JPS5875475A - Controlling method for dc power supply and manufacture thereof - Google Patents

Controlling method for dc power supply and manufacture thereof

Info

Publication number
JPS5875475A
JPS5875475A JP17378381A JP17378381A JPS5875475A JP S5875475 A JPS5875475 A JP S5875475A JP 17378381 A JP17378381 A JP 17378381A JP 17378381 A JP17378381 A JP 17378381A JP S5875475 A JPS5875475 A JP S5875475A
Authority
JP
Japan
Prior art keywords
phase
transformer
power supply
thyristor
energized phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17378381A
Other languages
Japanese (ja)
Inventor
Shinichi Sasaya
慎一 笹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP17378381A priority Critical patent/JPS5875475A/en
Publication of JPS5875475A publication Critical patent/JPS5875475A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE:To suppress the exciting inrush current of the titled power supply by a method wherein, when the DC power supply consisting of a transformer and a rectifier is controlled by a thyristor provided on the primary side of the transformer 1, power application is started from the commutation phase next to the final phase of power application when the operation is stopped. CONSTITUTION:The DC power supply is formed by the transformer 1 and the rectifier 2 which was provided on the secondary side of the transformer, a switching element whereon a thyristor 3 and a diode 6 are connected in antiparalled form is connected to each phase on the primary side of the transformer 1, and starting, stopping and controlling operations are performed. At this time, the thyristor of final current application phase at the time when operation is stopped is detected by a detecting device 10 using the signal of the voltage dividers 11-13 which were provided on the thyristors 3-5, and based on the above, the phase next to the optimum power application phase is determined by a power application phase selecting device 14, and a gate signal is outputted. Accordingly, power application can be started from the direction where the residual magnetism of the tranformer 1 will be cancelled when starting, and the exciting inrush current can be suppressed.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は変圧器とダイオードブリッジよりなる整流装置
を備えた直流電源装置において、特に変圧・器の励磁突
入電流を抑制し得るように17た直流電源装置の制御方
法および装置に関する。
Detailed Description of the Invention (1) Technical Field of the Invention The present invention is directed to a DC power supply device equipped with a rectifier consisting of a transformer and a diode bridge. The present invention relates to a control method and device for a DC power supply device.

(2)従来技術 従来、高電圧或いは高電流を扱う直流電源装置において
は、直流出力の制御を行なう場合直流側(変圧器2次側
)では制御せずに、交流側(変圧器1次ll)で制御す
ることがある。これは、直流側の高電圧或いは高電流回
路に使用するサイリスク素子が高価であるため、かかる
部分にはサイリスク素子の代用として安価なダイオード
素子を使用し、交流側に電圧値、電流値の面で比較的取
扱いの容易なサイリスタ素子を設け、これによシ制御を
行なうことで経済的な装置とすることができるからであ
る。
(2) Prior Art Conventionally, in DC power supplies that handle high voltages or high currents, when controlling the DC output, the DC output is not controlled on the DC side (the secondary side of the transformer), but on the AC side (the primary side of the transformer). ) may be controlled. This is because the Thyrisk element used in high voltage or high current circuits on the DC side is expensive, so an inexpensive diode element is used in place of the Thyrisk element in such a part, and a diode element is used in place of the Thyrisk element on the AC side. This is because by providing a thyristor element, which is relatively easy to handle, and controlling the thyristor element using this element, an economical device can be obtained.

第1図は、この種の従来の直流電源装置の概要を示した
ものである6図において、1は3相変圧器、2はこの3
相変圧器1の2次側に設けられたダイオード贅流器(ブ
リッジ)で、これらより整流装置を構成している。また
、3,4゜5Fiサイリスタ素子、6.7.8はダイオ
ード素子で、サイリスタ素子3とダイオード素子6、同
じく4と7.5と8を互いに逆並列接続してたるスイッ
チング素子を、上記3相変圧器1の1次巻1m1111
1(R,S、T相)に直列接続している。さらに、9は
上記サイリスク素子3,4゜5のダートに順次ダート信
号を供給するダート信号発生装置である。
Figure 1 shows an overview of this type of conventional DC power supply. In Figure 6, 1 is a three-phase transformer, and 2 is this 3-phase transformer.
A diode bridge is provided on the secondary side of the phase transformer 1, and these constitute a rectifier. In addition, 3,4゜5Fi thyristor element, 6.7.8 is a diode element, and the above-mentioned 3. Primary winding of phase transformer 1 1m1111
1 (R, S, T phase). Further, reference numeral 9 denotes a dart signal generating device that sequentially supplies dart signals to the darts of the silisk elements 3 and 4.5.

かかる装置においては、ダート信号発生装−9からのr
−)信号によシ、ダイオード6.7゜8との組合せによ
ってサイリス−タ素子3,4゜5を点弧制御し、スイッ
チング素子を交流スイッチとして動作させることによシ
、交流電源の投入、し中断および直流出力の制御が行な
わねる。ここで、交流スイッチとして動作するスイッチ
ング素子は、従来の油し中断器や直空しゃ断器と比較す
ると、機械的な構成要素がないことから、高速にて動作
し信頼性の高い装置でもある。
In such a device, r from the dirt signal generator-9
-) Turning on the AC power by controlling the ignition of the thyristor elements 3, 4゜5 in combination with the diode 6.7゜8 according to the signal and operating the switching element as an AC switch; It is not possible to interrupt or control the DC output. Here, the switching element that operates as an AC switch is a device that operates at high speed and is highly reliable because it does not have mechanical components compared to conventional oil breaker or direct air breaker.

(3)従来技術の問題点 しかしながら、上述したような従来の装置においては、
サイリスク素子3,4.5およびダイオードg、’t、
sにて構成されるスイッチング素子が動作した場合、そ
の運転特性上から3相変圧器1の励磁突入電流が非常に
大きな値として発生するという問題がある。つまシ、こ
ねは変圧器の励磁突入電流は鉄心の残留磁気の影響が大
きく作用し、これは運転停止時の最終通電相によシ、変
圧器の鉄心が磁化されて残留磁気を生じ、鉄心の動作点
が移動するため、装置起動時の通電によって鉄心の磁束
密度が更に増加し、鉄心が飽和して急激に励磁電流が増
加するからである。
(3) Problems with the prior art However, in the conventional device as described above,
Cyrisk elements 3, 4.5 and diodes g, 't,
When the switching element constituted by s operates, there is a problem in that the excitation inrush current of the three-phase transformer 1 is generated as a very large value due to its operating characteristics. The inrush current of the transformer is greatly affected by the residual magnetism of the iron core. This is because the operating point moves, and the magnetic flux density of the iron core further increases due to the energization at the time of starting the device, causing the iron core to become saturated and the excitation current to increase rapidly.

かような励磁突入電流は、場合によっては定常電流の数
十倍にも至〕、一時的な系統電圧の低下による他の装置
への影響や、リレー装置等の保護装置の誤動作、或いは
電源装置の構成機器の損傷等の原因となる次め、極力小
さ々値に抑えることが望まれる。
[Such excitation inrush current can be several tens of times higher than the steady current in some cases], and may affect other equipment due to a temporary drop in system voltage, malfunction of protective devices such as relays, or damage to the power supply equipment. Therefore, it is desirable to keep the value as small as possible, as it may cause damage to the component equipment.

(4)発明の目的 本発明は上記のような事情に鑑みて成されたもので、そ
の目的は起動時における変圧器の励磁突入電流を確実に
抑制して前述し九問題を解決することができる直流電源
装置の制御方法および装置を提供することにある。
(4) Purpose of the Invention The present invention has been made in view of the above-mentioned circumstances, and its purpose is to reliably suppress the excitation inrush current of the transformer at startup to solve the nine problems mentioned above. An object of the present invention is to provide a method and device for controlling a DC power supply device.

(5)発明の概喪 まず、前述したように変圧器の励磁突入電流は鉄心の残
留磁気の影響が大きく作用し、これは運転停止時の最終
通電相によシ、変圧器の鉄るが磁化されて残留磁気を生
じ、鉄心の動作点が移動すみため、装置起動時の通電に
よって鉄心の磁束密度がJ!に増加し、鉄心が飽和して
急激に励磁電流が増加することによるものである。
(5) Overview of the invention First, as mentioned above, the excitation inrush current of a transformer is largely influenced by the residual magnetism of the iron core, and this depends on the final energized phase when the transformer is stopped. The iron core is magnetized and generates residual magnetism, and the operating point of the iron core moves, so that the magnetic flux density of the iron core increases to J! This is due to the iron core becoming saturated and the excitation current increasing rapidly.

よりて、装置の運転開始時Fi轡貿磁気を打ち消す方向
の通電から開始するようにすればよく、この相が最終通
電相の次の相つまシミ気負にして120度遅れの相であ
る。
Therefore, when starting the operation of the device, it is sufficient to start with energization in a direction that cancels out the Fi transfer magnetism, and this phase is the phase following the last energized phase, or a phase that is 120 degrees behind the final energized phase.

本発明は、装置の運転停止時の最終通電相とその後の起
動時の通電相を管理し、運転開始時に最終通電相の次の
転流相(120度遅れ相)から通電をI11!始するこ
とにより、前記口約を達成するものである。
The present invention manages the final energized phase when the device is stopped and the subsequent energized phase when it starts up, and starts energizing from the commutation phase (120 degrees delayed phase) after the final energized phase at the start of operation. By starting, the above-mentioned promise will be achieved.

(6)発明の実施例 以下、本発明を図面に示す実施例について観測する。篤
2図は、本発明による直流電源の制御装置の構成例を示
すもので、図において第1図と同一部分には同一符号を
付してその観測をる。
(6) Embodiments of the Invention In the following, embodiments of the present invention shown in the drawings will be observed. Figure 2 shows an example of the configuration of a control device for a DC power supply according to the present invention, and in the figure, the same parts as in Figure 1 are given the same reference numerals for observation.

第2図において、10は最終通電相検出装置で、3相各
相の前記サイリスタ素子3,4.50アノ一ドカソード
端子間電圧を検出する分圧器11.12.13からの電
圧信号に基づいて、運転停止時の最終通電相のサイリス
ク素子を判定するものである。また、14は運転開始時
の通電相選択装置で、上記iIl終通電通電相検出装置
からの検出信号によって最適な通電相っまり最適通電相
の次の相(120度遅れ相)を決足し、起動指令時にこ
れをグ゛−ト信号発生装置9′に与えるものである。す
なわち、本制御装飯は最終通電相検出装置10、通電相
選択装置14およびダート信号発生装置9′よシ構成し
ている。
In FIG. 2, reference numeral 10 denotes a final energized phase detection device, which detects the voltage between the anode and cathode terminals of the thyristor elements 3, 4, and 50 of each of the three phases based on voltage signals from voltage dividers 11, 12, and 13. , to determine the cyrisk element of the last energized phase when the operation is stopped. Further, 14 is an energized phase selection device at the start of operation, which determines the optimal energized phase and the next phase (120 degree delayed phase) of the optimal energized phase based on the detection signal from the iIl final energized energized phase detection device, This is given to the gate signal generator 9' at the time of a start command. That is, this control device is composed of a final energized phase detection device 10, an energized phase selection device 14, and a dart signal generator 9'.

次に、上記のように構成した本装置の作用について述べ
る。最終通電相検出装置10は、運転停止時に分圧器1
1.12.13からの電圧信号を分析し、運転停止時の
最終通電相サイリスタ素子゛がサイリスク素子!、4.
1のうちいずれであ−)たかを判定し、その判定信号を
通電相選択装fix4に与える。こねによシ、通電相選
択装置14は起動指令が入力された場合、三相運転時に
は最終通電相よシ120[遅れた相から通電する信号を
ダート信号発生装[9/に与え、これからOゲート信号
によシそのサイリスタ素子を導通させる。すなわち、い
まダート信号発生装置9′からのr−ト信号によシ、サ
イリスク素子が3.4.5の順序に転流されている場合
に、例えば運転停止時の最終通電相の素子がサイリスタ
素子5であったとすると、運転開始時にはサイリスタ素
子3から通電が開始されることにな)、3相変圧器1の
励磁突入を流が抑制される。
Next, the operation of this device configured as described above will be described. The last energized phase detection device 10 detects the voltage divider 1 when the operation is stopped.
Analyzing the voltage signal from 1.12.13, the last energized phase thyristor element when the operation is stopped is a thyristor element! ,4.
1), and provides the determination signal to the energized phase selection device fix4. When a start command is input, the energized phase selection device 14 gives a signal to the dart signal generator [9/] to energize the last energized phase 120 (delayed phase) during three-phase operation. The gate signal causes the thyristor element to conduct. That is, if the thyristor elements are commutated in the order of 3.4.5 by the r-t signal from the dirt signal generator 9', for example, the element in the last energized phase at the time of shutdown is the thyristor. If it were element 5, energization would start from thyristor element 3 at the start of operation), and the excitation inrush of three-phase transformer 1 would be suppressed.

このように、3相変圧器1とこの3相変圧器1の2次側
に設けられたダイオード整流器2とよシなる整流装置に
おける上記3相変圧器101次巻線側に、サイリスク素
子3.4.5とダイオード素子ti、v、sとを逆並列
接続してなるスイッチング素子を直列に接続して起動、
停止および直流出力を制御する直流電源装置において、
分圧器11.12.13にて検出される上記サイリスク
素子J、4.5の端子間電圧に基づいて、上記直流電源
装置の運転停止時における最終通電相のサイリスク素子
を判定する最終通電相検出装fjtxoと、この最終通
電相検出羨fltroからの判定信号により該最終通電
相の次の転流相(電気角120度遅れの相)のサイリス
タ素子を決定し且つ運転起動指令時にその決定内容を出
力する通電相選択装置14と、この通電相選択装fk1
4からの出力に基づいて当咳相のサイリスク素子にダー
ト信号を与えて通電を開始するダート信号発生装[9/
とから、直流電源装置の制御装置を構成したものである
In this way, the thyrisk element 3. 4.5 and diode elements ti, v, s connected in anti-parallel to connect a switching element in series and start.
In DC power supply equipment that controls stop and DC output,
Final energized phase detection for determining the thyrisk element of the last energized phase when the DC power supply is stopped, based on the voltage between the terminals of the thyrisk elements J and 4.5 detected by the voltage divider 11.12.13. The thyristor element of the commutation phase next to the last energized phase (the phase delayed by 120 degrees in electrical angle) is determined based on the judgment signal from the final energized phase detection unit fjtxo and the final energized phase detection unit, and the determined content is transmitted at the time of the operation start command. The energized phase selection device 14 to output and this energized phase selection device fk1
A dirt signal generator [9/
This constitutes a control device for a DC power supply.

従って、直流電源装置の起動時に発生する3相変圧器1
の励磁突入電流を確実に抑制して、前述したような従来
の問題点をこと如く解消することができるものである。
Therefore, the three-phase transformer 1 that occurs when starting up the DC power supply
The magnetizing inrush current can be reliably suppressed, and all of the conventional problems described above can be solved.

(7)発明の変形例 冑、上記実施例では分圧器11.12.13からのサイ
リスク素子端子間電圧信号を基に、運転停止時O最終通
電相のサイリスタ素子を判定したが、第3図に示すよう
に3相各相に設けられ3相変圧器1の1次側電流を検出
する電灘検田器15.16.1’j/からの電流信号を
基に判定するようにして4hJ!lLい。
(7) Modified example of the invention In the above embodiment, the thyristor element in the final energized phase during operation stop was determined based on the voltage signal between the terminals of the thyristor element from the voltage divider 11, 12, and 13. As shown in the figure, the determination is made based on the current signal from the electric field detector 15.16.1'j/ which is installed in each of the three phases and detects the primary current of the three-phase transformer 1. ! LL.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができるものである。
In addition, the present invention can be modified and implemented in various ways without changing the gist thereof.

(8)発明の詳細 な説明したように本発BAtよれば、変圧器1次電流t
たはサイリスタ素子の端子間電圧信号を基に運転停止時
の最終通電相のサイリスタ素子を判定し、起動指令によ
る運転開始時に該最終通電相の次の転流相のサイリスタ
素子から通電を開始するようKしたので、3相変圧器の
昌1□ 励磁突入電流を確実に抑制することができる極めて信頼
性の高い直流電源装置の制御装置が提供できる。
(8) As described in detail, according to the present BAt, the transformer primary current t
Or, the thyristor element of the last energized phase when the operation is stopped is determined based on the voltage signal between the terminals of the thyristor element, and when the operation is started according to the start command, energization is started from the thyristor element of the commutation phase next to the last energized phase. As a result, it is possible to provide an extremely reliable control device for a DC power supply device that can reliably suppress the excitation inrush current of a three-phase transformer.

【図面の簡単な説明】[Brief explanation of the drawing]

WJ1図は従来の直流電源装置の一例を示す回路図、第
2図は本発明の一実施例を示す回路図、第3図は本発明
の他の実施例を示す回路図である。 1・・・3相変圧器、2・・・ダイオード整流器、3〜
5・・・サイリスタ素子、6〜8・・・ダイオード素子
、9,9′・・・f−)信号発生装置、10・・・最終
通電相検出装置、11〜13・・・分圧器、I4・・通
電相選択装置、15〜17・・・電流検出器。 出願人代理人  弁理士 鈴 江 武 彦゛    第
1図 第3図
FIG. WJ1 is a circuit diagram showing an example of a conventional DC power supply device, FIG. 2 is a circuit diagram showing one embodiment of the present invention, and FIG. 3 is a circuit diagram showing another embodiment of the present invention. 1...3-phase transformer, 2...diode rectifier, 3~
5...Thyristor element, 6-8...Diode element, 9,9'...f-) signal generator, 10...Final energized phase detection device, 11-13...Voltage divider, I4 ... Energized phase selection device, 15-17... Current detector. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)変圧器とこの変圧器の2次側に設けられたダイオ
ード整流器とよシ成る整流装置におりる前記変圧器の1
次巻1m@に、サイリスク素子とダイオード素子とを逆
並列接続してなるスイッチング素子を直列に接続して起
動、停止および直流出力を制御する直流電源装置におい
て、前記直流電源装置を運転停止した後に起動するに際
し、運転停止時の最終通電相の次の転流相(電気角12
0度遅れの相)サイリスタ素子力ら通電(点弧)を開始
するようにして行なう直流電源装置の制御方法。
(1) One of the transformers connected to a rectifier consisting of a transformer and a diode rectifier provided on the secondary side of the transformer.
In a DC power supply device that controls starting, stopping, and DC output by connecting a switching element in which a silice element and a diode element are connected in antiparallel in series to the next winding 1 m@, after the said DC power supply device is stopped. When starting up, the commutation phase (electrical angle 12
A control method for a DC power supply device in which energization (ignition) is started from a thyristor element force (phase delayed by 0 degrees).
(2)変圧器とこの変圧器の2次側に設けらilたダイ
オード整流器とよシ成る整流装置におりる前記変圧器の
1次巻線側に、サイリスク素子とダイオード素子とを逆
並列接続してなるスイッチング素子を直列に接続して起
動、停止および直流出力を制御する直流電源装置におい
て、前記サイリスタ素子の端子間電圧に基づいて前記直
流電源装置の運転停止時における最終通電相のサイリス
タ素子を判定する′最終通電相検出装置と、この最終通
電相検出装置からの判定信号によシ咳最終通電相の次の
転流相(電気角120度遅れの相)のサイリスタ素子を
決定し且つ運転起動指令時にその決定内容を出力する通
電相選択装置と、この通電相選択装置からの出力に基づ
いて当咳相のサイリスタ素子にゲート信号を与えて通電
を開始するダート信号発生装置とを具備したことを特徴
とする直流電源装置の制御装置。
(2) A rectifying device consisting of a transformer and a diode rectifier provided on the secondary side of the transformer is connected to the primary winding side of the transformer in anti-parallel connection with a silisk element and a diode element. A thyristor element in the last energized phase when the DC power supply is stopped based on the voltage between the terminals of the thyristor element, in which switching elements are connected in series to control start, stop, and DC output. a final energized phase detection device, and a thyristor element for the next commutation phase (phase delayed by 120 electrical degrees) of the last energized phase based on the determination signal from this final energized phase detection device; Equipped with an energizing phase selection device that outputs the determined content when an operation start command is issued, and a dart signal generation device that gives a gate signal to the thyristor element of the current phase to start energization based on the output from the energization phase selection device. A control device for a DC power supply device.
(3)変圧器とこの変圧器の2次側に設けられたダイオ
ード整流器とよシ成る整流装置における前記変圧器の1
次巻線側に、サイリスタ素子とダイオード素子とを逆並
列接続してなるスイッチング素子を直列に接続して起動
、停止および直流出力を制御する直流電源装置において
、前記変圧器の1次電流に基づいて前記直流電源装置の
運、転停止時における最終通電相のサイリスタ素子を判
定する最終通電相検出装置と、この最終通電相検出装置
からの判定信号によシ該最終通電相の次の転流相(電気
角120度遅れO相)のサイリスタ素子を決定し且つ運
転起動指令時にその決定内容を出力する通電相選択装置
と、この通電相選択装置からの出力に基づいて轟該相の
サイリスタ素子にf−)信号を与えて通電を開始するf
−)信号発生装置とを具備したことを特徴とする直流電
源装置の制御装置。
(3) One of the transformers in a rectifier consisting of a transformer and a diode rectifier provided on the secondary side of the transformer.
In a DC power supply device that controls starting, stopping, and DC output by connecting a switching element formed by connecting a thyristor element and a diode element in antiparallel in series on the next winding side, the switching element is a final energized phase detection device that determines the thyristor element of the last energized phase when the DC power supply is running or stopped; and a determination signal from the final energized phase detector that determines the next commutation of the last energized phase. An energized phase selection device that determines the thyristor element of a phase (O phase with a delay of 120 degrees in electrical angle) and outputs the determined content at the time of an operation start command; Give f−) signal to start energizing f
-) A control device for a DC power supply device, characterized by comprising a signal generator.
JP17378381A 1981-10-30 1981-10-30 Controlling method for dc power supply and manufacture thereof Pending JPS5875475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17378381A JPS5875475A (en) 1981-10-30 1981-10-30 Controlling method for dc power supply and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17378381A JPS5875475A (en) 1981-10-30 1981-10-30 Controlling method for dc power supply and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5875475A true JPS5875475A (en) 1983-05-07

Family

ID=15967064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17378381A Pending JPS5875475A (en) 1981-10-30 1981-10-30 Controlling method for dc power supply and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5875475A (en)

Similar Documents

Publication Publication Date Title
US10326395B2 (en) System and method for magnetizing a transformer in an electrical system prior to energizing the electrical system
JPS5875475A (en) Controlling method for dc power supply and manufacture thereof
JPH05104247A (en) Arc welding machine
JPH07312823A (en) Dc leak detection and protective device
JP2685454B2 (en) Control device for PWM converter
JPS5875474A (en) Controlling device for dc power supply
RU2254655C2 (en) Current limiter
JPS6173580A (en) Ac power source switching device of uniform bridge thyristor converter
JPS6226866B2 (en)
JPH06327264A (en) Voltage type inverter device
JPH0398497A (en) Generator exciter, synchronizer controller, and malfunction detection method for them
JP3003298B2 (en) Short-time current test method
SU1034117A1 (en) Device for two-phase operation protection of three-phase induction motor
JPH0231918Y2 (en)
JPS639280Y2 (en)
JPH0450667A (en) Overcurrent detecting circuit of transformer
SU896712A1 (en) Method and device for outer short-circuiting protection of synchronous generator
JPH08256431A (en) Stationary inrush suppressor
JPH0638547A (en) Dc offset magnetism preventing apparatus for transformer
JPH0161037B2 (en)
JPH0246105A (en) Controller for ac electric vehicle
JPS62278710A (en) Three-phase transformer closing controller
JPS6129228B2 (en)
JPS605132B2 (en) Power outage detection device
JPH01136598A (en) Controller for ac excited induction machine