JPS5876332A - Detection of electrical power regenerative operation - Google Patents

Detection of electrical power regenerative operation

Info

Publication number
JPS5876332A
JPS5876332A JP17388881A JP17388881A JPS5876332A JP S5876332 A JPS5876332 A JP S5876332A JP 17388881 A JP17388881 A JP 17388881A JP 17388881 A JP17388881 A JP 17388881A JP S5876332 A JPS5876332 A JP S5876332A
Authority
JP
Japan
Prior art keywords
power
regenerative
electrical power
area
car
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17388881A
Other languages
Japanese (ja)
Other versions
JPS6137131B2 (en
Inventor
Kazuki Sawada
沢田 和貴
Toyomi Gondo
権藤 豊美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP17388881A priority Critical patent/JPS5876332A/en
Publication of JPS5876332A publication Critical patent/JPS5876332A/en
Publication of JPS6137131B2 publication Critical patent/JPS6137131B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power

Abstract

PURPOSE:To make it possible to surely discriminate whether regenerative operation is carried out in an electrical power regenerative area or not, by detecting the electrical power regenerative operation in a current feeding system of AT current feeding type, through the comparison between the phases of neutral currents at two ATs laid in the electrical power regenerative area. CONSTITUTION:When an electric car 6 is retarded with the use of a regenerative brake during the car running in the section which is between the laid positions 1-2, 1-3 of autotransformers AT and which is continuously inclined downward, regenerative power is obtained upon the entrance of the car into the section. Neutral currents i1, i2 are detected in this stage, by current detectors 7-1, 7-2, and are delivered to a discriminating circuit 9 together with their voltages. The currents of the electrical car 6 upon power running and regenerative running have phase differences between their voltages and currents, that is, the angles of their retarded power factors are different from each other, such as about 40 deg. and 130 deg.-140 deg., and therefore, whether the regenerative operation is carried out or not may be discriminated. Further, an electrical power converter 10 for retrieving electrical power is laid in the vicinity, and its output is connected to a load 11 adapted to consume the regenerative power.

Description

【発明の詳細な説明】 本発明は、A’l’交流電化区間を走行している電気車
が電力回生区域に進入したことを検知する電力回生動作
の検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power regeneration operation detection method for detecting that an electric vehicle traveling in an A'l' AC electrified section has entered a power regeneration area.

ATき電力式の交流電化区間にあける長い下りこう配に
おいて車両速度を抑制するため、回生ブレーキを費用す
る場合がある。この回生ブレーキは、回生電力が消費さ
れてその効果があるものなので、電力消費先が求められ
るが、電力回生区域が亘長の長いトンネル内にあるなど
電力供給源である変電所から遠隔地にある場合には、回
生電力の消費先は電力供給源である変電所の所内か、あ
るいは同一系統に限定されるのが普通である。
Regenerative braking may be required to suppress vehicle speed on long downhill slopes in AT-powered AC electrified sections. This regenerative braking is effective because regenerated power is consumed, so the power consumption destination is required. In some cases, the consumption of regenerated power is usually limited to the substation that is the power supply source, or to the same system.

それは、別系統であれば変im所から離れており、その
間の送電線の布設に費用がかかるといった経桝性、電力
回生がない時の循mt*を断つため、電力変換装置と別
系統との連絡は断続的に行う必要があり、回生運転か否
かの検出傷号が必要となるが、変電所に電力変換装置を
設置する場合のように一個所、で、供給電流と4回生電
流の位相差から検出する訳にはいかず、遠地点と信号の
交換を行なわなければならないため、雑音混入によって
誤動作するといった信頼性、等の点から、電力回生区域
に近い所に別系統があっても、電力回生区域の近傍lこ
回生電力を回収するための電力変換装置を設置すること
が敬遠されるからである。
This is because the power converter and the separate system are separated from each other due to the cost of installing power transmission lines, which would be costly if the power converter is located far away from the power converter if it is on a separate system, and to cut off the circulation mt* when there is no power regeneration. It is necessary to communicate intermittently, and a detection signal is required to indicate whether or not regenerative operation is in progress. It cannot be detected from the phase difference between the power regeneration area and signals must be exchanged with the apogee, so even if there is a separate system near the power regeneration area, there is a risk of malfunction due to noise contamination. This is because it is avoided to install a power conversion device for recovering regenerated power in the vicinity of the power regeneration area.

しかしながら、回生電力の発住量が十分あり、電力回生
区域に近接して別系統がある場合には。
However, if there is a sufficient amount of regenerative power generated and there is another system close to the power regeneration area.

別系統に回生を力を供給した方が経済的であるため、回
生電力回収用の電力変換装置を電力回生区域付近に設置
するのが望ましく、それには電力回生区域に電気車が進
入し、回生運転)どなったことをその場所で的確に検出
する検出手段が要求される。
Since it is more economical to supply regenerative power to a separate system, it is desirable to install a power converter for regenerative power recovery near the power regeneration area. Driving) Detection means is required to accurately detect what is happening at that location.

本発゛明は上記の点に鑑みてなされたもので、電力回生
区域または電力回生区域及びその隣接区域の二つのA’
l’(単巻変圧器)の中性点電流の位相を比較すること
により、電力回生区域で的確に回生運転か否かを判別で
きる電力回生区域の検出方法を提供することを目的とす
る。
The present invention has been made in view of the above points, and is based on two A' in the power regeneration area or the power regeneration area and its adjacent area.
It is an object of the present invention to provide a method for detecting a power regeneration area that can accurately determine whether regenerative operation is being performed in the power regeneration area by comparing the phases of neutral point currents of l' (autotransformer).

以下、本発明方法を図示の実施態様に基づいて詳細に説
明する。
Hereinafter, the method of the present invention will be explained in detail based on the illustrated embodiments.

第1図(a]に示すようにATき電力式のある一区間l
こは、一定間隔で所要台数、例えば3台の単巻変圧器1
−1.1−2.1−Jが設置され、トロリー線2とを電
線3の間に接続されるとともに、その中性点(巻数比1
:1のときもあれば、任意の巻数比のときもある)がレ
ール4に接続されている。前記トロリー線2とを一線3
は変電所において電源5に・接続されている。このAT
き電力式が、通信誘導障沓の軽減及び架線電圧の低、減
防止に効果があることは周知の通りである。
As shown in Figure 1(a), a section l with an AT power equation
This means that the required number of autotransformers, for example 3 autotransformers 1, are installed at regular intervals.
-1.1-2.1-J is installed and connected between the trolley wire 2 and the electric wire 3, and its neutral point (turns ratio 1
:1, and sometimes an arbitrary turns ratio) is connected to the rail 4. A line 3 connects the trolley line 2.
is connected to the power source 5 at the substation. This AT
It is well known that the feeder power system is effective in alleviating communication interference and reducing and preventing catenary voltage from decreasing.

このような構成のき電系統では、ATJ−7゜1−2.
1−5設置点におけるトロリー線2.レール4間の電圧
はvIs v!+ vjとなり、電流は各々の中性点を
流れる。これらを中性点電流11*1ts 1mとする
と、各中性点電流11* 1t+ i、と電気車6の位
置との関係は第1図(b)に示すようになる。
In a feeding system with such a configuration, ATJ-7°1-2.
1-5 Trolley wire at installation point 2. The voltage across rail 4 is vIs v! +vj, and the current flows through each neutral point. Assuming that these are neutral point currents 11*1ts 1m, the relationship between each neutral point current 11*1t+i and the position of the electric car 6 is as shown in FIG. 1(b).

さて、本発明方法の適用区間には連続下りこう配区域の
存在が必要であり、ここではATZ−j。
Now, the application section of the method of the present invention requires the existence of a continuous downward gradient section, and here, ATZ-j.

1−5間が連続下りこう配区域であって、この区域を電
気車6が走行する際には抑速に回生ブレーキを使2用す
るものとすると、こう配区域への電気車6の進入に伴っ
て電力回生が行われる。この場合、列車本数が少なく、
かつ電力回生区域がATl−2,1−Jの中間であると
すれば、電flL1t +1sと電圧v!*vlとの相
差を比較して回生電力の有無を判別することが可能であ
る。比較に際しては、ATM−z@の1l−vlとAT
I−3側の1l−vlの各力率角度を比較する方法と、
A’l’J−2,1−3間の%出を電圧マ3に代表させ
% ’! ”’ VB+ F −71の力率角度を比較
する方法とが考えられる。
If the area between 1 and 5 is a continuous downhill slope area, and the electric car 6 is to use regenerative braking to reduce speed when traveling in this area, as the electric car 6 enters the slope area, power regeneration is performed. In this case, the number of trains is small,
And if the power regeneration area is between ATl-2 and ATl-1-J, then the voltage flL1t +1s and the voltage v! *It is possible to determine the presence or absence of regenerative power by comparing the phase difference with vl. For comparison, ATM-z@1l-vl and AT
A method of comparing each power factor angle of 1l-vl on the I-3 side,
Let voltage ma3 represent the % output between A'l'J-2 and 1-3 and %'! A possible method is to compare the power factor angles of VB+F-71.

即ち、第2図に示すように電気車60力行時の電流(5
j!線矢印)と回生時の電流(点線矢印)は、流れる経
路は同一でも電圧、電流の位相差、つまり遅れ力率角度
が力行時は略40’ 、回生時は略1300〜】40■
となるため、電力供給源である変電所で利足する場合と
同様に回生か否かを判別できる。
That is, as shown in FIG. 2, the electric current (5
j! Line arrow) and current during regeneration (dotted line arrow), even though the flow paths are the same, the phase difference between the voltage and current, that is, the delay power factor angle, is approximately 40' during power running and approximately 1300 ~ during regeneration] 40■
Therefore, it is possible to determine whether regeneration is being used or not, in the same way as when electricity is supplied at a substation that is a power supply source.

中性点電流5+’@の検出には電流検出器(0’r)7
−7.7−2を各中性点電流11t !sの通電路に設
置する。両設置点の位相差検出には、方形波変換回路、
位相比較回路(時間測定形、サンプリング形等多種ある
が、任意の形のものを用いる)等で構成する判別回路9
を設置し、これに前記電流検出器7−J、7−2の検出
出力を電圧信号と共に入力する。
Current detector (0'r) 7 is used to detect the neutral point current 5+'@
-7.7-2 for each neutral point current 11t! Install it in the energized path of s. To detect the phase difference between both installation points, a square wave conversion circuit,
Discrimination circuit 9 consisting of a phase comparator circuit (there are various types such as time measurement type, sampling type, etc., but any type can be used), etc.
is installed, and the detection outputs of the current detectors 7-J and 7-2 are inputted thereto together with the voltage signal.

なお、電流の位相比較動作あるいはその結果の送出を電
流が一定値以下のときには停止させ、電気車6が所定の
区間に進入したときのみ判別を行うようにしてもよい。
Note that the current phase comparison operation or the transmission of the result may be stopped when the current is below a certain value, and the determination may be made only when the electric vehicle 6 enters a predetermined section.

しかして、第1図(a)及び第2図に示すように回生電
力回収用の電力変換装置10を電力回生区域付近に設置
して、その入力端をトロリー線2.き電線3に接続し、
出力端を回生暮、72剣消費する負荷■が接続され、か
つ電力回生区域に近接した別系統12に接続して、前記
判別回路9の出力により別系統12との連系を制御する
ようにすれば、経隣的なt労連用が行われる。このよう
な回生電力の消費法は、電力回生区域が長亘トンネル内
に位置するなど変電所の遠地点にある場合に特に有効で
ある。また、電力変換装置10には簡単に力率改*m能
(無効電力補償機能)を付加することができるため、電
源位置からの送り出しによって行っていた無効電力補償
では不可避な遠地点における無効分による!圧降下の救
済が図れるようになり、電圧の安定化による電気車の安
定運転に貢献する。
As shown in FIGS. 1(a) and 2, a power conversion device 10 for regenerative power recovery is installed near the power regeneration area, and its input end is connected to the trolley wire 2. Connect to feeder line 3,
The output end is connected to a separate system 12 to which a load 72 that consumes electricity is connected and is close to the power regeneration area, and the connection with the separate system 12 is controlled by the output of the discrimination circuit 9. If this is done, economic-adjacent t-labor federation will take place. This method of consuming regenerated power is particularly effective when the power regeneration area is located at the apogee of the substation, such as in the Changtang tunnel. In addition, since a power factor correction function (reactive power compensation function) can be easily added to the power conversion device 10, it is possible to easily add a power factor correction function (reactive power compensation function). ! This makes it possible to relieve pressure drops and contributes to the stable operation of electric vehicles by stabilizing the voltage.

以上のように本発明方法によれば、ATき電力式のき電
系統における電力回生動作を電力回生区域に設置された
2台のATの中性点電流の位相比較によって検出するの
で、電力回生区域で回生運転か否かを的確に判別するこ
とができ、従来、経済性・信頼性の点から見送られてい
た電力回生区域付近に回生電力回収用の電力変換装置を
設置し、そこから近い別系統に回生電力を供給する新規
な系統構成が可能となる。また、回住電力発住区域への
無効電力補償用の電力の供給を近くから行うことが可能
となって、電圧降下が軽減されるよう番どなり、安定運
転薯こ大いに寄与できるなどの著効を奏する。
As described above, according to the method of the present invention, power regeneration operation in an AT-type power feeding system is detected by comparing the phases of the neutral point currents of two ATs installed in the power regeneration area. It is possible to accurately determine whether or not regenerative operation is in place in an area, and by installing a power converter for regenerative power recovery near the power regeneration area, which has traditionally been abandoned due to economical and reliability considerations, A new system configuration that supplies regenerated power to a separate system becomes possible. In addition, it has become possible to supply power for reactive power compensation to the residential power generation area from nearby, reducing voltage drops and greatly contributing to stable operation. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は電気鉄道におけるムTき電
力式き竜系統の一部を示す回路図及び同を電系統におけ
るATの中性点電流と電気車の位置との関係を示す図、
第2図は本発明方法の実施態様の一例を示すブロック回
路図である。 1−1〜z−s・・・AT、2・・・トロリー線、3・
・・き電線、4・・・レール、5・・・電源、6・・・
電気車、1−1及び1−2・・・電流検出器、9・・・
判別回路、10・・・電力変換装置、1】・・・負荷、
ν・・・別電力系統。
Figures 1 (a) and (b) are circuit diagrams showing a part of the electric railway system using electric power, and the relationship between the AT neutral point current and the position of the electric car in the electric system. The figure shown,
FIG. 2 is a block circuit diagram showing an example of an embodiment of the method of the present invention. 1-1~z-s...AT, 2...trolley wire, 3.
...Feeding line, 4...Rail, 5...Power supply, 6...
Electric car, 1-1 and 1-2... Current detector, 9...
Discrimination circuit, 10...power converter, 1]...load,
ν...Separate power system.

Claims (1)

【特許請求の範囲】[Claims] (1)一定距離以上の連続下りこう配の区域を有し、そ
の間で電気車の抑速に回生ブレーキを用いる電気鉄道の
ATき電力式のき電系統において、前記こう配区域また
はこう配区域及びその隣接区域に設置された二つの単巻
変圧器の中性点電涛をそれぞれ検出し、その位相比較を
行って電力回生が行われているか否かを判別することを
特徴とする電力回生動作の検出方法。
(1) In an AT-powered power feeding system for an electric railway that has an area with a continuous downward slope for a certain distance or more and uses regenerative braking to slow down electric cars, the above-mentioned slope area or the slope area and its adjacent area Detection of power regeneration operation characterized by detecting the neutral point voltage waves of two autotransformers installed in the area and comparing their phases to determine whether or not power regeneration is being performed. Method.
JP17388881A 1981-10-30 1981-10-30 Detection of electrical power regenerative operation Granted JPS5876332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17388881A JPS5876332A (en) 1981-10-30 1981-10-30 Detection of electrical power regenerative operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17388881A JPS5876332A (en) 1981-10-30 1981-10-30 Detection of electrical power regenerative operation

Publications (2)

Publication Number Publication Date
JPS5876332A true JPS5876332A (en) 1983-05-09
JPS6137131B2 JPS6137131B2 (en) 1986-08-22

Family

ID=15968961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17388881A Granted JPS5876332A (en) 1981-10-30 1981-10-30 Detection of electrical power regenerative operation

Country Status (1)

Country Link
JP (1) JPS5876332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241735A (en) * 1983-12-13 1985-11-30 ジユモン シユナイダ− Power supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241735A (en) * 1983-12-13 1985-11-30 ジユモン シユナイダ− Power supply device

Also Published As

Publication number Publication date
JPS6137131B2 (en) 1986-08-22

Similar Documents

Publication Publication Date Title
CN100550599C (en) Control apparatus for electric railcar
US10633008B2 (en) DC-feeding-voltage calculating apparatus, DC-feeding-voltage control system, and DC-feeding-voltage calculating method
JP4243321B1 (en) AC electric vehicle control device
CN208035975U (en) Circuit for vehicle
CN110103780B (en) Pantograph detection circuit, ground passing neutral section device and control method
CN111845471A (en) Power-concentrated motor train unit
WO2021046963A1 (en) Method for controlling automatic switching between vcb and hscb on basis of tcms of dual-current-system train
JP2003072431A (en) Feeder circuit failure spotting device
JP4176311B2 (en) Method for measuring speed of rail vehicle and apparatus therefor
JP2012188009A (en) Method and device for detecting breakage of rail
JPS5876332A (en) Detection of electrical power regenerative operation
JPS58152628A (en) Power source switching device
JPH1146402A (en) Pantograph arc detecting device for dc electric car
JPS58218801A (en) Detecting system of dead section of alternating current electric rolling stock
JPS592501A (en) Detecting method of dead section of ac electric motor vehicle
JP3662490B2 (en) AC current automatic separation measuring device for electric vehicles
JP2010233344A (en) Onboard brake control system and onboard brake control method
JP2891695B1 (en) Failure detection device for switching switches for AC electric railways
JPS6341822Y2 (en)
JP2022087594A (en) On-board safety device
JPH04251501A (en) Pantograph contact loss measuring method and processing circuit therefor
JPH01238404A (en) Self-traveling vehicle detector
JP2913627B1 (en) Power receiver
JPH0342232B2 (en)
JPH10312215A (en) Traveling control method and unmanned vehicle