JPS5876126A - Method and apparatus for purifying gas - Google Patents

Method and apparatus for purifying gas

Info

Publication number
JPS5876126A
JPS5876126A JP56173982A JP17398281A JPS5876126A JP S5876126 A JPS5876126 A JP S5876126A JP 56173982 A JP56173982 A JP 56173982A JP 17398281 A JP17398281 A JP 17398281A JP S5876126 A JPS5876126 A JP S5876126A
Authority
JP
Japan
Prior art keywords
gas
treated
reaction layer
reaction
ionized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56173982A
Other languages
Japanese (ja)
Inventor
Shoji Imamura
今村 庄児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56173982A priority Critical patent/JPS5876126A/en
Publication of JPS5876126A publication Critical patent/JPS5876126A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out the purification of a gas in good efficiency, by a method wherein a gas to be treated is impinged to accelerated electron groups and ion group generated from a high voltage electric field to be ionized and the ionized gas is introduced into a reaction layer comprising a semiconductive filter material having a large surface area to repeat oxidation reaction. CONSTITUTION:A gas to be treated is introduced into a casing 2 through a conduit 1 and, while the speed thereof is made constant by a rectifying plate 3 to form a uniform stream, introduced into an electric field region (h) where high voltage discharge is generated by a discharge electrode 4. Accelerated electron groups and ion groups generated in this region (h) are impinged on harmful malodorous components or O2 in the gas to be treated to ionize the same as well as to sterilize living bacteria. In the next step, this ionized activated gas is contacted, impinged, stirred and made to stagnate in a reaction layer 6 constituted of a electrically semiconductive filler material 5 to be purified and the purified gas is exhausted while passed through the surface of an earthed electrode 9 having gas permeability closely contacted with the whole surface of the exhaust port of the reaction layer 6.

Description

【発明の詳細な説明】 本発明は公害或いは公衆安全衛生上対象となる悪臭ガス
、有害ガス或いは細菌類を、含む悪臭ガス等の浄化方法
およびその装置に関するものであり、し減下水処理場、
フイシュミルプラント レンダリングプラント、有機溶
媒°を使用する印刷、塗装、塗装焼付及びゴム工場等か
らの排ガスはほとんど悪臭公害の対象となり、その対策
に薬液洗浄法、吸着法、これ等方法の組合せ、オゾン酸
化法、電気的吸着吸収法、接触酸化法(または触媒燃焼
法)及び直接燃焼法等が実施されているが、脱臭効果と
設備費、運転経費は相互相反する関係があり省エネルギ
下の現在満足できる方法、装置は未だ実存しない、また
し減下水処理場、その他の有機排水処理場等では、好気
性曝気、嫌気性曝気等が主流を占めそれ等の排ガス中に
は人体に影響を及ぼす一般細菌が多量に含まれており、
たとえ薬液洗浄法と吸着法を組合せた装置を通過させて
、悪臭ガスを除去しても、大腸菌等を含む一般細菌は、
殆んど除去されることなく大量のガスと共−ζ大気に憂
慮される現状にある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for purifying foul-smelling gases containing foul-smelling gases, harmful gases, or bacteria that are targets for pollution or public safety and health, and relates to wastewater treatment plants,
Fischmill Plant Exhaust gas from rendering plants, printing using organic solvents, painting, paint baking, rubber factories, etc. is mostly subject to odor pollution, and countermeasures include chemical cleaning methods, adsorption methods, and combinations of these methods. Ozone oxidation method, electrosorption absorption method, catalytic oxidation method (or catalytic combustion method), direct combustion method, etc. have been implemented, but the deodorizing effect, equipment cost, and operating cost have a mutually contradictory relationship, and it is difficult to achieve energy conservation. Currently, there are no satisfactory methods or equipment in existence, and aerobic aeration, anaerobic aeration, etc. are the mainstream in reduced sewage treatment plants and other organic wastewater treatment plants, and the exhaust gases from these systems have no effect on the human body. Contains a large amount of common bacteria that cause
Even if the foul-smelling gas is removed by passing it through a device that combines chemical cleaning method and adsorption method, general bacteria including E. coli etc.
The current situation is that almost no gas is removed and a large amount of gas is left in the atmosphere.

此のように従来の脱臭方法には一長一短があシ、また有
害或いは悪臭ガスの成分、性状によシ、適用できない方
法もある。本発明者は現状の悪臭対策の実態を調査し、
過去の文献を追究した結果、1900−1930年頃t
ζかけて、無機、有機ガスに対して常温における電子衝
突法によるイオン化の研究が盛んに実施されていたこと
に着目した、しかし公害以前の当時の生産工程への応用
には、電場内で生ずる分子反応の単純且つ定量化が得ら
れず多岐な反応過程を生産工学的に解明することは事実
上不可能であった。
As described above, conventional deodorizing methods have advantages and disadvantages, and some methods may not be applicable depending on the components or properties of the harmful or malodorous gas. The present inventor investigated the current state of odor countermeasures, and
As a result of researching past documents, it was found that around 1900-1930
In this paper, we focused on the fact that research on ionization of inorganic and organic gases using the electron collision method at room temperature was being actively conducted. It has been virtually impossible to elucidate the various reaction processes from a production engineering perspective because molecular reactions are simple and cannot be quantified.

すなわち、電子による衝突活性化では種々なるガスは励
起分子、分子イオン、解離原子、遊離基、解離原子イオ
ン等による反応の多様化であった。
That is, in collisional activation by electrons, various gases undergo diversified reactions due to excited molecules, molecular ions, dissociated atoms, free radicals, dissociated atomic ions, etc.

すなわち、電子に″よる衝突活性化では、種々なるガス
は励起分子、分子イオン、解離原子、遊離基、解離原子
イオン等による反応の多様化であった。
That is, in collisional activation by electrons, various gases undergo diversified reactions due to excited molecules, molecular ions, dissociated atoms, free radicals, dissociated atomic ions, etc.

なお初期反応を終了した生成物が、放電場外に逸出する
時機が遅れると、放電の強烈な場にさらされるため、複
雑な刷次反応をもった。
Note that if the product that completed the initial reaction was delayed in escaping from the discharge field, it would be exposed to the intense field of discharge, resulting in a complicated reprinting reaction.

たとえば多重結合による粘着性をもつ肥大分子を生成す
ることもその一例である。
One example is the production of hypertrophic molecules with adhesive properties due to multiple bonds.

こ\に、本発明で対象とするガス中には、通常数%以上
の酸素を含有していることに着目し、該記のように活性
化された各成分は酸素の分子イオン、解離原子および同
イオン等と酸化反応あるいは分解分離でき易い雰囲気を
形成することによって、従来の電子衝突法で到達できな
かった分解分離あるいは滅菌の除去効率を得る方法を見
い出したのである。従って、本発明の目的は被処理ガス
を高電圧の電場によって発生する加速された電子群およ
びイオン群と衝突させてイオン化した後、それらの成分
を大きい表面積をもつ半導性の充填物で構成する反応層
に導入して攪拌、接触、衝突により被処理ガスの滞留効
果を向上し、主として酸化反応を繰返して被処理ガスの
浄化を図る方法と装置を提供することである。また一般
細菌特に芽胞菌等を含む悪臭ガスについても同様の方法
と装置で高電圧雰囲気内でその生態を破壌し滅菌するも
のである。反応層における電子エネルギはその入口前後
までは激しく衝突能力を持っているが、接地電極と通ず
る半導性の充填物と非弾性衝突を繰返しながら、通過す
る間に、そのエネルギを減少し、接地電極に至ル消滅す
るものであり、従つて本発明の主たる目的は従来実用の
排ガス中の粉塵、ミスト、多種類の高分子ガス、熱分解
ガス、結合力の強い低分子ガスあるいは一般細菌を含む
悪臭ガス等について一型式の脱臭方法によって処理する
ことは不可能であった。しかしながら、本発明によれば
反応層の充填物を固定化する方法のみでなく、流動、再
生、循環することによって安定した性能を連続保持し得
ると共に、充填物の機能を被処理ガスの特性に応して以
下の如く自由に選択することが容易である。即ち吸着、
吸収、中和、酸化および触媒作用等の単独または組合せ
により、広汎な排ガス処理をなし得る方法および装置を
提供するにある。
Focusing on the fact that the gas targeted by the present invention usually contains several percent or more of oxygen, each component activated as described above is composed of molecular ions and dissociated atoms of oxygen. By creating an atmosphere that facilitates oxidation reactions or decomposition separation with the same ions, they have discovered a method to obtain decomposition separation or sterilization removal efficiency that could not be achieved with conventional electron collision methods. Therefore, the purpose of the present invention is to ionize the gas to be treated by colliding it with accelerated electrons and ions generated by a high-voltage electric field, and then ionize the gas to be treated by forming a semiconducting filler with a large surface area. It is an object of the present invention to provide a method and an apparatus for purifying the gas to be treated by introducing the gas into a reaction layer, improving the retention effect of the gas to be treated by stirring, contacting, and colliding, and mainly repeating the oxidation reaction. In addition, the same method and equipment are used to destroy the ecology of general bacteria, particularly spore-forming bacteria, and sterilize them in a high-voltage atmosphere. Electron energy in the reaction layer has the ability to violently collide with the semi-conducting filling that connects to the ground electrode, and as it passes through the layer, its energy is reduced and the energy is reduced until it reaches the ground electrode. Therefore, the main purpose of the present invention is to eliminate dust, mist, various types of polymer gases, pyrolysis gases, low molecular gases with strong bonding strength, or general bacteria in exhaust gas that has been used in conventional practice. It has been impossible to treat the malodorous gases and the like contained therein by a single type of deodorization method. However, according to the present invention, stable performance can be continuously maintained by not only fixing the filling of the reaction bed but also fluidizing, regenerating, and circulating the filling, and the function of the filling can be adjusted to the characteristics of the gas to be treated. Accordingly, it is easy to freely select the following. That is, adsorption,
The object of the present invention is to provide a method and apparatus that can perform a wide range of exhaust gas treatment by absorption, neutralization, oxidation, catalysis, etc., singly or in combination.

また本発明の他の目的は比較的水、薬液等と吸収、中和
、酸化分解し易い被処理ガスに対しては被処理ガスをイ
オン化して後、通気性を有する絶縁性誘導体に水または
薬液流下によって形成された液膜を貫通させ電気的絶縁
空間を経て接地電極に達するものでちゃ、この場合イオ
ン化ガスと共に、通過する残留加速電子およびイオン群
は液膜の分子群をイオン化させ、気液双方の活性化によ
シ気液界面の物質異動係数が増加し、吸収、中和、酸化
分解の効率を大幅に向上する。従って従来知られている
湿式洗浄方式、高電圧湿式吸収方式より、その除去効率
、装置の簡略化、耐蝕性等の改善を得ることができる方
法と装置を提供することである。
Another object of the present invention is to ionize the gas to be treated, which is relatively easily absorbed, neutralized, or oxidized and decomposed with water, chemical solutions, etc., and then to apply water or In this case, the residual accelerated electrons and ions passing along with the ionized gas ionize the molecules in the liquid film, causing gas Activation of both the liquid and gas increases the mass transfer coefficient at the gas-liquid interface, greatly improving the efficiency of absorption, neutralization, and oxidative decomposition. Therefore, it is an object of the present invention to provide a method and apparatus that can improve removal efficiency, simplification of the apparatus, corrosion resistance, etc. over the conventionally known wet cleaning method and high voltage wet absorption method.

また本発明の他の目的は含塵ガス、水分の多いフイシュ
ミルプラント等のアンモニアを含有する張車ガスに対し
て前処理用スクラバ等との組合せを得る方決と装置する
ことである。
Another object of the present invention is to provide a method and apparatus for use in combination with a pre-treatment scrubber, etc., for dust-containing gas and ammonia-containing tank gas such as from a fish mill plant containing a large amount of moisture.

また本発明の総合的目的は現行技術において最も高効率
の脱臭装置、例えば印刷、塗装業界の接触酸化方式ある
いはし尿処理場に多くの事例をあげている薬液洗浄方式
と吸着方式との組合せ等に対して同一処理効率を基準と
して、設備費は約20−30%減となり、運転費は美〜
薗%でよく、従って長年の希望であった「経済的で脱臭
効率の高い技術」を得る方法と装置を提供することであ
る。
The overall purpose of the present invention is to provide the most efficient deodorizing device in the current technology, such as the catalytic oxidation method used in the printing and painting industries, or the combination of the chemical cleaning method and adsorption method, which are often used in human waste treatment plants. On the other hand, based on the same processing efficiency, the equipment cost will be reduced by about 20-30%, and the operating cost will be reduced by ~
Therefore, the objective is to provide a method and apparatus for obtaining an ``economical and highly efficient deodorizing technique'' that has been desired for many years.

本発明のさらに他の目的および構成、作用、効果は以下
の詳記によって一層明らかとなる。
Further objects, configurations, functions, and effects of the present invention will become clearer from the following detailed description.

以下、本発明の実施装置について詳細に説明する。Hereinafter, the implementation device of the present invention will be explained in detail.

第1図に示す実施装置は臭気を有する有害被処理ガスを
9導管lによってケーシング2内に導入し、定速にして
均一な流れに調整するためのる電場領域に流入し、放電
極4はケーシング貫通部で絶縁・シールされ、変圧器8
の二次側の一端に接続され、二次側の他端はアース7に
接続し、変圧器8の一次側電力は商用電力でよいが、周
波数の高い電力を適用してもよいものである。
In the embodiment shown in FIG. 1, a harmful gas to be treated having an odor is introduced into a casing 2 through nine conduits 1, and flows into an electric field region for adjusting the flow to a constant velocity and uniformity. The transformer 8 is insulated and sealed at the casing penetration part.
The transformer 8 is connected to one end of the secondary side, and the other end of the secondary side is connected to the ground 7. The primary power of the transformer 8 may be commercial power, but high frequency power may also be applied. .

また電気特性によっては、本発明の目的が高速自由電子
群およびイオン群による衝突にあるので、基本的には直
流であるが、交流直流のいづれでもよく、また直流の正
、負いづれの極性でもよいが、負の場合が電圧特性上効
果が高くなるが、その採択は被処理ガスの特性、設備条
件等によって選定するものである。電場領域に流入した
被処理ガスあるいは一般細菌および空気の混合ガスは半
導性の充填物5によって形成した反応層6に流入する前
の空間域即ち高速自由電子およびイオンの活動が激しい
領域りの空間で被処理ガスは衝突によって電離され、イ
オン化され、あるいは細菌類は高電場の雰囲気内で生態
系を破壊され、その状態で反応層6の入口に到達した活
性化ガスあるいは強固な生命力を有する芽胞菌数は狭い
充填物6間の間隙で衝突、接触、攪拌作用を受けながら
広い表面積を有する半導性の充填物5の層間に滞留を余
儀なくされ、自由電子は半導性の充填物5と非弾性衝突
を繰返しながら、接地電極9への導通によシミ位低下し
、反応hII6の内部においては被処理ガスに含まれて
いる酸素の0□、0.0による激しい酸化反応を生ずる
が、一部では環元重合反応も生ずる。 また放電によジ
オシンの発生もあるが、その発生率は比職的少なく、酸
化分解あるいは滅菌等の寄与率は小さく、またイオン化
領域りと主として酸化反応を生ずる反応領域Hは相互密
接な関連があり、特に反応領域Hは本発明の骨子をなす
ものである。
Also, depending on the electrical characteristics, since the purpose of the present invention is collisions between high-speed free electron groups and ion groups, it is basically a direct current, but it can be either an alternating current or a direct current, or a direct current of either positive or negative polarity. However, the negative case is more effective in terms of voltage characteristics, but its selection depends on the characteristics of the gas to be treated, equipment conditions, etc. The gas to be treated or the mixed gas of general bacteria and air that has flowed into the electric field region flows into the spatial region, that is, the region where the activity of fast free electrons and ions is intense, before flowing into the reaction layer 6 formed by the semiconducting filler 5. In the space, the gas to be treated is ionized and ionized by collision, or the ecosystem of bacteria is destroyed in the atmosphere of high electric field, and in this state, the activated gas or strong vitality reaches the entrance of the reaction layer 6. The number of spore bacteria is forced to stay between the layers of the semiconducting packing 5 having a large surface area while undergoing collision, contact, and agitation in the narrow gaps between the packings 6, and free electrons are forced to remain between the layers of the semiconducting packing 5, which has a large surface area. While repeating inelastic collisions, the stain level is lowered due to conduction to the ground electrode 9, and an intense oxidation reaction occurs inside the reaction hII 6 due to the oxygen contained in the gas to be treated. In some cases, ring element polymerization reactions also occur. Furthermore, although dioscin is generated due to electric discharge, its generation rate is relatively low, and the contribution rate of oxidative decomposition or sterilization is small, and the ionization region and the reaction region H, which mainly causes oxidation reactions, are closely related to each other. In particular, reaction region H forms the gist of the present invention.

反応層6の出口には密接して接地された網状、格子状、
または多孔性の接地電極9を単一または複数組合で取付
けられ、被処理ガスは全て接地電極9の全面と直交しな
がら通過するものであり、通過時に自由電子の残留電位
は零となる。
At the outlet of the reaction layer 6, there is a closely grounded mesh, lattice,
Alternatively, a single porous ground electrode 9 or a combination of a plurality of porous electrodes 9 are attached, and all the gases to be treated pass through the ground electrode 9 while being perpendicular to the entire surface thereof, and the residual potential of free electrons becomes zero when passing through.

尚、被処理ガスの特性、濃度等によシ一段階で除去し得
ない有害物、悪臭成分あるいは高電位の雰囲気内で破壊
し得なかった細菌類は図示のように反応層6を複数形成
することによって破壌浄化することができるものである
In addition, harmful substances and malodorous substances that cannot be removed in one step due to the characteristics and concentration of the gas to be treated, or bacteria that cannot be destroyed in a high-potential atmosphere are treated by forming a plurality of reaction layers 6 as shown in the figure. By doing this, you can cleanse the debris.

また、被処理ガス中に微粒粉塵が含有され、分解生成物
あるいは重合反応物が接地電極9上に蓄積すると、その
性能が低下するので、定期的に運転停止時に外扉°に取
出し清掃することが必要である。尚、図中7は高電圧線
、lOは電極支持板、νは反応層6をケースと共に引当
ず開閉扉である。
In addition, if the gas to be treated contains fine dust and decomposition products or polymerization reaction products accumulate on the ground electrode 9, its performance will deteriorate, so it should be periodically taken out to the outer door and cleaned when the operation is stopped. is necessary. In the figure, 7 is a high voltage line, IO is an electrode support plate, and ν is a door that can be opened and closed without holding the reaction layer 6 together with the case.

本発明における印加電圧は3〜40y1好ましくは5〜
20KVであり、電流波形は交流直流のいづれでもよく
、また直流の場合の極性は正負いづれでもよいが、好ま
しくは直流負電極であり、また交流の場合は周波数を変
更してもよいが、商用電力サイクルでよく、イオン化領
域(h)の厚さは20〜gQIm好ましくは30〜50
關であり、反応領域■の厚さは20〜80111Ef’
tL(は9〜5011mであり、印加電圧、被処理ガス
の特性によ、ハ・ って異なるが、両者の合計厚は最大100鶴が好ましい
ものであり、反応領域Hを構成する充填物は粒径2〜5
1111!ffiのセラミックあるいは不燃性樹脂を基
材として電気的番こ半導性の抵抗値を有する半導性物質
または金属芯材に不燃性樹脂膜を被覆した半導性体の一
種もしくは二種以上の混合物であり、電気抵抗値は11
00a以下が好ましいが、電気抵抗値は印加電圧、有効
電場領域、反応層の分解効率等によって決定するもので
ある。充填物の表面は巨視的には吸着性を良好にするた
め番こ多孔性または粗面性であることが好ましく、被処
理ガスあるいは被処理ガス中に含まれる細菌類を充填物
の表面に一時的に吸着するか、接触して滞留し、滞留中
に分解あるいは滅菌するものであp1反応層の充填物を
酸化触媒とする場合はニッケル、マンガン、プラチナ等
の触媒性物質を酸化アルミナその他の電気抵抗値が大き
い芯材に付着した粒子あるいは斯る粒体く導電性の良好
な粒子を混合した混合粒子で、前記の知き電気抵抗値を
有するものが適用されるものである。
The applied voltage in the present invention is 3 to 40y1, preferably 5 to 40y1.
20KV, the current waveform can be either AC or DC, and in the case of DC, the polarity can be positive or negative, but preferably it is a DC negative electrode, and in the case of AC, the frequency may be changed, but Power cycle may be used, and the thickness of the ionization region (h) is between 20 and 30 gQIm, preferably between 30 and 50 gQIm.
The thickness of the reaction area is 20~80111Ef'
tL (is 9 to 5011 m, and varies depending on the applied voltage and the characteristics of the gas to be treated, but it is preferable that the total thickness of both is at most 100 m, and the filling that constitutes the reaction area H is Particle size 2-5
1111! One or more types of semiconducting materials that have a resistance value of electrical semiconductivity using ffi ceramic or noncombustible resin as a base material, or semiconducting materials that have a metal core coated with a noncombustible resin film. It is a mixture, and the electrical resistance value is 11
The electrical resistance value is preferably 00a or less, but the electrical resistance value is determined by the applied voltage, effective electric field area, decomposition efficiency of the reaction layer, etc. Macroscopically, the surface of the filler is preferably highly porous or rough to improve adsorption properties, and the gas to be treated or bacteria contained in the gas to be treated are temporarily transferred to the surface of the filler. If the packing of the P1 reaction layer is used as an oxidation catalyst, the catalytic substances such as nickel, manganese, and platinum are replaced with alumina oxide and other substances. Particles attached to a core material having a large electric resistance value or mixed particles obtained by mixing such particles with particles having good conductivity, and having the above-mentioned known electric resistance value, are used.

前記の実実施例により、悪臭を伴うゴム工場の混線工程
において発生するガスを処理した゛結果を表−1に示す
Table 1 shows the results of treating the foul-smelling gas generated in the crosstalk process at a rubber factory using the above-mentioned example.

表−1 注1.電気仕様 直 流 81V 2 被処理ガ3流量   5ゆ雰   25で 55−
RHλ 反応層の数     3 4、臭  質      入口 ゴム臭を含む嫌悪性ガ
ス出口 僅かに臭いはあるが、臭 質を判別し得ない程度の 弱臭 1 三点比較式臭袋法社現行の臭気判定1最も権威のあ
る方法であり、東京都によって開発され、全国自治団体
に昔及している方法である。
Table-1 Note 1. Electrical specifications DC 81V 2 Gas to be treated 3 Flow rate 5mm Atmosphere 25 55-
RHλ Number of reaction layers 3 4, Odor quality Inlet Aversive gas outlet containing rubber odor There is a slight odor, but it is so weak that the quality of the odor cannot be determined 1 Three-point comparison method Odor Bag Law Company's current odor judgment 1. This is the most authoritative method, developed by the Tokyo Metropolitan Government, and has been used by local governments throughout the country for a long time.

伝臭気−tsooとは捕集したガスを無臭空気で300
倍Kll釈し九とき、検臭員半数以上が臭気を感じなく
々ることで、脱臭装置の出口側秦度保証値として最も厳
しい数値である。
Odorless air - TSOO is a 300% odorless air generator that uses odorless air to collect gas.
This is the strictest guaranteed value for the degree of odor at the outlet of the deodorizer, as more than half of the odor testers will not be able to detect the odor at 9 times the odor.

7、東京都の排出口における臭気澁度は下記のように条
例で規制されている。
7. The odor level at exhaust outlets in Tokyo is regulated by ordinance as follows.

住宅地域  300以下 重工jl地域    Woo以下 工 業 地 域   1ooo以下 また細菌類を含む悪臭ガスについて、前記を同様方法で
し尿処理場の撒布F床排ガスについて実施した結果を表
−2に示す。
Residential area 300 or less Heavy industry area Woo or less Industrial area 100 or less Table 2 shows the results of conducting the same method as above for the F-floor exhaust gas from a human waste treatment plant for malodorous gas containing bacteria.

表−2 注を電気仕様直流12D 交流12Kv()内の数値 2 被処理ガス量 5鳳鴇 9℃  97チRH3、反
応層の段数 3 本 実質 入 口 嫌悪性し尿臭 出 口 実質1f4JWRできない1度の軟かい臭& 
細菌の捕集法 装置の入口、出口のガス流を管を通して生理食塩水の捕
集風に吸引し、その排気を真空ポンプ経由で排出する。
Table 2 Note: Electrical specifications DC 12D AC 12Kv (2) Values in () Amount of gas to be treated 5 Houho 9℃ 97chi RH3, Number of reaction layer stages 3 Actual inlet Aversive human urine odor Outlet Actual 1F 4 JWR cannot be done 1 degree soft odor &
The gas flow at the inlet and outlet of the bacterial collection method is sucked through a tube into the saline collection air, and the exhaust gas is discharged via a vacuum pump.

1 室内における積項衛生上の不適基準OII曹量紘3
00饅9である。
1 Indoor Product Hygiene Inappropriate Standards OII Soryohiro 3
It is 00 rice cake 9.

第2図は本発明の他の実施例を示し、被処理ガスを横流
し、反応層6を上方から下方に移送するものであり、被
処理ガスが露点前彼の湿潤性であるム、あるいは被処理
ガス中に粉塵、タールンスト埠を含有するか、あるいは
特に反応層6で析出する有機出成物、無機生成物、多種
結合によって生成する粘着性物質等の一種または二種以
上は装置内を通過する段階特に流下する反応層6内の半
導性の充填物5および接地電極9の表面を汚損し、夫々
が有する機能を阻害するために、被処理ガスの浄化効率
は著るしく低下し、長時間の連続運転が不可能となるの
で、連続運転を必要とするプラントではバイパスダクト
を設置して、清掃期間中汚染ガスを大気放出するか、あ
るいはプラントを停止するか、tたは同一装置を並設し
て切換使用しなければならない欠点を除去する為の装置
であり、被処理ガスと排風機によってケーシング2内に
導入し、整流板3によって低速約−流とし、高電圧が印
加されている放電極4の周辺を通プ、前記実施例で詳記
したように、電離イオン化層り領域に入りイオン化され
るか、あるいは曹・類の生態が破壌されながら次の反応
層6に入シ、反応層6内の充填物5の表面に衝突、接触
、攪拌を繰返す間に、被処理ガス中の粉塵、ミスト類、
反応生成物、多S#合分子等を充填物5の表面に付着す
る。また接地電極9に付着物、分子量の大きいイオン化
分子等が付着するが、反応層6内の充填物5を被処理ガ
スの性状によシ関歇的、あるいは連続的番こ流動しなが
ら、排出し、反対方向から再生した同量の充填物を導入
することによって、反応層6および接地電極の表面を常
に活性状態に保持し、被処理ガスの浄化を常に高効率に
安定保持するものであり、従来の有害ガス、悪臭ガスの
除去装置に必要としたフィルターおよび結露防止用のガ
ス化装置等の前処理装置の必要がなく、被処理ガスの処
理装置も種々な方式との組合せ装置の必要がなく、単一
方式装置で反応層6の機能を前記方法によって変東する
ことのみで目的を達成することができるものである。
FIG. 2 shows another embodiment of the present invention, in which the gas to be treated flows horizontally and is transferred from the upper side to the lower side of the reaction layer 6, and the gas to be treated is wetted before the dew point. One or more types of dust, tarnst, etc. contained in the process gas, or organic precipitates precipitated in the reaction layer 6, inorganic products, sticky substances generated by multi-species combinations, etc., pass through the device. In particular, the surface of the semiconductive filler 5 and the ground electrode 9 in the flowing reaction layer 6 is contaminated and the functions of each are inhibited, so that the purification efficiency of the gas to be treated is significantly reduced. Since long-term continuous operation is not possible, plants that require continuous operation should either install a bypass duct to release the contaminated gas into the atmosphere during the cleaning period, or shut down the plant, or replace the same equipment. This is a device to eliminate the disadvantage of having to install the gas in parallel and switch between them.The gas to be treated is introduced into the casing 2 by an exhaust fan, the flow is made low at a low speed by the rectifying plate 3, and a high voltage is applied. As described in detail in the previous embodiment, the liquid passes through the vicinity of the discharge electrode 4, enters the ionization layer region and is ionized, or the ecology of carbon dioxide is destroyed and it flows into the next reaction layer 6. During the repeated collision, contact, and stirring with the surface of the filler 5 in the reaction layer 6, dust, mist, etc. in the gas to be treated are removed.
Reaction products, multi-S# polymer molecules, etc. are attached to the surface of the packing 5. In addition, deposits, ionized molecules with large molecular weight, etc. adhere to the ground electrode 9, but the filling 5 in the reaction layer 6 is discharged while flowing intermittently or continuously depending on the properties of the gas to be treated. By introducing the same amount of regenerated filler from the opposite direction, the surfaces of the reaction layer 6 and the ground electrode are always maintained in an active state, and the purification of the gas to be treated is always kept highly efficient and stable. , there is no need for pre-treatment equipment such as filters and gasification equipment to prevent condensation, which were required in conventional equipment for removing harmful gases and foul-smelling gases, and there is no need for equipment that can be combined with various types of processing equipment for the gas to be treated. Therefore, the purpose can be achieved only by changing the function of the reaction layer 6 by the method described above in a single system device.

尚、図中13は高電圧エアクールボックス、14は充填
物5を連続あるいは間歇的に排出するロタIJ −/(
ルプ、tは充填物5を洗浄再生槽16へ搬出するベルト
コンベヤの如き搬出装置、17.4は洗浄薬液の循環ポ
ンプ、18は洗浄薬液の噴射ノズル、 19は洗浄再生
装置16よシ充填物5を取り出す排出扉、美は洗浄再生
装置 けた洗浄乾燥室、21は洗浄薬液の循環ポンプ、々は乾
燥用ファン、δは洗浄乾燥3120内の乾燥再生反応物
を搬出するパケットコンベヤ、墓はパケットコンベヤ2
5Jζよって搬出された再生反応物5を、各反応層6の
上端に形成した再生反応物供給弁あの上部のホッパIに
供給するベルトコンベヤ、四は被!6mlガス流入口、
刃は排気筒、31.32は洗浄薬液槽オ、具は洗浄薬液
ポンプ、あは充填物5を接地電極9と共に保持する網の
如き多孔質板であり、前記実施例と同一符号は同一部位
を示すものである。
In the figure, 13 is a high-voltage air cooling box, and 14 is a rotor IJ-/(
17.4 is a circulation pump for cleaning chemical liquid, 18 is a spray nozzle for cleaning chemical liquid, and 19 is a loading device such as a belt conveyor for conveying the filling material 5 to the cleaning and regenerating tank 16. 5 is the discharge door that takes out the drying reaction product from the cleaning and drying device 3120, 21 is the circulation pump for the cleaning chemical, δ is the packet conveyor that takes out the dried and recycled reaction product in the cleaning and drying 3120, and the grave is the packet. conveyor 2
A belt conveyor that supplies the regenerated reactant 5 carried out by 5Jζ to the hopper I above the regenerated reactant supply valve formed at the upper end of each reaction layer 6; 6ml gas inlet,
The blade is an exhaust pipe, 31 and 32 are a cleaning chemical tank, O is a cleaning chemical pump, and A is a porous plate like a net that holds the filler 5 together with a ground electrode 9. The same reference numerals as in the previous embodiment indicate the same parts. This shows that.

第2図に示す実施例によって印刷用インキ製造工1!ζ
こおいて発生する排ガスについて実施した結果を表−3
に示す。
Printing ink manufacturer 1 according to the embodiment shown in FIG. ζ
Table 3 shows the results of the tests conducted on the exhaust gas generated in this plant.
Shown below.

婁造工程中反応釜で発生する排ガスは多成分であり、ガ
スク、ロマトグラフイ分析によっても実体を知シ得ない
ものであシ、特に悪臭が対象となっているから、検知管
と官能試験によってその傾向を計測し、反応釜内は爆発
防止のために一般のブラントでは不活性化にするためj
こ、酸素は殆んどなく、従って排ガスを水封装置に導入
し、出口部で空気を混入し、酸素含有量を16重量%と
じたものである。
The exhaust gas generated in the reaction vessel during the manufacturing process is multi-component, and its substance cannot be ascertained by gas or chromatographic analysis.The odor is particularly targeted, so it can be detected by using a detector tube and sensory test. We measured this tendency and made the interior of the reaction vessel inert in order to prevent explosions.
In this case, there is almost no oxygen, so the exhaust gas is introduced into a water sealing device, and air is mixed in at the outlet to reduce the oxygen content to 16% by weight.

表−3 注り電気仕様 交流I i 被処理ガス流量  31435℃ (水封装置出口
)1 反応層の段数  3 表 実 質 入 口 胸激性の窒息性、嫌悪性ガス出 
口 排ガス中で呼吸ができる。嫌悪臭のない僅かな臭気 5、充填物の給排 間歇的(20〜30分間毎)に交換
6、汚染光jj−粘稠性、黒褐色の薄膜で被覆第3図は
本発明の他の実施例を示し、被処理ガス中に僅かな粉塵
があり、あるいは水、薬液等と吸収、中和、酸化し易り
成分、あるいは露点以下で捕捉し易い多重結合分子等の
場合、充填物5の表面に液の滴下によル湿潤性を付与す
ると、反応層6内で吸着、吸収、中和あるいは酸化し易
くな9、充填物5が連続あるいは間歇的に落下する反応
層6の上部にノズルの如き滴下装置あを設け、水または
薬液タンクご内の薬液をポンプあ、自動制御弁Iを経て
適下装置蕊より充填物5に滴下するものである。この装
置に適用する薬液は一般市販のものでよく、被処理ガス
の性状に適合させ1、塩基性ガスに対しては硫酸、塩酸
等のPH2〜5好ましくはPH2〜3の水溶液で69、
また酸性ガスの場合は苛性ソーダ、炭酸ソーダ等のアル
カリ性物質によって、H9〜14好ましくはPH12〜
13の水溶液として適用するものであり、また中性ガス
あるいは酸、アルカリ等によって吸収中和できにくいト
リメチルアミン、メチルメルカプタン、硫化メチル、二
硫化メチル等の排ガスに対しては次亜塩酸ソーダ、過酸
化水素、亜臭素酸ソーダ、安定化二酸化塩素等の酸化剤
がよいものであシ、pH8〜12好ましくはPH9〜H
の水溶液であり、液中の各酸化剤の有効濃度500〜2
000 pp+s好ましくハ5oo〜1ooopp罵が
よいものである。
Table 3 Injection electrical specifications AC I Processed gas flow rate 31435℃ (Water sealing device outlet) 1 Number of reaction layer stages 3 Table Actual inlet Chest-stimulating, suffocating, aversive gas emission
Mouth Can breathe in exhaust gas. Slight odor with no aversive odor 5, Filling and discharging: Replaced intermittently (every 20 to 30 minutes) 6, Contaminated light jj-viscosity, coated with a dark brown thin film Figure 3 shows another embodiment of the present invention As an example, if there is a small amount of dust in the gas to be treated, or if there are components that are easily absorbed, neutralized, or oxidized with water, chemicals, etc., or multiple bond molecules that are easily captured below the dew point, the packing 5. When wettability is imparted to the surface by dropping a liquid, it is likely to be adsorbed, absorbed, neutralized, or oxidized within the reaction layer 6.9 A nozzle is placed above the reaction layer 6 where the filler 5 falls continuously or intermittently. A dripping device (A) such as the one shown in FIG. The chemical solution applied to this device may be a commercially available one, and should be adapted to the properties of the gas to be treated.For basic gases, an aqueous solution of pH 2 to 5, preferably pH 2 to 3, such as sulfuric acid or hydrochloric acid should be used.
In addition, in the case of acidic gas, the H9-14, preferably PH12-12, is
It is applied as an aqueous solution of No. 13, and for exhaust gases such as trimethylamine, methyl mercaptan, methyl sulfide, and methyl disulfide, which are difficult to absorb and neutralize with neutral gases, acids, alkalis, etc., sodium hypochlorite and peroxide are used. An oxidizing agent such as hydrogen, sodium bromite, or stabilized chlorine dioxide is preferable, and the pH is 8-12, preferably 9-H.
is an aqueous solution, and the effective concentration of each oxidizing agent in the liquid is 500 to 2.
000 pp+s, preferably 5oo to 1ooopp.

この実施例において反応槽6は必要に応じて複数組合せ
て適用され、前記実施例と同一符号は同一部位を示すも
のであり、その他の構成は第2図に示す実施例と同様で
ある。
In this embodiment, a plurality of reaction vessels 6 are used in combination as required, and the same reference numerals as in the previous embodiment indicate the same parts, and the other configurations are the same as the embodiment shown in FIG. 2.

第4図は本発明のさらに他の実施例を示し、第3図に示
す実施例の構成を被処理ガスの特性に適合して簡易とし
たものであ夛、水あるいは薬液に吸収中和、酸化し易い
例えばアンモニア、硫化水素ガス等の場合、あるいは薬
液洗浄法の場合は酸化除去効率の低いトリメチルアミン
、硫化メチル、二硫化メチルを含有する排ガスに対して
は放電極4の印加電圧によって発生する加速電子群によ
り解離イオン化して後、第3図に示す実施例の反応層6
の代りに接地電極9に電気的に絶縁した通気性を有する
液膜を形成し得る絶縁誘導体41を形成し、イオン化領
域で未だ残留する加速電子群と液膜に衝突することKよ
って液中成分をイオン化し、気液境界の物質移動係数を
従来の静電吸収法より著るしく増加するから、イオン化
ガスは二次的にイオン化された液膜と反応し易く、また
通過し易くなる。
FIG. 4 shows still another embodiment of the present invention, in which the configuration of the embodiment shown in FIG. 3 is simplified to suit the characteristics of the gas to be treated. In the case of gases that are easily oxidized, such as ammonia and hydrogen sulfide gas, or in the case of chemical cleaning methods, for exhaust gases containing trimethylamine, methyl sulfide, and methyl disulfide, which have low oxidation removal efficiency, it is generated by the voltage applied to the discharge electrode 4. After being dissociated and ionized by a group of accelerated electrons, the reaction layer 6 of the embodiment shown in FIG.
Instead, an insulating dielectric 41 capable of forming an electrically insulated and breathable liquid film is formed on the ground electrode 9, and the components in the liquid are caused to collide with the accelerating electron group still remaining in the ionization region and the liquid film. This ionizes the gas and increases the mass transfer coefficient at the gas-liquid boundary significantly compared to conventional electrostatic absorption methods, making it easier for the ionized gas to react with and pass through the secondarily ionized liquid film.

この場合、液膜と接地電極9とが密着していると、電子
群の電位差は零となり、電子群の移動係数は本発明に比
して小さくなるから、絶縁誘導体41と絶縁された接地
電極9、液膜供給ノズル42、液循環ポンプ招、新液供
給ポンプ44、液貯留槽6、循環液檜栃、中和排液槽4
7等によって形成され、必要に応じて絶縁誘導体41を
複数形成するものであシ、絶縁誘導体41の厚さは5〜
1o鵡であシ、液鱒導体は絶縁性樹脂繊維で形成され、
網状、格子状!1$J(編成され、その形状には制約さ
れないものである。複数層の組合せについても同様であ
る。
In this case, if the liquid film and the ground electrode 9 are in close contact with each other, the potential difference between the electron groups becomes zero and the transfer coefficient of the electron group becomes smaller than in the present invention. 9, liquid film supply nozzle 42, liquid circulation pump, new liquid supply pump 44, liquid storage tank 6, circulating liquid cypress, neutralization drain tank 4
7 or the like, and a plurality of insulating dielectrics 41 are formed as necessary, and the thickness of the insulating dielectric 41 is 5 to 5.
1. The liquid trout conductor is made of insulating resin fiber,
Net-like, lattice-like! 1$J (knitted, and its shape is not restricted. The same applies to the combination of multiple layers.

尚、前記実施例と同一符号は同一部位を示すものである
Note that the same reference numerals as in the above embodiment indicate the same parts.

尚、本発明に係る装置の基本設計値を示す空間速度SV
は装置内を流動する被処理ガスの速度と滞留時間の関係
を表し、一般に接触酸化(触媒燃焼)法ではSV値で触
媒反応層の容量決定をしてお夕、基本設計上の重要な要
素である。
In addition, the space velocity SV indicating the basic design value of the device according to the present invention
represents the relationship between the velocity and residence time of the gas to be treated flowing through the equipment, and in general, in the catalytic oxidation (catalytic combustion) method, the capacity of the catalytic reaction layer is determined by the SV value, which is an important element in the basic design. It is.

本発明に基づ(8V値は被処理ガスの成分、性状、印加
電圧の大きさ等によってことなるが、3000〜300
00 Hr−’程度でちゃ、好ましくは6000〜15
000 Hr  である。
Based on the present invention (the 8V value varies depending on the components and properties of the gas to be treated, the magnitude of the applied voltage, etc.)
00 Hr-', preferably 6000-15
000 hours.

表−1,2,3のSV値は夫々12.000Hr  。The SV values in Tables 1, 2, and 3 are each 12.000 Hr.

1 12000 Hr  、  8000 Hr  である
1 12000 Hr, 8000 Hr.

空間速度S■は以下の如く算出される。The space velocity S■ is calculated as follows.

−1 8V = y Hr Q:装置内を1時間尚りに流動する被処理ガス量(m2
/Hr) ■=反応層の容積(m2)
-1 8V = y Hr Q: Amount of gas to be treated flowing in the device in one hour (m2
/Hr) ■=Volume of reaction layer (m2)

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は二種の実施例の縦断面図、第3図、第
4図は二種の他の実施例の部分断面図である。 2・・・ケーシング、 3・・・整流板、 4・・・放
電極、 5・・・充填物、 6・・・反応層、 9・・
・接地電極、15・・・搬出装置、 蕊・・・滴下装置
、41・・・絶縁誘導体。 出願人今村庄児 代理人野沢睦秋
1 and 2 are longitudinal sectional views of two embodiments, and FIGS. 3 and 4 are partial sectional views of two other embodiments. 2... Casing, 3... Current plate, 4... Discharge electrode, 5... Filler, 6... Reaction layer, 9...
- Ground electrode, 15... Carrying out device, stamen... Dripping device, 41... Insulating dielectric. Applicant Shoji Imamura Agent Mutsuaki Nozawa

Claims (1)

【特許請求の範囲】 1、高電圧の放電によp1電場雰囲気内で生ずる加速さ
れた電子群およびイオン群を、被処理ガス中の有害およ
びまたは悪臭ガス成分差に被処理ガス中の酸素等に衝突
させてイオン化し、あるいは高電圧により被処理ガス中
の細菌類の生態を破壊し、さらにイオン化した活性ガス
を電気的に半導性の充填物で構成した反応層内で接触、
衝突、攪拌、滞留させて浄化し、前記反応層の排出口の
全面に密着し接地した通気性を有する電極面を通過して
浄化したガスを排出するか、または複数の前記反応層に
よって被処理ガスを処理することを特徴とするガスの浄
化法。 2被処理ガスの温度、被処理ガス中の有害およびまたは
悪臭ガスの成分濃度、含塵量その他の物性等に応じて前
記反応層内の充填物を間歇または連続して綴込し、徐々
に被処理ガスの通過系外に搬し、汚染した充填物を再生
処理し、反応層へ還送し、また前記反応層を被処理ガス
の特性に応じた機構とし、前記反応層を構成する充填物
の表面上での被処理ガスの吸着、吸収中和、接触酸化特
性を付与することを特徴とする特許請求の範囲第1項記
載のガス浄化法。 3、被処理ガスを低速整流する整流板をケーシング内に
形成し、前記lll1流板の下流の前記ケーシング内に
、高電圧が印加される放電極と接地した接地電極とを対
向し空間を保持して形成し、前記空間に半導性の充填物
よりなる反応層を、前記被処理ガスと交叉し前記空間を
遮断して形成することを特徴とする特許請求の範囲第1
項を実施するガス浄化装置。 4.4I許請求の範囲第3項記載の装置において、被処
理ガスの特性に応じて反応層を形成する充填物を間歇的
または連続的に系外−こ搬出する調整可能な搬出装置と
、堆出した充填物の表面に付着した吸着物、吸収中和あ
るいは酸化等により生成物あるいは粉塵等を除去し、充
填物を再生する再生装置と、再生充填物を前記反応層に
返送する調整可能な搬出装置とを形成し、かつ反応層に
適用される半導性の充填物に、被処理ガスの特性に応じ
て、夫々に適用できる吸着、吸収中和、酸化あるいは接
触醸化触媒の機能を持たし、また吸収中和および薬液酸
化には充填物に湿潤性を与えるために水または薬液滴下
装置等を形成することを特徴とする特許請求の範囲第2
g4.を実施するガス浄化装置。 !L4#許請求の範囲第4項の装置において、反応層内
で、吸収、中和、酸化分解等が容易な被処理ガスに対し
ては水または薬液等を流下さぜ絶縁性、通気性を有する
誘導体を、放電極との間に空間を保持して放電極と接地
電極との間に形成することを特徴とする特許請求の範囲
第2項を実施するガス浄化装置。
[Scope of Claims] 1. Accelerated electron groups and ion groups generated in the p1 electric field atmosphere due to high voltage discharge are used to generate harmful and/or malodorous gas component differences in the gas to be treated, such as oxygen in the gas to be treated. The ionized active gas is ionized by colliding with the gas, or the ecology of bacteria in the gas to be treated is destroyed by high voltage, and then the ionized active gas is contacted in a reaction layer made of electrically semiconductive packing.
The purified gas is purified by collision, agitation, and residence, and is discharged through a breathable electrode surface that is in close contact with the entire surface of the outlet of the reaction layer and is grounded, or is treated by a plurality of the reaction layers. A gas purification method characterized by processing gas. 2. Depending on the temperature of the gas to be treated, the concentration of components of harmful and/or malodorous gases in the gas to be treated, the amount of dust, and other physical properties, the filling material in the reaction layer is loaded intermittently or continuously, and gradually The gas to be treated is carried out of the passage system, the contaminated filling is regenerated and returned to the reaction layer, and the reaction layer is configured to have a mechanism according to the characteristics of the gas to be treated, and the filling constituting the reaction layer is A gas purification method according to claim 1, characterized in that the gas to be treated is given adsorption, absorption neutralization, and catalytic oxidation properties on the surface of an object. 3. A rectifying plate that rectifies the gas to be treated at a low speed is formed in the casing, and a discharge electrode to which a high voltage is applied and a grounding electrode that is grounded face each other to maintain a space in the casing downstream of the Ill1 flow plate. and a reaction layer made of a semiconductive filler is formed in the space by intersecting with the gas to be treated and blocking the space.
Gas purification equipment that implements the above. 4.4I The apparatus according to claim 3, comprising: an adjustable transport device for transporting the filling material forming the reaction layer out of the system intermittently or continuously depending on the characteristics of the gas to be treated; A regeneration device that removes adsorbed matter adhering to the surface of the deposited packing material, products or dust by absorption neutralization or oxidation, and regenerates the packing material, and an adjustable system that returns the recycled packing material to the reaction bed. The function of adsorption, absorption neutralization, oxidation, or catalytic fermentation catalyst can be applied to the semiconductive packing that forms the transport device and is applied to the reaction bed, depending on the characteristics of the gas to be treated. Claim 2, characterized in that, for absorption neutralization and chemical liquid oxidation, a water or chemical liquid dripping device or the like is formed to impart wettability to the filling.
g4. A gas purification device that performs ! L4# In the apparatus according to claim 4, water or a chemical solution is poured into the reaction layer for the gas to be treated which is easily absorbed, neutralized, oxidized and decomposed, etc. to provide insulation and air permeability. A gas purification device according to claim 2, characterized in that the dielectric having the above structure is formed between the discharge electrode and the ground electrode while maintaining a space between the dielectric and the discharge electrode.
JP56173982A 1981-10-30 1981-10-30 Method and apparatus for purifying gas Pending JPS5876126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56173982A JPS5876126A (en) 1981-10-30 1981-10-30 Method and apparatus for purifying gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56173982A JPS5876126A (en) 1981-10-30 1981-10-30 Method and apparatus for purifying gas

Publications (1)

Publication Number Publication Date
JPS5876126A true JPS5876126A (en) 1983-05-09

Family

ID=15970598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56173982A Pending JPS5876126A (en) 1981-10-30 1981-10-30 Method and apparatus for purifying gas

Country Status (1)

Country Link
JP (1) JPS5876126A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206464A (en) * 1989-02-06 1990-08-16 Sanyo Electric Co Ltd Deodorizing device
KR20000058535A (en) * 2000-06-12 2000-10-05 안길홍 Method for the preparation of ferroelectric semiconductive coatings and the air cleaner using this ferroelectric semiconductive coatings
JP2006192718A (en) * 2005-01-13 2006-07-27 Ishikawajima Constr Mach Co Method and device for confirming stock of material in storage tank for batcher plant
US7147821B1 (en) * 1999-04-27 2006-12-12 Rasar Holding N.V. Treatment process for a gaseous medium containing contaminating particles

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884775A (en) * 1972-02-17 1973-11-10
JPS501940A (en) * 1973-03-15 1975-01-10
JPS5250966A (en) * 1975-10-21 1977-04-23 Eikosha:Kk Apparatus for removing nox in exhaust gas
JPS52152874A (en) * 1976-06-16 1977-12-19 Jirou Asahina Method and apparatus for adsorbing toxic gases from air
JPS5339255A (en) * 1976-09-22 1978-04-11 Gosuperu Kakou Kk Apparatus for removing impurities from water and wet air
JPS5389873A (en) * 1977-01-18 1978-08-08 Inoue Japax Res Inc Cleaning apparatus for gas
JPS5348139B2 (en) * 1973-09-22 1978-12-27
JPS549069A (en) * 1977-05-12 1979-01-23 Burger Manfred R Air purifying filter
JPS55111829A (en) * 1979-02-22 1980-08-28 Takuma Co Ltd Removing method for hydrogen chloride in exhaust gas
JPS55137029A (en) * 1979-04-11 1980-10-25 Takuma Co Ltd Removing method for hydrogen chloride in exhaust gas

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884775A (en) * 1972-02-17 1973-11-10
JPS501940A (en) * 1973-03-15 1975-01-10
JPS5348139B2 (en) * 1973-09-22 1978-12-27
JPS5250966A (en) * 1975-10-21 1977-04-23 Eikosha:Kk Apparatus for removing nox in exhaust gas
JPS52152874A (en) * 1976-06-16 1977-12-19 Jirou Asahina Method and apparatus for adsorbing toxic gases from air
JPS5339255A (en) * 1976-09-22 1978-04-11 Gosuperu Kakou Kk Apparatus for removing impurities from water and wet air
JPS5389873A (en) * 1977-01-18 1978-08-08 Inoue Japax Res Inc Cleaning apparatus for gas
JPS549069A (en) * 1977-05-12 1979-01-23 Burger Manfred R Air purifying filter
JPS55111829A (en) * 1979-02-22 1980-08-28 Takuma Co Ltd Removing method for hydrogen chloride in exhaust gas
JPS55137029A (en) * 1979-04-11 1980-10-25 Takuma Co Ltd Removing method for hydrogen chloride in exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206464A (en) * 1989-02-06 1990-08-16 Sanyo Electric Co Ltd Deodorizing device
US7147821B1 (en) * 1999-04-27 2006-12-12 Rasar Holding N.V. Treatment process for a gaseous medium containing contaminating particles
KR20000058535A (en) * 2000-06-12 2000-10-05 안길홍 Method for the preparation of ferroelectric semiconductive coatings and the air cleaner using this ferroelectric semiconductive coatings
JP2006192718A (en) * 2005-01-13 2006-07-27 Ishikawajima Constr Mach Co Method and device for confirming stock of material in storage tank for batcher plant

Similar Documents

Publication Publication Date Title
Mizuno Industrial applications of atmospheric non-thermal plasma in environmental remediation
KR101317355B1 (en) Apparatus for purifying air pollutant from livestock farming
KR101567334B1 (en) Plasma absorption deodor apparatus
WO2011046325A2 (en) Device for indoor air purification and sterilization
RU2711203C2 (en) Air filtration and disinfection system by means of plasma injection
KR20080013831A (en) Advanced air deodorizor and process based on ozone(water), plasma and catalyst
Zhang et al. Control of ammonia and odors in animal houses by a ferroelectric plasma reactor
KR102260282B1 (en) Air purification system using plasma
EP1175916A2 (en) Composite deodorization system and ion deodorization system
CN108246097A (en) A kind of method and device based on low-temperature plasma, microwave and photo catalysis oxidation processes organic exhaust gas
KR102169827B1 (en) Odor removal apparatus of food waste
JPS5876126A (en) Method and apparatus for purifying gas
JP2008173632A (en) Air purification method and apparatus
KR100428965B1 (en) Air purification method
CN112791555A (en) Waste gas treatment device
KR20100123787A (en) Deodor system with dry and wet type package
CN108744912A (en) Combined type organic exhaust gas integration processing method and equipment
JPS6348567B2 (en)
KR20160030679A (en) Air furification apparatus using hydroxyl radical
KR102443712B1 (en) Harmful gas and odor removal device using indirect plasma reactor
CN208626975U (en) A kind of equipment for handling oily room exhaust gas
RU2665418C1 (en) Method of plasma chemical treatment of liquid raw material of organic and/or vegetable origin and device for its implementation
KR20210059501A (en) Air sterilization system
Muzafarov et al. Disinfection of drinking water with ozone by the method of electrodispersion
JP2001252522A (en) Electric discharge gas treatment apparatus and discharge gas treatment method