JPS5875753A - Ion pump - Google Patents

Ion pump

Info

Publication number
JPS5875753A
JPS5875753A JP17515681A JP17515681A JPS5875753A JP S5875753 A JPS5875753 A JP S5875753A JP 17515681 A JP17515681 A JP 17515681A JP 17515681 A JP17515681 A JP 17515681A JP S5875753 A JPS5875753 A JP S5875753A
Authority
JP
Japan
Prior art keywords
anode
electrode
cathode
ion pump
cathodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17515681A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kageyama
影山 賀都鴻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP17515681A priority Critical patent/JPS5875753A/en
Publication of JPS5875753A publication Critical patent/JPS5875753A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J41/00Discharge tubes for measuring pressure of introduced gas or for detecting presence of gas; Discharge tubes for evacuation by diffusion of ions
    • H01J41/12Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps

Abstract

PURPOSE:To enable enhance of the exhaustion speed of an ion pump by distributing the kinetic energy of ions, which are incident upon cathodes, within an area of a large sputtering ratio by making the ion pump to have a tetrode structure containing a control electrode, which extends across the hollow space of an anode and is located apart from the center axis of the hollow space of the anode, and controlling the electric potential of a discharge space by means of the control electrode. CONSTITUTION:A control electrode 16 supports a control electrode 15 in such a manner that the electrode 15 is insulated from an anode 1, cathodes 3, collecting electrodes 4, and a vacuum case containing an ion pump. An electron group is produced in the hollow space 2 of the anode 1 by both the magnetic field of a magnet 13, and a cross electromagnetic field developed due to the difference between the electric potentials of the anode 1 and the cathodes 3. Most of ions produced from gaseous molecules due to above electron group, bump against the cathode 3 without bumping against the electrode 15, and sputters a cathode- covering matter consisting of a getter member. When the anode 1 is earthed, the electrode 15 is given a negative electric potential, and the cathodes 3 are given a negative electric potential lower than that of the electrode 15, the electric potential of electric-discharge developed in the hollow space 2 of the anode 1 is controlled by the electrode 15. As a result, the exhaustion speed of the ion pump can be increased by increasing the amount of the getter member sputtered at the cathodes 3.

Description

【発明の詳細な説明】 〈発明の分野〉 本発明はイオン4ンプに係り、特に複数極を設けて排気
速度を増大させるに好適なイオン4ンプに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ion 4 pump, and particularly to an ion 4 pump suitable for increasing the pumping speed by providing a plurality of poles.

〈従来技術〉 一般にイオン4ンプは磁場中に於ける冷陰極放電を利用
してオイルフリー慶真空を作り出すために用いられ、高
温あるいは極低温部分ヤ機械的な運動を必要としないと
いう特徴があり、真空の質を問題にする分野では特に有
用なものである。そして、当初欠点とされていた希ガス
、例えばへりクムヤアルプンに対する排気速度の不安定
性等は、3極形イオンポンプの開発により解決され、操
作性のよいイオン4ンプが製作されるようになって来て
いる。
<Prior art> Ion 4 pumps are generally used to create an oil-free Kei vacuum using cold cathode discharge in a magnetic field, and have the characteristic that they do not require mechanical movement of high-temperature or extremely low-temperature parts. This is particularly useful in fields where vacuum quality is an issue. The initial drawbacks, such as the instability of pumping speed for rare gases such as Herikumya Alpun, were resolved with the development of the three-electrode ion pump, and four-pole ion pumps with good operability were manufactured. ing.

第1図は従来の3極形のイオンポンプの断面図であり、
同図中1は貫通した中空部2t−有する陽極、3は陽極
1の両開口端に離間且つ近接して配設され、この開口を
覆う如き形状を有する陰極、4は陰極3の更に外側に配
される収集電極、6は陽極1と陰極3間に放電を行なわ
せるべく電圧を印加する電源、5は図示しない磁場発生
装置から印加される磁場、4′は収集電極4上に捕えら
れた気体分子、7は陽極1の中空部2に放電の結果、生
成する気体イオンである。
Figure 1 is a cross-sectional view of a conventional three-electrode ion pump.
In the figure, 1 is an anode having a hollow portion 2t which passes through it, 3 is a cathode disposed close to and apart from both opening ends of the anode 1, and has a shape that covers this opening, and 4 is located further outside of the cathode 3. A collecting electrode is arranged, 6 is a power source that applies voltage to cause discharge between the anode 1 and cathode 3, 5 is a magnetic field applied from a magnetic field generator (not shown), and 4' is a field captured on the collecting electrode 4. Gas molecules 7 are gas ions generated in the hollow part 2 of the anode 1 as a result of discharge.

かかる構成に於いて、陽極1の中空部2の軸心に実質的
に平行に、図示しない磁場6発生装置より磁場5が与え
られ、同時に陽極1ど陰極3の間には電源6より電圧V
aが印加される。ちなみに、第1図の例では陽極1並び
に収集電極4が接地されるため 陰極3の電位は−Va
となる。その結果、陽極lの中空部2には直交する電磁
場により高エネルギー高密度の電子群が形成され、中空
部2に飛来した分子はイオン化されて気体イオン7とな
り、陰極3の表面に高速で入射して通常チタンで形成さ
れる陰極30表面の原子をスパッタする。スパッタされ
た陰極3の表面物質は収集電極4の表面に付着し、付着
した陰極3の表面物質は気体分子を吸着し、そこに更に
ス/中ツタされた陰極3の表面物質が付着して吸着され
た気体分子は収集電極4の表面に捕え″”られた気体分
子4Iとして埋め込まれる。
In this configuration, a magnetic field 5 is applied from a magnetic field 6 generating device (not shown) substantially parallel to the axis of the hollow portion 2 of the anode 1, and at the same time, a voltage V is applied from a power source 6 between the anode 1 and the cathode 3.
a is applied. By the way, in the example shown in Figure 1, the anode 1 and the collecting electrode 4 are grounded, so the potential of the cathode 3 is -Va.
becomes. As a result, a group of high-energy, high-density electrons is formed in the hollow part 2 of the anode l by the orthogonal electromagnetic fields, and the molecules that fly into the hollow part 2 are ionized and become gaseous ions 7, which enter the surface of the cathode 3 at high speed. Then, atoms on the surface of the cathode 30, which is usually made of titanium, are sputtered. The sputtered surface material of the cathode 3 adheres to the surface of the collecting electrode 4, the adhering surface material of the cathode 3 adsorbs gas molecules, and the sputtered surface material of the cathode 3 adheres thereto. The adsorbed gas molecules are embedded on the surface of the collection electrode 4 as trapped gas molecules 4I.

上に述べたような、気相の分子の固相内への埋め込みが
3極形イオンポンプの排気作用である。
The embedding of molecules in the gas phase into the solid phase as described above is the pumping action of the triode ion pump.

そして、この排気速度を大きくするためには放電で形成
される気体イオ/7の量に対して陰極3からスノダツタ
される表面物質の量を多くしなければならない。
In order to increase this pumping speed, the amount of surface material dusted off from the cathode 3 must be increased relative to the amount of gaseous io/7 formed by discharge.

#!2図は第1図に示したイオンポンプに於ける陰極表
面物質のス・帯ツダリング量を説明するための特性図で
、同図(jL)は陰極30表面に入射するイオンのエネ
ルギーUに対して入射イオン1個当り″のスパッタされ
る陰極物質の原子数で表わされるスノタツタ比St、同
図(ロ)は入射するイオンのエネルギーUに対して、入
射するイオンのエネルギーが1以上で且つu 十d u
未満であるものが単位時間に陰極3の表面に入射する数
はfduであると定義したイオンエネルギー分布関数1
、同図(C)は共に相対値で示されるスノ帯ツタ比Sと
エネルギー分布関数fの横fs1にそれぞれ示すもので
ある。
#! Figure 2 is a characteristic diagram for explaining the amount of suddering of the cathode surface material in the ion pump shown in Figure 1, and the figure (jL) shows the relationship between energy U of ions incident on the surface of the cathode 30. The figure (b) shows the Sunotatsuta ratio St, expressed as the number of atoms of the cathode material sputtered per incident ion, when the energy of the incident ion is 1 or more and u ten du
The ion energy distribution function 1 is defined as the number of ions incident on the surface of the cathode 3 per unit time is fdu.
, the same figure (C) shows the snow belt vine ratio S and the horizontal fs1 of the energy distribution function f, both of which are shown as relative values.

@2図中)に於いて、エネルギー分布関数fはθ以下、
e−Va(・:単位電荷)以上で0であり、更に陰極降
下VOによる加速エネルギーa−vo以下及び陽極降下
の範囲でエネルギー分布関数fはほとんど0に等しい。
@2), the energy distribution function f is less than θ,
The energy distribution function f is 0 above e-Va (·: unit charge), and furthermore, the energy distribution function f is almost equal to 0 within the range of the acceleration energy a-vo due to the cathode fall VO and below the anode fall.

そして、第2図(b)からも明らかな如(、エネルギー
分布関数fは e−VO≦u<・・va−・(1) でのみ0でないi[t−とる、ここで、エネルギー分布
関数fはエネルギーUがe・VOを越え且つ小さな値で
あるとき大きな値をとり、エネルギーlが大きいとエネ
ルギー分布関数fは小さくなる。スパッタされる陰極物
質の単位時間当りの数Qはで与えられ、この被積分関数
f−8が第2図(e)に示されている。図面から明らか
な様に、スノ母ツタ比Sが大きい値をとるためのエネル
ギーUと、エネルギー分布関数fが大きい値をとるとこ
ろのエネルギーUが大きく異なるため、基本的にスt4
ツタされる陰極物質の量は多く出来ない、つまり、従来
の3極形イオンポンプに於いては、排気速度に限界があ
った。
As is clear from Fig. 2(b), the energy distribution function f takes i[t- which is not 0 only when e-VO≦u<...va- (1) f takes a large value when the energy U exceeds e·VO and is a small value, and the energy distribution function f becomes small when the energy l is large.The number Q of sputtered cathode material per unit time is given by , this integrand f-8 is shown in Fig. 2(e).As is clear from the figure, the energy U for the snow mother vine ratio S to take a large value and the energy distribution function f are large. Since the energy U where the value is taken differs greatly, basically st4
It is not possible to increase the amount of cathode material that is ejected; that is, in conventional three-electrode ion pumps, there is a limit to the pumping speed.

〈発明の目的〉 従って、本発明の目的は上記従来技術の欠点をなくし、
制御電極を用いて陰極からス/4’ツタされる物質の量
を多くシ、更にス・母ツタされた陰極物質を収集電極に
設け、これらにより排気速度を増大させたイオンポンプ
を提供するにある。
<Object of the invention> Therefore, the object of the present invention is to eliminate the drawbacks of the above-mentioned prior art,
To provide an ion pump in which the amount of material collected from the cathode is increased using a control electrode, and the collected cathode material is provided on a collection electrode, thereby increasing the pumping speed. be.

更に詳細には、本発明は周知の3極形の構造に於ける放
電空間に、陽極の中空部の軸心から離間して貫通する制
御電極を付加して4極形の構造となし、この制御電極に
より放電空間の電位を制御することにより陰極に入射す
るイオンの運動エネルギーをスパッタ比の大きい領域に
分布させ、排気速度の向上を可能ならしめたイオンポン
プを提供するものである。
More specifically, the present invention adds a control electrode that penetrates the discharge space of the well-known three-pole structure at a distance from the axis of the hollow part of the anode to create a four-pole structure. The object of the present invention is to provide an ion pump that distributes the kinetic energy of ions incident on a cathode to a region with a high sputtering ratio by controlling the potential of a discharge space using a control electrode, thereby making it possible to improve the pumping speed.

(発明の実施例〉 以下、図面に従って、本発明を更に眸細に説明する。(Example of the invention) Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第3図は本発明の一実施例に係るイオンポンプの縦断面
図で、各図面に共通する部分には同一番号を付し、説明
の重複をしない。同図中8は外部の一部に絶縁′ft施
され、給電部組立体14と共に陽極1及び2個1組の収
集電極4を支持し電気的にこれらを接地する導体柱、9
は外部の一部に絶縁を施され、接続金具10により給電
部組立体14の一部である給電端子11に固定され、ま
た絶縁支柱12と共に2個1組の陰極3t−支持し、こ
れに給電する導体柱、13は陽極1の中空部2の内部に
、その貫通方向に磁場を発生する磁石、15は陽極1の
中空部2の軸心から離間し、磁場の磁力線にθうように
、即ち中空部2の細心に平行に、中空部2を貫通して配
され、2個の陰極3に穿設された図示しない貫通孔を陰
極3に接触することな(絶縁されて貫通し、適宜張力を
与えられて保持される制御電極、16は制御電極15を
、陽極11.陰極3、収集電極4、イオンポンプを収容
する真空容器から絶縁して支持すると共に制御電極15
への給電経路の一部を兼ねる支持体、 18は給電部組
立体14の一部をなし、図示しない放電111J@嶌源
にWc続さ九る□   と共に導電線17を介して支持
体16から制御電極15に対して給電するための給電亀
子tそれぞれ示すものである。ちなみに、2個の陰極3
にはそれぞれ第1種の貫通孔3aが多数穿設される。
FIG. 3 is a longitudinal cross-sectional view of an ion pump according to an embodiment of the present invention, in which parts common to each drawing are given the same reference numerals to avoid redundant explanation. In the figure, reference numeral 8 denotes a conductor column 9 which is partially insulated on the outside, supports the anode 1 and a set of two collecting electrodes 4 together with the power supply assembly 14, and electrically grounds them.
is insulated on a part of its exterior, is fixed to a power supply terminal 11 which is a part of the power supply unit assembly 14 by a connecting fitting 10, and supports a set of two cathodes 3t together with an insulating column 12. A conductor column 13 generates a magnetic field inside the hollow part 2 of the anode 1 in the direction of its penetration; 15 is a conductor column spaced apart from the axis of the hollow part 2 of the anode 1 so as to align θ with the lines of magnetic force of the magnetic field; That is, through holes (not shown) arranged in parallel with the hollow part 2 and drilled in the two cathodes 3 are inserted without contacting the cathodes 3 (insulated and penetrating the holes). A control electrode 16, which is held under appropriate tension, supports the control electrode 15 insulated from the vacuum vessel containing the anode 11, cathode 3, collection electrode 4, and ion pump.
A support member 18 that also serves as a part of the power supply route to the power supply unit 18 forms a part of the power supply unit assembly 14 and is connected to the discharge 111J (not shown) from the support member 16 via the conductive wire 17. A power supply armature t for supplying power to the control electrode 15 is shown. By the way, two cathodes 3
A large number of first type through holes 3a are formed in each of the holes.

更に、2個1組の収集電極4はそれぞれ2個1組の陰極
3と平行に離間して、陰極1とは反対側に配設されてい
る。
Further, each pair of collecting electrodes 4 is arranged parallel to and spaced apart from each pair of cathodes 3 on the opposite side of the cathode 1.

ところで、放電制御電極15はスパッタ比の小さな細線
、例えば直径25ミクロン程度のタングステン線で形成
されるが、この電極には陰極3よりも高く、陽極1の電
位、つまり接地電位よりも低い負の電位が与えられる。
Incidentally, the discharge control electrode 15 is formed of a thin wire with a small sputtering ratio, for example, a tungsten wire with a diameter of about 25 microns. A potential is applied.

以上述べた如き構成に於いて、次に第4図の特性図に従
ってその作用を説明7する。ちなみに、第4@(a)、
(b)、(e)はそれぞれ第2図<h>、(b)、 <
c>の特性図に対比させて、第38!J構成に於ける陰
極表面物質のス・母ツタリング量を説明するものである
In the structure as described above, its operation will now be explained in accordance with the characteristic diagram shown in FIG. By the way, No. 4 @(a),
(b) and (e) are respectively shown in Figure 2 <h>, (b) and <
In contrast to the characteristic diagram of c>, the 38th! This is to explain the amount of stagnation of the cathode surface material in the J configuration.

さて、第3図の構成に於いて、磁石13の磁場及びli
1極l及び陰極3間の電位差に基く直交電磁場により陽
′lk、lの中空部2に電子群が形成されるが、この電
子群により気体分子から生成されたイオンの大部分は制
御電極15に衝突せずに陰極3に衝突し、ゲッタ物質で
形成される陰極表面物質をスパッタする。この場合、イ
オンの入射エネルギーUに対するスノ母ツタ比Sは第4
図((転)に示される通り、従来の場合と変らない。こ
こで、陽極1が接地され、制御電極15に電位−Vaが
与えられ、陰極3には制御電極15よりも更に低い電位
−(Va+Vg)が与えられているものとすると、7g
が十分に大きく、例えば600■以上である場合、放電
の状態はVgの影響をほとんど受けず、陽極lの中空部
2に形成される放電空間の電位は、放電が制御電極15
の制御を受けるため、各点で−Vi−1−Vc/より太
き(,0より小さい値をとる。ここで、正の電圧VO′
は第2図に於ける陰極降下電圧に相当するものと、制御
電極15が陽極1の中空部2の軸心から離間して配され
るため生じる電位差の和であるが、離間の距離が陽極1
の中空部2の半径に較べて十分に小さい場合は、vO′
はviLに較べて非常に小さな値となる。イオンの陰極
8への入射エネルギー分布関数fは第4図(b)、に示
す如く、e ・(Vg+Vo’ )≦i≦e(Vg+V
a)  ”・(3)だけで零でない値をとり、第2図(
b)の特性に較べて放電状態がほとんど同一で且つイオ
ンのエネルギー分布関数fが高エネルギー側へ移動した
形となる。その結果、陰極3でスパッタされる陰極表面
物質の原子の単位時間当りの数Qは、となり、被積分関
数fSは第4図(C)に示される如く、第2図(C)に
示される従来の三極形イオンポンプに於けるものより大
きな値をとり、スパッタされるゲッタ物質の量が増加し
てイオンポンプの排気速度を増加させるという効果を生
む。また、本発明のイオンポンプでは収集電極4t−用
いているため、希ガスに対しても安定した排気速1ft
−実現出来るものである。
Now, in the configuration shown in FIG. 3, the magnetic field of the magnet 13 and li
An electron group is formed in the hollow part 2 of positive 'lk, l by the orthogonal electromagnetic field based on the potential difference between the pole 1 and the cathode 3, but most of the ions generated from the gas molecules by this electron group are transferred to the control electrode 15. It collides with the cathode 3 without colliding with the cathode 3, and sputters the cathode surface material formed by the getter material. In this case, the snow matrix ratio S to the ion incident energy U is the fourth
As shown in the figure ((turn)), there is no difference from the conventional case. Here, the anode 1 is grounded, the control electrode 15 is given a potential -Va, and the cathode 3 is given a potential -Va that is lower than the control electrode 15. Assuming that (Va+Vg) is given, 7g
is sufficiently large, for example, 600 cm or more, the state of discharge is hardly affected by Vg, and the potential of the discharge space formed in the hollow part 2 of the anode l is
, so each point takes a value thicker than -Vi-1-Vc/ (, smaller than 0.
is the sum of the potential difference corresponding to the cathode drop voltage in FIG. 1
is sufficiently small compared to the radius of the hollow part 2, vO'
is a very small value compared to viL. As shown in FIG. 4(b), the incident energy distribution function f of ions to the cathode 8 is e.g.
a) ”・Only (3) takes a non-zero value, and Fig. 2 (
Compared to the characteristic b), the discharge state is almost the same and the ion energy distribution function f has shifted to the higher energy side. As a result, the number Q of atoms of the cathode surface material sputtered by the cathode 3 per unit time is as follows, and the integrand fS is as shown in FIG. 4(C) and as shown in FIG. 2(C). This value is larger than that in conventional triode ion pumps, which has the effect of increasing the amount of getter material sputtered and increasing the pumping speed of the ion pump. In addition, since the ion pump of the present invention uses 4 tons of collecting electrodes, the pumping speed of 1 ft is stable even for rare gases.
-It is achievable.

〈発明の効果〉 以上述べた如く、本発明によれば従来の3億形イオンポ
ンプに対して制御電極を付加するのみで。
<Effects of the Invention> As described above, according to the present invention, only a control electrode is added to the conventional 300 million-type ion pump.

排気速11に増大させると共に布ガスに対しても安定し
た併気速ft−実現し得るイオンポンプt−得ることが
出来るものである。
It is possible to increase the pumping speed to 11 and obtain an ion pump t- which can realize a stable co-air speed ft- even for cloth gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のイオンポンプの断面図、第2図は第1図
構成の動作を説明する特性図、第3図は本発明の一実施
例に係るイオンポンプの断面図、 第4図は′yjc2図構成の動作を説明する特性図であ
る。 1・・・陽極、2・・・中空部、3−・陰極、4・・・
収集電極、13−・・磁石、15−・・制御電極。 出願人代理人 猪 股    清 第3図 は(KeV) 239−
FIG. 1 is a cross-sectional view of a conventional ion pump, FIG. 2 is a characteristic diagram explaining the operation of the configuration shown in FIG. 1, FIG. 3 is a cross-sectional view of an ion pump according to an embodiment of the present invention, and FIG. FIG. 2 is a characteristic diagram illustrating the operation of the 'yjc two-diagram configuration. 1...Anode, 2...Hollow part, 3--Cathode, 4...
Collection electrode, 13--Magnet, 15--Control electrode. Applicant's representative Kiyoshi Inomata Figure 3 is (KeV) 239-

Claims (1)

【特許請求の範囲】[Claims] 貫通した中空部を有する陽極と、中空部の両開口端に近
接して配され、複数個の貫通孔を有する陰極と、陽極の
中空部内にその貫通方向に磁場を発生する手段と、陽極
と一極間に電圧を発生する手段と、陰極と平行に離間し
て陽極とは反対側に配された収集電極と、スノ臂ツI比
の小さな線材で形成され、陽極の中空部の中をその軸心
から離間して磁場の磁力線に沿うように貫通すると共に
陽極と陰極の中間の電圧を印加される制御電極とを具え
ることを特徴とするイオンポンプ。
an anode having a hollow portion extending through the anode; a cathode disposed close to both open ends of the hollow portion and having a plurality of through holes; a means for generating a magnetic field in the hollow portion of the anode in the direction of penetration thereof; A means for generating a voltage between one electrode, a collecting electrode spaced apart parallel to the cathode and arranged on the opposite side of the anode, and a wire with a small lug I ratio. An ion pump characterized by comprising a control electrode that is spaced apart from the axis of the pump and extends through the ion pump along the lines of magnetic force of a magnetic field, and to which a voltage between the anode and the cathode is applied.
JP17515681A 1981-10-31 1981-10-31 Ion pump Pending JPS5875753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17515681A JPS5875753A (en) 1981-10-31 1981-10-31 Ion pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17515681A JPS5875753A (en) 1981-10-31 1981-10-31 Ion pump

Publications (1)

Publication Number Publication Date
JPS5875753A true JPS5875753A (en) 1983-05-07

Family

ID=15991242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17515681A Pending JPS5875753A (en) 1981-10-31 1981-10-31 Ion pump

Country Status (1)

Country Link
JP (1) JPS5875753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19851547B4 (en) * 1997-11-10 2006-11-02 Aisin Seiki K.K., Kariya Motor compensation unit
KR100674204B1 (en) 2005-03-16 2007-01-24 주식회사 브이엠티 Method for exhausting in sputter ion pump and structure for sputter ion pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19851547B4 (en) * 1997-11-10 2006-11-02 Aisin Seiki K.K., Kariya Motor compensation unit
KR100674204B1 (en) 2005-03-16 2007-01-24 주식회사 브이엠티 Method for exhausting in sputter ion pump and structure for sputter ion pump

Similar Documents

Publication Publication Date Title
US4163151A (en) Separated ion source
US2636990A (en) Ion source unit
US4303865A (en) Cold cathode ion source
EP0799491B1 (en) Radio frequency ion source
US5315121A (en) Metal ion source and a method of producing metal ions
JP3079869B2 (en) Ion source
JPS5875753A (en) Ion pump
JP3111851B2 (en) High magnetic flux density ion source
CN112599397B (en) Storage type ion source
US4939425A (en) Four-electrode ion source
US20220285123A1 (en) Ion gun and ion milling machine
US4572982A (en) Apparatus for reducing the effects of thermal stresses on breakdown voltage in high voltage vacuum devices
JPS5875751A (en) Ion pump
JPH024979B2 (en)
JP3092814B2 (en) Sputter ion pump
Delmore et al. An autoneutralizing neutral molecular beam gun
JP2988764B2 (en) Accelerator tube of DC voltage accelerator
JPH0665200B2 (en) High-speed atomic beam source device
JPS60177542A (en) Mass spectrograph
Lejeune et al. A CW duopigatron multiply-charged ion source
JPH0228227B2 (en)
JPH08306334A (en) Ion beam generating device
JPS58155638A (en) Ion pump
JPS58157034A (en) Ion generator
JPH024980B2 (en)