有柘を調べようとするもσ)で夛)る。
With the development of l/-the technology, this fl, (i-minute light)
Efforts are underway to use it as an excitation source for go. This laser emission spectrometry basically converts light energy into thermal energy to evaporate and turn a solid sample into plasma, and the light emitted from the plasma is transmitted to the spectrometer using an appropriate light introduction system. However, after separating the spectrum using a diffraction grating or the like, it is attempted to determine the content of the target element by detecting it with a photographic film, a photomultiplier tube, a photodiode, etc.

このレーザ発光分光分析にI’llいらi゛+る光学系
とし、てけ、例えば、第1図に示′1−如く、例えば、
波長0.697u+iのレーザ光を発振”するルビ−レ
ーザ等から成るレーザ発光部10と、該レーザ発光部1
0から発損されたレーザ光を集光して、焦点位置に配置
された試料14の表面に照射するための集光レンズ12
と、試料14の表面から放出される光を収束するための
収束レンズ16と、該収束レンズ16により収束された
光を分光分析するたり)の分光518とを用いて構成し
たものや、或いは、一般にレーザ照射だけではバックグ
ラウンドに対する信号の比(SB比と称する)が低く、
精度の高い分析が困難であるので、第2図に示す如く、
史に、集光レンズ12と試料14の間に補助電極20を
配置1−で、レーザ照射によって放出された原子を、捕
りt)電極20間に導びいて放電し、更に高いエネルギ
状態に励起し7て、強い発光スペクトルを得るようにし
たものが実用化されている。
For this laser emission spectroscopic analysis, an optical system is required, for example, as shown in FIG.
A laser emitting section 10 consisting of a ruby laser or the like that oscillates a laser beam with a wavelength of 0.697u+i, and the laser emitting section 1
A condensing lens 12 for condensing the laser beam emitted from zero and irradiating it onto the surface of the sample 14 placed at the focal position.
and a converging lens 16 for converging the light emitted from the surface of the sample 14, and a spectrometer 518 for performing spectroscopic analysis of the light converged by the converging lens 16, or, Generally, laser irradiation alone has a low signal to background ratio (referred to as SB ratio);
Since highly accurate analysis is difficult, as shown in Figure 2,
In history, an auxiliary electrode 20 is placed between the condensing lens 12 and the sample 14, and the atoms emitted by laser irradiation are captured and guided between the electrodes 20 to be discharged and excited to a higher energy state. 7, devices that provide a strong emission spectrum have been put into practical use.

しかしながら、従来の方法では、いずれに[、でも、試
料14を集光レンズ12の焦点位置に正確に配置[2、
分光器18の光軸を試料14上のレーザ照射位置或いは
補助電極20の電極間中央部20aに合わせる必要があ
る。しかし、ケがら実際の分析においては、試料14を
常圧集光レンズ12から一定の距離の位置におくことり
、試料形状等により困難であり、特に、第1図の光学系
の場合のように、レーザ系と分光器糸の光軸が一致する
1点に試料を設定することに1容易でなかった、本発明
は、前記従来の欠点を解消するべくなされたもので、試
料位置の変動による発光スペクトル強度の変化が少なく
、従って、区別設定の谷易な、実用性の高いレーザ発光
分光分析力法を彷供することを目的とする。
However, in the conventional method, the sample 14 is accurately placed at the focal position of the condenser lens 12 [2,
It is necessary to align the optical axis of the spectroscope 18 with the laser irradiation position on the sample 14 or with the center portion 20a between the auxiliary electrodes 20. However, in actual analysis, it is difficult to place the sample 14 at a certain distance from the normal pressure condensing lens 12 due to the shape of the sample. However, it was difficult to set the sample at one point where the optical axes of the laser system and the spectrometer thread coincided with each other.The present invention has been made to solve the above-mentioned drawbacks of the conventional method. It is an object of the present invention to provide a highly practical laser emission spectroscopic analysis power method in which there is little change in emission spectrum intensity, and therefore, discrimination settings are easy.

本発明は、レーザ光を試料に照射1−/こときに放出さ
れる光を分光分析するレーザ発光分光分析方法において
、試料位1aの変動に拘らず試料表面におけるエネルギ
密m′が2.OX l O’ W/紹2以」−となるよ
うに、試料に赤外線パルスレーザ光を照射すると共に、
試料から放出される光を、分光方向と垂Wな方向が前記
レーザ光と平行に々るように配置された分光手段會用い
て分光することにより、前記目的を達成したものである
The present invention provides a laser emission spectroscopic analysis method for spectroscopically analyzing the light emitted when a sample is irradiated with a laser beam, and the energy density m' at the sample surface is 2. The sample is irradiated with infrared pulsed laser light so that OX l O' W / Introduction 2 -
The above object is achieved by separating the light emitted from the sample using a spectroscopic means arranged such that the direction perpendicular to the spectroscopic direction is parallel to the laser beam.

又、前記分光手段及び分光された発光スペクトルを検出
するための光検出器を、該分光手段及び光検出器受光窓
の、分光方向と垂直な方向の中心が、レーザ集光レンズ
の焦点と同一面内にくるように配置したものである。
Further, the spectroscopic means and the photodetector for detecting the separated emission spectrum are arranged such that the centers of the spectroscopic means and the light receiving window of the photodetector in a direction perpendicular to the spectroscopic direction are the same as the focal point of the laser condensing lens. It is arranged so that it is in-plane.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

一般に、レーザ発光分光分析のレーザ光としては、波長
0.69 amのルビーレーザ光が使用されることが多
く、この場合、Kerrセル、Po eke 1 sセ
ル等の高速スイッチング(Qスイッチング)素子を用い
て、レーザ光を幅数+18130のパルス状とし、熱エ
ネルギがレーザ照射部周辺に拡散する前に、照射部を高
エネルギ状態にするという手法がとられている。
Generally, ruby laser light with a wavelength of 0.69 am is often used as the laser light for laser emission spectroscopy, and in this case, a high-speed switching (Q-switching) element such as a Kerr cell or a Poeke 1S cell is used. In this method, the laser beam is pulsed with a width of +18130, and the irradiation part is brought into a high energy state before the thermal energy is diffused around the laser irradiation part.

本発明者等は、このようなレーザ発光分光分析を、熱伝
達効率の更に優れた赤外線パルスレーザな用いて行なう
こととし、鋼表面KNdガラスレーザの放出する波長1
.06μmの赤外線パルスレーザ光を照射し、発光スペ
クトルを観察した。その結果、(1)補助電極を用いず
に十分SB比の優れた発光スペクトルが得られること、
(2)発光スペクトルの強度はレーザ出力と共に増加す
るが、NR3図に示す如く、やがて飽和する傾向のある
こと、(3)試料表面上のレーザ照射面積ど発光スペク
トル強度が飽オロ値に達する最小のレーザ出力Jm1n
との間には、紀4図に示すような、直線関係が成立する
こと、等を例、い出した。尚、実験に際しては、レーザ
光のパルス幅?15nsecとし、集光レンズの位置を
移動することによってレーザ116射而積會変化させて
いる。第4図から、2.0 X ] 0’ W1m票2
以上の出力密紅が得られれば、十分良好な発光スペクト
ルが得られることがわかる。
The present inventors decided to conduct such laser emission spectroscopic analysis using an infrared pulsed laser with even better heat transfer efficiency, and the wavelength 1 emitted by the KNd glass laser on the steel surface.
.. 06 μm infrared pulsed laser light was irradiated and the emission spectrum was observed. As a result, (1) an emission spectrum with a sufficiently excellent SB ratio can be obtained without using an auxiliary electrode;
(2) The intensity of the emission spectrum increases with the laser output, but as shown in the NR3 diagram, it tends to saturate eventually; (3) The minimum area at which the emission spectrum intensity reaches the saturation value is the laser irradiation area on the sample surface. Laser output Jm1n
I have given an example of the fact that a linear relationship exists between the In addition, during the experiment, the pulse width of the laser light? 15 nsec, and the position of the laser 116 is changed by moving the position of the condensing lens. From Figure 4, 2.0 X ] 0' W1m vote 2
It can be seen that if the above output power is obtained, a sufficiently good emission spectrum can be obtained.

ところで、実際の分光分析で6、レーザ出力を一定と1
7、集光レンズの設定位置も固定されている。又、補助
電極を用いない場合には、試料と分光器系の関係は、第
1図に示す、Lつな配置となる。
By the way, in actual spectroscopic analysis 6, the laser output is constant and 1
7. The setting position of the condenser lens is also fixed. In addition, when the auxiliary electrode is not used, the relationship between the sample and the spectrometer system is an L arrangement as shown in FIG.

このため、従来の方法では、レーザ出力とその照射面積
の関係が、第4図の直線より左上側の領域の1点にくる
こととなる。しかしながら、第3図から明らかな如く、
レーザ出力が一定であっても、照射面積との関係が第4
図の直線より左上にある限り、十分強力な発光スペクト
ルを得ることが可能である、即ち、分光器系が許すなら
ば、試料の位置をあまり厳密に設定する必要がないこと
がわかる。
Therefore, in the conventional method, the relationship between the laser output and its irradiation area is at one point in the upper left region of the straight line in FIG. However, as is clear from Figure 3,
Even if the laser output is constant, the relationship with the irradiation area is the fourth
It can be seen that as long as it is located above and to the left of the straight line in the figure, it is possible to obtain a sufficiently strong emission spectrum, that is, it is not necessary to set the position of the sample very precisely, if the spectrometer system allows it.

本発明は、このような知見に基づいてなされたものであ
る。
The present invention has been made based on such knowledge.

以下図面を参照して、本発明に係るレーザ発光分光分析
方法が採用されたレーザ発光分光分析装置の実施例を詳
細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a laser emission spectrometer employing a laser emission spectrometry method according to the present invention will be described in detail with reference to the drawings.

本実施例は、第5図に示す如く、試料14に、レーザ光
を照射するための、Ndガラスレーザ光源22、該l/
−ザ光源22に接続されたレーザ発振器電源24、前記
レーザ光線22に組み込まれている高速スイッチング素
子(図示省略)を働かせるための高速スイッチング素子
用電源26からなるレーザ発光部10と、該レーザ発光
部lOのレーザ光源22から発振された赤外線パルスレ
ーザ光を、試料14に対して所定の角度で入射するため
の直角プリズム28と、従来と同様の集光レンズ12と
、レーザ光に対]て所定の方向を向くように配置された
試料14の表面から放出される光を分光分析するための
、回折方向と垂直な格子長手方向〔矢印A方向)が、前
記レーザ光と平行になるように配設された平面回折格子
32、該平面回折格子32で分光された発光スベクI・
ルを受光する、前記レーザ光と平行な方向に長い受光窓
な有する、光電子増倍管、フォトダイオード等の光検出
器34を有してなり、前記」L面回析格子32及び光検
出器34が、該平面回折格子32の格子長手方向中心及
び光検出器34の受光窓の長手方向中心が、集光レンズ
12の焦点ど同一面内にくるように配置された分光器3
0と、該分光器30の光検出器34をtlill徊]す
るための光検出器制御装置36と、該光検出器制御装置
36出力の測定結果を表示する表示Ff1138とから
イル1成されている。
In this embodiment, as shown in FIG. 5, a Nd glass laser light source 22 and a l/l/
- a laser emitting unit 10 comprising a laser oscillator power supply 24 connected to the laser light source 22, a high-speed switching element power supply 26 for operating a high-speed switching element (not shown) incorporated in the laser beam 22; A rectangular prism 28 for making the infrared pulsed laser beam oscillated from the laser light source 22 of the section 10 incident on the sample 14 at a predetermined angle, a condensing lens 12 similar to the conventional one, and a pair of laser beams. The longitudinal direction of the grating perpendicular to the diffraction direction (direction of arrow A) for spectroscopically analyzing the light emitted from the surface of the sample 14 arranged to face a predetermined direction is parallel to the laser beam. A planar diffraction grating 32 is provided, and an emission spectrum I.
The L-plane diffraction grating 32 and the photodetector include a photodetector 34 such as a photomultiplier tube or a photodiode, which receives the laser beam and has a long light-receiving window in a direction parallel to the laser beam. 34 is a spectroscope 3 arranged so that the longitudinal center of the planar diffraction grating 32 and the longitudinal center of the light receiving window of the photodetector 34 are in the same plane as the focal point of the condenser lens 12.
0, a photodetector control device 36 for moving the photodetector 34 of the spectrometer 30, and a display Ff1138 for displaying the measurement results of the output of the photodetector control device 36. There is.

以下作用を説明する。まず、レーザ発11品器車源24
に蓄えられた電気エネルギを、レーザ光源22に入力し
、試料位置の変動に拘らず試料表面におけるエネルギ密
絃が2.0X10’W/12以上と力るような光エネル
ギIL変換する。この際、所足景の電気エネルギがレー
ザ光源22に蓄えられた時、1ノ一現発振器′取海24
から高速スイッチング素子用電源26にパルス信号が送
られ、レーザ光源22内の高速スイッチング素子が作動
して、レーザ光源22に蓄えられた電気エネルギが一度
に放出される。
The action will be explained below. First, 11 laser products and 24 laser products.
The electrical energy stored in the sample is input to the laser light source 22, and is converted into a light energy IL such that the energy density on the sample surface is 2.0×10'W/12 or more regardless of changes in the sample position. At this time, when the electrical energy of the light source is stored in the laser light source 22, the first oscillator 24
A pulse signal is sent to the high-speed switching element power supply 26, the high-speed switching element within the laser light source 22 is activated, and the electrical energy stored in the laser light source 22 is emitted at once.

このようにして得られた赤外線パルスレーザ光は、直角
プリズム28、集光レンズ12を介して、試料表面にお
けるエネルギ密首が2. OX 10’ W/Im2以
上となるよう、試料14の表面に収束される。
The infrared pulsed laser beam thus obtained is transmitted through the right-angle prism 28 and the condensing lens 12 so that the energy concentration at the sample surface is 2. It is focused on the surface of the sample 14 so that it is OX 10' W/Im2 or more.

すると、試料14の表面に、知時間のうちに局所的に加
熱され、プラズマ化され、更にHJ起される。
Then, the surface of the sample 14 is locally heated within a certain period of time, turned into plasma, and further generated by HJ.

この時、プラズマから放出される光に、分光器30内部
の平面回折!、子32で分散される。この分散光に、光
検出器34で検出され、スペクトル締張@′に比例した
電気信号に変換される。この電気信号は、増幅器或い6
光検出器制御装置36を介して表示部38に入力され、
表示R+138で測定結果が表示される。
At this time, the light emitted from the plasma undergoes plane diffraction inside the spectrometer 30! , distributed among children 32. This dispersed light is detected by a photodetector 34 and converted into an electrical signal proportional to the spectral tension @'. This electrical signal is passed through an amplifier or
is input to the display section 38 via the photodetector control device 36,
The measurement result is displayed on display R+138.

本実施((11においては、一度集光レンズ12の焦点
に試オキ14を置き、そこから放出され、2)特定波長
のスペクトル紛に関して、平面回()1格子:う2及び
光検出器34が回折条件を?MI ’/こす」:うに試
イ・[を設定すれば、その後は試料14が移jli(1
1,−(も、第6図に示す如(、回折条件t1常U’−
’7iRn lこされることとなり、平面回折格子32
或いは光検出装置l′l+’ 34の受光窓の外に発光
スペクトルか出ない限り、十分良好な発光スペクトルが
イ:Iられ、安7ビした分光分析を行ろうことが可能で
ある。
In this implementation ((11), once the sample 14 is placed at the focal point of the condensing lens 12, the light is emitted from there, is the diffraction condition? MI '/rubbing': If you set the sample 14 to move jli (1
1,-(also, as shown in FIG. 6(, diffraction condition t1 normal U'-
'7iRnl will be rubbed, and the plane diffraction grating 32
Alternatively, as long as the emission spectrum does not appear outside the light receiving window of the photodetector l'l+' 34, a sufficiently good emission spectrum can be obtained and safe spectroscopic analysis can be performed.

尚、前記実施例においてFi、レーザ発光部]0のレー
ザ光源22と集光レンズ120曲に、泊角グリズム28
が配置されていた。か、レー−−;” 発光部lOのN
d ガラスレーザ光源22(+−1に1じめがら試料1
4に対して所定の照射方向に設置i’i f、、た場合
には、この直角プリズム28を省略することも可能であ
る。
In addition, in the above embodiment, the laser light source 22 of Fi, laser emitting unit] 0, the condensing lens 120, and the angle grism 28
was placed. ka, ray---;”N of light emitting part lO
d Glass laser light source 22 (+-1 sample 1
If the right angle prism 28 is installed in a predetermined irradiation direction with respect to 4, it is also possible to omit the right angle prism 28.

又、Mi+記実織1りIjにおいてに、乏)光十段と1
.て平面回折格子32が使用され、該平面回折格子32
の格子長手方向がレーザ光と平行になるように配fRさ
れていたが、分光手段の種類はこれに限定されず、例え
ば、プリズムを使用して、該プリズムを、その分光方向
と垂直な方向が前記レーザ光と平行になるように配置す
ることも可能である、更vコ、前aIシ実施例において
it、光検出器として、一方向に技い受光窓を持つ/ζ
もの(]−使用し、該受光窓の長手方向が、@記し−ザ
光と平行になるように配置していたが、光検出器の種類
にこれに限定されず、例えば、円形受光窓を有する光検
出器を用いて、該円形受光窓の直径方向がレーザ光と平
行Vこなるように配置することも可能である。
Also, in Mi+Ki Jitsuori 1 and Ij, Hikari Judan and 1
.. A planar diffraction grating 32 is used, and the planar diffraction grating 32
Although the longitudinal direction of the grating is parallel to the laser beam, the type of spectroscopic means is not limited to this, for example, a prism is used and the prism is moved in a direction perpendicular to the direction of spectroscopy. It is also possible to arrange the laser beam so that it is parallel to the laser beam.
() - was used, and the longitudinal direction of the light receiving window was arranged so as to be parallel to the light, but the type of photodetector is not limited to this, and for example, a circular light receiving window may be used. It is also possible to arrange the circular light-receiving window so that the diameter direction thereof is parallel to the laser beam.

又、Ia記実施例においてに、試料14から放出される
光が、直接、分光器30の平面回折格子32に入射する
ようにされていたが、光導入系の配置はこれに限定され
ず、試料14の周囲てレンズ、反射鏡等を配置し、発光
スペクトルを効率良く平面回折格子32等に導ひくこと
も可能である。
Further, in the embodiment Ia, the light emitted from the sample 14 was made to directly enter the plane diffraction grating 32 of the spectroscope 30, but the arrangement of the light introduction system is not limited to this. It is also possible to arrange lenses, reflecting mirrors, etc. around the sample 14 to efficiently guide the emission spectrum to the plane diffraction grating 32, etc.

更に、前記実施例においては、平面回折格子32及び光
検出器34が、いずれも各1個配置されていたが、光検
出器34を複数個併設置、たり、或いは、平面回折格子
32と光検出器34を傾数組併設することも可能である
3、 前記実施例に、本発明を鋼の分析y(適用1したもので
あるが、本発明の適用範囲にこれに限′J1!されず、
画調の分析にも同様に適用できることil明らかである
Furthermore, in the above embodiment, one each of the plane diffraction grating 32 and the photodetector 34 were disposed, but a plurality of photodetectors 34 may be installed together, or the plane diffraction grating 32 and the photodetector 34 may be arranged together. It is also possible to provide the detector 34 with a slope set. figure,
It is clear that the method can be similarly applied to the analysis of image tone.

以上説明し2だ通り、本発明によれば、試料位1対の変
動による発光スペクトル強mの変化が少なく、試料の設
定が容易となり、r羊って、実月目ニドが篩いという浸
れた効果を有する。
As explained above and in Section 2, according to the present invention, there is little change in the emission spectrum intensity m due to fluctuations in a pair of sample positions, making it easy to set the sample. have an effect.

前記実施例で説明したよりなレーザ発光分光分析装置を
用いて、赤外線レーザの出力をI (l J、パルスr
Gk l 5 n5ec (約(i、7X1(1”W)
とし、格子密@1200本/am 、格子旨さI Oi
l IIl#l ノf曲回析格子を用いて、受光窓の高
さくi 0 mmのシリコンフォトダイオードにより、
2714.4″A び)6/1.の線スペクトル強要の
、試料の上下1tII+ VC、l:る変化を調べたと
ころ、第7図に示す′I1口<と々す、四元レンズの焦
点を中心VC2t’a上下させても、はぼ一定の発光ス
ペクトル強度が得られることが確認できた。
Using the laser emission spectrometer described in the previous example, the output of the infrared laser is determined as I (l J, pulse r
Gk l 5 n5ec (approx. (i, 7X1 (1”W)
The density of the lattice @1200 pieces/am, the deliciousness of the lattice I Oi
l IIl #l Using a f-curved diffraction grating, a silicon photodiode with a light receiving window height of i 0 mm,
2714.4''A and) 6/1. When we investigated the change in the line spectrum forcing from the top and bottom of the sample, 1tII+VC,l:, we found that the focal point of the quaternary lens was It was confirmed that even if the center VC2t'a was raised or lowered, a nearly constant emission spectrum intensity could be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のレーザ発光分光分析で用いられている
光学系の配置の一例を示す正面図、第2図は、同じく、
従来のレーザ発光分光分析で用いられていZ】光学系の
配向の他の例を示す斜視図、第3図に、本発明の詳細な
説明するたt)の、レーザ出力と発光スペクトルの強紅
の関係を示す線図、第4図は、同じく、試料表面上のレ
ーザ照射面積とスペクトル強度が飽和値に達する最小の
レーザ出力の関係を示す線図、45図に、本発明に係る
レーザ発光分光分析方法が採用されたレーザ発光分光分
析装置の実施例の構成な示す、一部ブロック線図を含む
正面図、第6図に、前記実施1911における、試料位
置の変動に伴なう平面回折格子及び光検出器への入射位
1青の変化を示す斜視図、第7図は、同じく、集光レン
ズ焦点からの試料の移動距離と発光スペクトル強匿の関
係の一例を示す線図である。 10・・・レーザ発光部、12・・・集光レンズ、14
・・・試料、22・・・レーザ光源、24・・・レーザ
発振器′亀源、26・・・高速スイッチング素子月1電
源、30・・・分光器、32・・・平面回折格子、34
・・・光検出器。 代理人  旨 矢   論 (ほか1名)
FIG. 1 is a front view showing an example of the arrangement of an optical system used in conventional laser emission spectroscopy, and FIG.
FIG. 3 is a perspective view showing another example of the orientation of the optical system used in conventional laser emission spectrometry analysis. Similarly, FIG. 4 is a diagram showing the relationship between the laser irradiation area on the sample surface and the minimum laser output at which the spectral intensity reaches the saturation value, and FIG. A front view including a partial block diagram showing the configuration of an embodiment of a laser emission spectrometer in which the spectroscopic analysis method is adopted, and FIG. FIG. 7 is a perspective view showing changes in the incident position of 1 blue on the grating and the photodetector, and is also a diagram showing an example of the relationship between the moving distance of the sample from the focal point of the condenser lens and the emission spectrum enhancement. . 10... Laser emission section, 12... Condensing lens, 14
. . . Sample, 22 .
...Photodetector. Agent Umoya Ron (and 1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)  レーザ光を試料に照射した時に放出される光
を分光分析するレーザ発光分光分析方法において、試料
位置の変動に拘らず試料表面におけるエネルギ密度が2
.OX 10°W/llI2以上となるよう、試料に赤
外線パルスレーザ光を照射すると共に、試料から放出さ
れる光を、分光方向と垂直な方向が前記レーザ光と平行
になるように配置された分光手段を用いて分光すること
により、試料位置の変動による発光スペクトル強要の変
化を抑制するようにしたことを特徴とするレーザ発光分
光分析方動
(1) In a laser emission spectrometry method that spectrally analyzes the light emitted when a sample is irradiated with laser light, the energy density at the sample surface is 2 regardless of changes in the sample position.
.. The sample is irradiated with an infrared pulsed laser beam so that OX is 10°W/llI2 or more, and the light emitted from the sample is irradiated with a spectrometer arranged so that the direction perpendicular to the spectroscopic direction is parallel to the laser beam. A laser emission spectroscopic analysis method characterized by suppressing changes in the emission spectrum due to changes in the sample position by performing spectroscopy using a method.
(2)前記分光手段及び分光された発光スペクトルを検
出するための光検出器を、該分光手段及び光検出器受光
窓の、分光方向と垂直な方向の中心が、レーザ集光レン
ズの焦点と同一面内にくるように配置した特許請求の範
囲第1項に記載のレーザ発光分光分析方法。
(2) The spectroscopic means and the photodetector for detecting the separated emission spectrum are arranged such that the centers of the spectroscopic means and the light-receiving window of the photodetector in a direction perpendicular to the spectroscopic direction coincide with the focal point of the laser condenser lens. The laser emission spectroscopic analysis method according to claim 1, wherein the laser beams are arranged in the same plane.
JP17423581A 1981-10-30 1981-10-30 Laser emission spectrochemical analysis Granted JPS5876744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17423581A JPS5876744A (en) 1981-10-30 1981-10-30 Laser emission spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17423581A JPS5876744A (en) 1981-10-30 1981-10-30 Laser emission spectrochemical analysis

Publications (2)

Publication Number Publication Date
JPS5876744A true JPS5876744A (en) 1983-05-09
JPS6146774B2 JPS6146774B2 (en) 1986-10-16

Family

ID=15975078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17423581A Granted JPS5876744A (en) 1981-10-30 1981-10-30 Laser emission spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPS5876744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186636A (en) * 1984-10-05 1986-05-02 Kawasaki Steel Corp Emission spectrochemical analysis method of steel using laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186636A (en) * 1984-10-05 1986-05-02 Kawasaki Steel Corp Emission spectrochemical analysis method of steel using laser

Also Published As

Publication number Publication date
JPS6146774B2 (en) 1986-10-16

Similar Documents

Publication Publication Date Title
US3556659A (en) Laser-excited raman spectrometer
US4645342A (en) Method of laser emission spectroscopic analysis of steel and apparatus therefor
JP2936947B2 (en) Spectrofluorometer
Kuhl et al. Flame-fluorescence detection of Mg, Ni, and Pb with a frequency-doubled dye laser as excitation source
US4691110A (en) Laser spectral fluorometer
JPS5837545A (en) Spectrofluoro-measuring device
JPS6312527B2 (en)
JPS5876744A (en) Laser emission spectrochemical analysis
JPH01321340A (en) Laser double stage excitation emission analysis method and apparatus
Chen et al. Optical monitoring of protein crystals in time‐resolved x‐ray experiments: Microspectrophotometer design and performance
US3715585A (en) Fluorescence spectrophotometry using multiple reflections to enhance sample absorption and fluorescence collection
Epstein et al. Application of Laser-excited Atomic Fluorescence Spectrometry to the Determination of Nickel and Tin
US3190172A (en) Optical resonance filters
US11977026B2 (en) Far-infrared spectroscopy device and far-infrared spectroscopy method
JP3101707B2 (en) Raman scattered light enhancement device
JPS62188919A (en) Method and instrument for direct emission analysis by multistage laser excitation
US4402606A (en) Optogalvanic intracavity quantitative detector and method for its use
JP2006300671A (en) Spectroscopic detector
JPH04274743A (en) Laser emission analysis method
JP2002372495A (en) Liquid quality analysis apparatus
JPS6285847A (en) Method and device for direct emission spectrochemical analysis of laser multistage excitation
KR20030054084A (en) Method of laser-induced plasma atomic emission spectroscopy and apparatus thereof
JPH09196841A (en) Scattering type measuring method for particle size distribution
JPS58219440A (en) Method for spectrochemical analysis using laser light
CA1232469A (en) Method of laser emission spectroscopical analysis and apparatus therefor