JPS5875394A - Single plate type color image pickup device - Google Patents

Single plate type color image pickup device

Info

Publication number
JPS5875394A
JPS5875394A JP56173980A JP17398081A JPS5875394A JP S5875394 A JPS5875394 A JP S5875394A JP 56173980 A JP56173980 A JP 56173980A JP 17398081 A JP17398081 A JP 17398081A JP S5875394 A JPS5875394 A JP S5875394A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
elements
horizontal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56173980A
Other languages
Japanese (ja)
Inventor
Yasushi Watanabe
恭志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP56173980A priority Critical patent/JPS5875394A/en
Publication of JPS5875394A publication Critical patent/JPS5875394A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/133Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To obtain high horizontal/vertical image resolution, by obtaining high band luminance signals from the output of a single image pickup element and at the same time obtaining the low band luminance signals and color signals from the residual branch output to combine these signals. CONSTITUTION:The low band luminance signal YL22 and color signals R23 and B24 are obtained at one time by a solid-state image pickup element 1. These signals can be obtained just by obtaining the sum or difference of two element which are horizontally adjacent to each other or adjacent with every second element. This the vertical image resolution of the luminance signal is parallel to that of the color signal in the black/white photograhing mode. While the high band luminance signal YH is obtained by obtaining the sum of the two elements which are vertically adjacent to each other with every second element. With combination of these signals, the color video signals are obtained with the horizontal/vertical image resolution of a high level as that obtained in the case of the black/white photography.

Description

【発明の詳細な説明】 本発明は色分解機能を備えた固体撮像装置に関し、特に
感応スペクトル帯域の異なるグ種の光電変換素子を用い
た単板カラー撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device having a color separation function, and more particularly to a single-chip color imaging device using photoelectric conversion elements of different types with different sensitive spectral bands.

2次元固体撮像素子を7枚用いてカラービデオ信号を得
る単板カラー撮像装置は、少くとも3色の色分解機能を
備える必要があり、通常は色フィルタを撮像素子上に配
置して被写体像を各色成分毎に空間サンプリングする方
法が採られている。
A single-chip color imaging device that uses seven two-dimensional solid-state imaging devices to obtain color video signals must have a color separation function for at least three colors, and usually a color filter is placed on the imaging device to separate the subject image. A method is adopted in which spatial sampling is performed for each color component.

この場合限られた画素を有効に用いてサンプリングの効
率を高めることが望ましく、色フィルタの配列に関して
従来より種々の手法が提唱されている。
In this case, it is desirable to effectively use limited pixels to increase sampling efficiency, and various methods have been proposed for arranging color filters.

例えば輝度信号は高い解像度を必要とするのに対し、色
信号は相対的に低い解像度でも充分目的を達成し得ると
いうビデオ信号の特質を利用し、輝度成分の大半を占め
る緑色(G)信号用のGフィルタのみ水平、垂直両方向
とも/素子詔きの市松状に配置し、その間の6置tこ赤
色(R)フィルタ及び青色(B)フィルタを各々繰返し
パターンで配置する手法は効率が高く、ベイヤー配列、
インターライン配列等として知られている。しかしこの
ような配列上の工夫を行なっても輝度信号の水平解像度
は全画素を輝度信号のために用いた白黒撮像の場合に比
べ低く、ナイキスト限界において応答はOとなる。
For example, while brightness signals require high resolution, color signals can achieve their purpose even with a relatively low resolution. The method of arranging only the G filter in both the horizontal and vertical directions in a checkerboard pattern, and arranging the 6 red (R) filters and the blue (B) filters in a repeating pattern between them is highly efficient; bayer array,
This is known as an interline array. However, even with such arrangement arrangement, the horizontal resolution of the luminance signal is lower than in the case of monochrome imaging in which all pixels are used for the luminance signal, and the response becomes O at the Nyquist limit.

また特開昭6.5−425号公報においては、色フィル
タを余色(W)透過フィルタ、黄色(Ye)透過フィル
タ、緑色(G)透過フィルタ及びシアン色(Cy )透
過フィルタのグ種用い、各々/素子ずつコ行コ列のグ素
子組とし、これを単位とした繰返し配列により一次元の
フィルタを構成して、グ素子組内の演算により各色信号
を得ると共に、輝度信号はグ素子組内の垂直方向−素子
間の加算に゛より、水平方向には/素子単位で得る技術
が記載されている。これによれば輝度信号水平解像度は
白黒撮像の場合と同程度まで得られる。しかしながらビ
デオ信号では通常インターレース動作が行なわれている
。従って/系列の信号により上記輝度信号を得るために
は、フィールドメモリを用いない限り片フィールド内に
おいて上記グ素子組を構成しなければならない。即ちグ
素子組内の垂直方向コ素子間は画素上では間に/素子お
いて隔−ており、このため上記輝度信号は垂直解像度が
極度に低下してナイキスト限界の%においてすら応答は
θとなる。
Furthermore, in JP-A No. 6.5-425, the following color filters are used: an extra color (W) transmission filter, a yellow (Ye) transmission filter, a green (G) transmission filter, and a cyan color (Cy) transmission filter. A one-dimensional filter is configured by a repeating array using this as a unit, and each color signal is obtained by calculation within the group of elements. A technique is described in which the summation in the vertical direction within a set is performed on an element-by-element basis in the horizontal direction. According to this, the horizontal resolution of the luminance signal can be obtained to the same level as in the case of monochrome imaging. However, video signals are usually interlaced. Therefore, in order to obtain the luminance signal using a series of signals, the group of elements must be constructed within one field unless a field memory is used. In other words, the vertical elements in the group of elements are spaced apart on the pixel, so the vertical resolution of the luminance signal is extremely reduced, and even at % of the Nyquist limit, the response is θ. Become.

本発明は以上のような問題点に鑑みてなされたものであ
り、高い水平、垂直解像度を得ることができる単板カラ
ー撮像装置を提供するものである。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a single-chip color imaging device that can obtain high horizontal and vertical resolution.

本発明を要約すれば、感応スペクトル帯域が夫々異なる
グ種の光電変換素子を組として水平、垂直方向に配列さ
れたもので、水平方向の繰返しにあ−ては、第1の光電
変換素子の感応スペクトル特性と第2の光電変換素子の
それを加算した特性は可視領域全体にわたって有限の応
答をもち、第3の光電変換素子の感応スペクトル特性と
第グの光電変換素子のそれを加算した特性は上記第1及
び第2の光電変換素子の感応スペクトル特性の加算特性
と相似形を示し、/水平列において隔てた一水平列間に
おいて同一垂直列上でも94tと第コ光電変換素子ない
し、第3と第り光電変換素子の棉、み合せとなるように
配列されるものである。従−で各色信号と低域輝度信号
は一水平列内にある7行り列のグ素子組内の演算tこよ
り得ているため色信号、輝度信号とも垂直解像度の劣化
はなく、また片フィールド内において垂直方向に隣接し
たコ素子間の加算信号を高域通過フィルタに通した信号
により高域輝度信号を構成するため垂直解像度を劣化さ
せることなく水平解像度を高めることが可能となり、白
黒撮像時と同程度の水平、垂直解像度を得ることが可能
となる。以下本発明を図面を用いて詳細に説明する。
To summarize the present invention, photoelectric conversion elements of different types with different sensitive spectral bands are arranged in the horizontal and vertical directions as a set, and in the case of repetition in the horizontal direction, the first photoelectric conversion element is The characteristic that is the sum of the sensitive spectral characteristic and that of the second photoelectric conversion element has a finite response over the entire visible region, and the characteristic that is the sum of the sensitive spectral characteristic of the third photoelectric conversion element and that of the third photoelectric conversion element. indicates a similar shape to the additive characteristic of the sensitive spectrum characteristics of the first and second photoelectric conversion elements, and even on the same vertical column between one horizontal column separated by 94t and the third photoelectric conversion element or the second photoelectric conversion element, The third and third photoelectric conversion elements are arranged in a mating manner. In the secondary mode, each color signal and low-range luminance signal are obtained from calculations within a set of 7 rows and columns of elements in one horizontal column, so there is no deterioration in vertical resolution for either the color signal or the luminance signal, and one field Since the high-band luminance signal is created by adding signals between vertically adjacent elements within the frame and passed through a high-pass filter, it is possible to increase the horizontal resolution without degrading the vertical resolution. It is possible to obtain horizontal and vertical resolution comparable to that of The present invention will be explained in detail below using the drawings.

第1図は色フィルタ(、としてWフィルタ、Gフィルタ
、Yeフィルタ及σcyフィルタを用いた場合の本発明
の実施例を示す図である。即ちWフィルタはGフィルタ
と、Yeフィルタはcyフィルタと各々対をなして水平
方向に隣接し、両者の対(G、W)及び(ye、cy)
が水′平方向に交互に繰返して配列されており、/水平
列隔てたコ水平列の間で比べてみると同一垂直列上の2
素子はまた(W、G)ないしくwe、cy)の組合せと
なっている。
FIG. 1 is a diagram showing an embodiment of the present invention in which a W filter, a G filter, a Ye filter, and a σcy filter are used as color filters. That is, the W filter is used as a G filter, and the Ye filter is used as a cy filter. Each pair forms a pair and is adjacent to each other in the horizontal direction, and the pair of both (G, W) and (ye, cy)
are arranged alternately and repeatedly in the horizontal direction, and when comparing between horizontal rows separated by horizontal rows, two on the same vertical row
The elements are also a combination of (W, G) or we, cy).

ここで輝度信号の低域成分は水平方向に隣接する(W、
G)間ないしくYe 、 Cy )間の加算信号として
得られるから水平方向に一画素毎に得られ、垂直方向の
画素信号処理を必要としない。即ち垂直解像度は白黒撮
像時の値が保たれる。なおこの場合の水平解像度は片フ
ィールドでナイ牛スト限界の%まで得られる。
Here, the low-frequency components of the luminance signal are horizontally adjacent (W,
G) or between Ye and Cy), it is obtained for each pixel in the horizontal direction, and does not require pixel signal processing in the vertical direction. That is, the vertical resolution maintains the value at the time of monochrome imaging. In this case, the horizontal resolution can be obtained up to % of the naive strike limit in one field.

また色信号は上記グ素子組内における演算、即ちR(赤
色)信号では(Y e −G)及び[w−cy)により
、耳(青色)信号では(c y −a猶び(W −Y 
e)により各々得られ、やはり垂直方向の画素信号量処
理を必要とせず、色信号の垂直解像度は高くかつ垂直方
向に輝度変化の大きい光像に対して偏位色信号が発生大
ることもない。以上の信号処理のタイミングを第一図に
示す。
In addition, the color signal is calculated by the calculation within the above group of elements, that is, the R (red) signal is calculated by (Y e - G) and [w - cy), and the ear (blue) signal is calculated by (c y - a plus (W - Y
e), which also does not require vertical pixel signal amount processing, has a high vertical resolution of color signals, and can generate large deviation color signals for optical images with large luminance changes in the vertical direction. do not have. The timing of the above signal processing is shown in Figure 1.

一方、第1図において片フィールド内の隣接するコ水平
列間においては同一垂直列上の2素子は常に(W、G)
ないしくYe、Cy)の組合せであるから、該−水平列
間で画素毎に加算信号を取る6′婆により1画素周期の
輝度信号を得ることができる。得られた輝度信号は垂直
解像度は低いが水平解像度は白黒撮像時と同等の高い値
を持つ。
On the other hand, in Fig. 1, between adjacent horizontal columns in one field, two elements on the same vertical column are always (W, G).
, or Ye, Cy), a luminance signal of one pixel period can be obtained by taking the addition signal for each pixel between the -horizontal column. The obtained luminance signal has a low vertical resolution, but a high horizontal resolution equivalent to that during monochrome imaging.

垂直解像度に関与するのは主に低周波成分であるから、
この信号を高域通過フィルタに通すことにより低域成分
を除去し、上記垂直解像度の高い低域輝度信号と組合せ
ることにより不平、垂直ともに高い解像度を持つ輝度信
号を得ることが可能となる。なお、両者を分ける周波数
はナイ牛スト限界の%が適当である。この組合せ輝度信
号の水平及び垂直方向における入射光像に対する応答を
第3図(a)及び(b)に示す。
Since it is mainly the low frequency components that are involved in vertical resolution,
By passing this signal through a high-pass filter to remove low-frequency components and combining it with the low-frequency luminance signal with high vertical resolution, it is possible to obtain a luminance signal with high resolution in both the vertical and vertical directions. Note that the appropriate frequency for dividing the two is a percentage of the naive strike limit. The response of this combined luminance signal to the incident light image in the horizontal and vertical directions is shown in FIGS. 3(a) and 3(b).

またwp図は上記組合せ輝度信号が持つ解像可能な空間
周波数領域を示す図であり、白ヌ牛部分Pは垂直解像度
の高い低周波成分、斜線を施こした部分Qは水平解像度
の高い高周波成分に各々対応している。
The wp diagram is a diagram showing the resolvable spatial frequency region of the above-mentioned combined luminance signal, where the white part P is a low frequency component with high vertical resolution, and the shaded part Q is a high frequency component with high horizontal resolution. Each component corresponds to the other.

gJ1図の場合、水、平方向の(W、G)の組と(Ye
 ’J Cy)の組の境界がフィールド間に詔いて/素
子水平方向に変位している。これは第5図(、)に誉吃
ように上記コ素子組が同一垂直列上に並んだ配列におい
ては、ナイー牛スト限界(全画素単独の場合のナイ牛ス
ト限界のh>の近傍に右いて位相の合った状態(In−
phase)の最も+r(れた状態(Out−phas
e)における応答の差は17′と最大となり、モアレ偽
信号が強く生じるのに対し、第5図(b)に示すような
市松状配列とすると、上記空間周波数におけるIn−p
haseと0ut−pha seの応答の差は%と緩和
きれ、モアレ偽信号は大幅に軽減されるためである。こ
の理由は第5図(、)に対し同図(b)では水平方向ナ
イ牛スト限界が高められたことによっている。
In the case of the gJ1 diagram, the pair (W, G) in the horizontal direction and (Ye
'J Cy) set boundaries are displaced between fields/elements in the horizontal direction. As shown in Figure 5(,), in an arrangement in which the above-mentioned sets of elements are arranged in the same vertical column, this is close to the naive strike limit (h> of the naive strike limit in the case of all pixels alone). In-phase state on the right (In-
Out-phase
The response difference in e) is maximum at 17', and a strong moiré false signal is generated, whereas when the checkerboard arrangement as shown in FIG. 5(b) is used, the In-p
This is because the difference between the hase and 0out-phase responses can be reduced to %, and moiré false signals are significantly reduced. The reason for this is that the horizontal naive strike limit is increased in FIG. 5(b) compared to FIG. 5(,).

第を図は色フィルタとしてマゼンタ色(Ma)透過フィ
ルタ、R透過フィルタ、G透過フィルタ及びcy透過フ
ィルタを用いた場合の本発明の実施例を示す図である。
Figure 5 is a diagram showing an embodiment of the present invention in which a magenta (Ma) transmission filter, an R transmission filter, a G transmission filter, and a cy transmission filter are used as color filters.

これは第1図に詔いてW→Ma、Ye−+Rとした場合
と同一であり、輝度信号の感応分光特性が艶十コG十R
)からCB 十G + R)に変ること及び色信号抽出
のタイミングが変ること以外は第1図における議論はそ
のまま適用可能である。また第を図における色フィルタ
の組合せの代りに(G、Ma、B、Ye)ないしくR。
This is the same as the case where W→Ma, Ye-+R is set as shown in Figure 1, and the sensitive spectral characteristics of the luminance signal are
) to CB 10G + R) and the timing of color signal extraction changes, the discussion in FIG. 1 can be applied as is. Also, instead of the combination of color filters in Figure 1, (G, Ma, B, Ye) or R.

Cy、B、Ye)の組合せとしても本発明は適用可能で
あり同様に議論することができる。
The present invention is also applicable to a combination of Cy, B, Ye) and can be discussed in the same way.

第7図は第1図の色フィルタの配列の場合において本発
明を実施するための回路ブロック図である。第1図に示
す配列の色フィルタを備えた固体撮像素子lからの出力
は分岐され、l出力は直接他のl出力は/水平走査期間
(/H)信号を遅らす遅延回路−を介して、各々加算回
路2へ導かれる。上記加算回路2からの出力はフィール
ド内で隣接する一水平列間の加算信号であり、これを高
域通過フィルタ12に通すことにより高域輝度信号(Y
H)−lが出力される。一方、固体撮像素子lからの残
りの分岐出力はサンプルホールド回路J、4’、!及び
tへ導かれ、各々G信号、W信号、cy信号及びYe倍
信号みが抽出される。上記サンプルホールド回路J’ 
、 u、、 6及びgからの出力は各々分岐され、前コ
者の各l出力は加算回路!で加算されて、 (G + 
w)により輝度信号の/成分が形成され、後コ者の各l
出力は加算回路りで加算すれて、(Cy 十Y e)に
より輝度信号の他の/成分が形成される。上記加算回路
r及び2からの出力はスイッチング回路/グにより各々
デユティ/二/でスイッチングされ、上記(G 十W)
信号と(、Cy十Ye)信号が交互に出力される。上記
スイッチング回路/41からの信号はさらに低域通過フ
ィルタ/g−を通すことにより高域成分が除去されて低
域輝度信号(YL)J−が出力される。上記サンプルホ
ールド回路!、41..5及びにからの分岐出力のうち
回路グからの/出力と回路jからの/出力は前者から後
者を引く減算回路/θへ導かれ(w −c y)により
R信号の/成分が形成され、上記回路3からの/出力と
回路gからの/出力は後者から前者を引く減算回路//
へ導かれ、(Ye−りによりR信号の他の/成分が形成
される。上記減算回路10及び//からの信号はスイッ
チング回路/jにより各々デユティ゛/:/でスイッチ
され上記(W −Cy)信号と(Y e−G)信号が交
互に出力される。上記スイッチング回路7.5からの信
号はさらに低減通過フィルタlりを通すことにより高域
成分が除去されて、R信号コ3が出力される。
FIG. 7 is a circuit block diagram for implementing the present invention in the case of the color filter arrangement of FIG. 1. The output from the solid-state image sensor l equipped with the color filter array shown in FIG. Each is led to an adder circuit 2. The output from the adder circuit 2 is a sum signal between adjacent horizontal columns in the field, which is passed through a high-pass filter 12 to produce a high-band luminance signal (Y
H)-l is output. On the other hand, the remaining branch outputs from the solid-state image sensor l are supplied to the sample and hold circuits J, 4', ! and t, and only the G signal, W signal, cy signal, and Ye-fold signal are extracted, respectively. Above sample hold circuit J'
The outputs from , u, , 6 and g are each branched, and each l output of the former is added to the adder circuit! (G +
/ component of the luminance signal is formed by w), and each l of the latter
The outputs are added in an adder circuit to form another component of the luminance signal by (Cy + Y e). The outputs from the adder circuits r and 2 are switched by the switching circuit /g with a duty of /2/, respectively, and the outputs from the above (G 1 W)
The signal and (,Cy+Ye) signal are output alternately. The signal from the switching circuit /41 is further passed through a low-pass filter /g- to remove high-frequency components and output as a low-frequency luminance signal (YL) J-. Above sample hold circuit! , 41. .. Among the branch outputs from 5 and 2, the /output from circuit G and the /output from circuit j are led to a subtraction circuit /θ that subtracts the latter from the former, and the /component of the R signal is formed by (w - c y). , the /output from circuit 3 and the /output from circuit g are a subtraction circuit that subtracts the former from the latter //
The signal from the subtraction circuit 10 and // is switched by the switching circuit /j at the duty ratio /:/, and the other /component of the R signal is formed by (Ye-). Cy) signal and (Ye-G) signal are output alternately.The signal from the switching circuit 7.5 is further passed through a low pass filter 1 to remove high frequency components, and the R signal 3. is output.

同様にして、上記サンプルホールド回路3,41、j及
びにからの分岐出力のうち回路グからの/出力と回路2
からの/出力は前者から後者を引く減算回路/−へ導か
れ、(W  Ye)によりB信号の/成分が形成され、
上記回路3からの/出力と回路jからの/出力は後者か
ら前者を引く減算回路/3へ導かれ、(Cy−G)によ
りB信号の他の/成分が形成される。上記減算回路7.
2及び/3からの信号はスイッチング回路/lにより各
々デユティ/:/でスイッチされ上記(w −y e)
信号と(c y−G)信号が交互に出力される。上記ス
イッチング回路/lからの信号はさらに低域通過フィル
タコθを通すことにより高域成分が除去されて、B信号
コグが出力される。なお、回路/j及び/2にスイッチ
ング回路を用いず代りに加算平均回路とし、R信号は7
(W+Ye−cy−G)、B信号は、(W+Cy+Ye
−G)により得ることも可能である。色フィルタ配列が
第4図の場合においても同様の回路構成によりYH,Y
L、R、B信号を分離、抽出することが可能である。但
し、この場合YH,YLは(R+ G + B)により
構成される。
Similarly, among the branch outputs from the sample and hold circuits 3, 41, j and
The / output from is led to a subtraction circuit /- which subtracts the latter from the former, and (W Ye) forms the / component of the B signal,
The /output from circuit 3 and the /output from circuit j are led to a subtraction circuit /3 which subtracts the former from the latter, and the other /component of the B signal is formed by (Cy-G). The above subtraction circuit 7.
The signals from 2 and /3 are switched at the duty /:/ by the switching circuit /l and the above (w - y e)
The signal and the (cy-G) signal are output alternately. The signal from the switching circuit /l is further passed through a low-pass filter θ to remove high-frequency components, and a B signal θ is output. Note that the switching circuits are not used in circuits /j and /2, and averaging circuits are used instead, and the R signal is 7.
(W+Ye-cy-G), B signal is (W+Cy+Ye
-G). Even when the color filter arrangement is as shown in Fig. 4, YH, Y
It is possible to separate and extract L, R, and B signals. However, in this case, YH and YL are composed of (R+G+B).

以上説明してきたように、本発明はよれば単一の撮像素
子により輝度信号l成分と色信号コ成分を同時に得てい
るにもかかわらず、低減輝度信号と色信号は水平方向に
隣接ないし/素子おいて隣接するコ素子間の和ないし差
を取るのみで得られるから輝度及び色信号の垂直解像度
は白黒撮像時並となる上、垂直方向に/素子おいて隣接
した一素子間の和を取ることにより高域輝度信号が得ら
れ、以上の組合せによって白黒撮像の場合と同程度の高
い水平・垂直解像度を持つカラービデオ信号が得られる
As explained above, according to the present invention, although the luminance signal l component and the color signal co component are obtained simultaneously by a single image sensor, the reduced luminance signal and the color signal are adjacent to each other in the horizontal direction. Since the vertical resolution of luminance and color signals can be obtained by simply calculating the sum or difference between adjacent elements in the element, the vertical resolution of luminance and color signals is equivalent to that of black and white imaging. A high-band luminance signal is obtained by taking the signals, and a color video signal having horizontal and vertical resolution as high as that of monochrome imaging can be obtained by the above combination.

なお、本発明の実施例として撮像素子上色アイルタ配列
が第1図ないし第4図の場合について説明してきたが、
これら配列に限定されることはなく、分光特性の異なる
グ種の色フィルタが水平方向に隣接したダ素子組を水平
配列の単位としていて、前半−素子内及び後半コ素子内
、各々で分光特性を加算した特性が一致の上全可視領域
を透過し、さらに垂直方向に/素子おいたコ素子間の分
光特性の和が常に一定で全可視領域を透過する限りは、
いかなる色フィルタの配列であっても本発明は適用可能
である。また、色フィルタが固体撮像素子上に配置tさ
れている場合tこついて説明したが、そのことをこ限定
されることはなく、各光電変換素子そのものが分光特性
の異なる性質を持っている場合についても本発明の請求
範囲に含まれることは明らかである。
Incidentally, as an example of the present invention, the case where the color ailter arrangement on the image sensor is as shown in FIGS. 1 to 4 has been described.
The arrangement is not limited to these arrangements, and the unit of horizontal arrangement is a set of elements in which color filters of different types with different spectral characteristics are adjacent in the horizontal direction, and the spectral characteristics are determined in each of the first half element and the second half element. As long as the sum of the spectral characteristics between elements in the vertical direction is always constant and transmits the entire visible region,
The present invention is applicable to any color filter arrangement. In addition, although we have explained the case where the color filter is arranged on a solid-state image sensor, the invention is not limited to this, and when each photoelectric conversion element itself has different spectral characteristics. It is clear that these are also included in the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における色フイルタ配列図、第
一図は第1図の色フィルタ配列の場合において輝度信号
と色信号を分離、抽出するタイミングを示す図、第3図
(a) 、 (b)は本発明により得られる矩形波応答
の図で(、)は水平方向、(b)は垂直方向の応答を示
す。*ダ図は本発明における応答可能な空間周波数の範
囲を示す図、第5図は本発明に右ける低域輝度信号を得
るための画素の組合せのコ例であり、(b)は(、)に
対する改良型を示す。第を図&E虹発明の他の実施例に
詔ける色フィルタ配列間、第7図は第1図の色フィルタ
配列において本発明を実現するための回路ブロック図を
示す。 /:単板カラー撮像素子1.2: /l(遅延線、3、
グ、、s、l:サンプルホールド回路、2、!、り:加
算回路、10.//、/コ、/3:減算回路、/4Iニ
スイツチング回路、is、/lニスイツチング回路ない
し加算平均回路、/7:高域通過フィルタ、 /♂、/り、コθ:低域通過フィルタ。 代理人 弁理士  福 士 愛 彦 −Q’ う ↑ 奇 第3 図 ′”−phasell−F−お−〆 !汗犯■粗祁 匡コ匡刀匡ヨ匡ヨ 日匡ヨ匡ヨ匡コ巳 閣J手弁嚇茄押 第2図 自−4ttr
FIG. 1 is a color filter arrangement diagram in an embodiment of the present invention, FIG. 1 is a diagram showing the timing of separating and extracting a luminance signal and a color signal in the case of the color filter arrangement of FIG. 1, and FIG. 3(a) , (b) is a diagram of the rectangular wave response obtained by the present invention, (,) shows the response in the horizontal direction, and (b) shows the response in the vertical direction. *Figure 5 is a diagram showing the range of spatial frequencies that can be responded to in the present invention, Figure 5 is an example of a combination of pixels to obtain a low-frequency luminance signal according to the present invention, and (b) is (, ). 7 shows a circuit block diagram for implementing the present invention in the color filter arrangement of FIG. 1. /: Single-chip color image sensor 1.2: /l (delay line, 3,
G, s, l: Sample and hold circuit, 2,! , ri: addition circuit, 10. //, /ko, /3: subtraction circuit, /4I switch circuit, is, /l switch circuit or averaging circuit, /7: high-pass filter, /♂, /ri, ko θ: low-pass filter. Agent Patent Attorney Fukushi Aihiko-Q' U↑ odd 3rd figure'”-phasell-F-O-〆! Sweat criminal J Hand Benke Nao Push Figure 2 Self-4ttr

Claims (1)

【特許請求の範囲】 1、 水平、垂直方向に配列された受光素子群からなる
撮像装置であって、それぞれ感応するスペクトル帯域の
異なるり種の光電変換素子が各/素子ずつ水平方向に隣
接して並べられたグ素子を組とし、該夕素子組が水平方
向に繰返し配列されてなるカラー撮像装置において、第
1の光電変換素子の感応スペクトル特性と第2の光電変
換素子の感応スペクトル特性を加算した特性は可視領域
全域にわたって有限の応答を持ち上記グ素子組のうちの
前半コ素子の位置を占め、第3の光電変換素子の感応ス
ペクトル特性と第グの光電変換素子の感応スペクトル特
性を加算した特性は上記第1の光電変換素子と第一の光
電変換素子各々の感応スペクトル特性の加算特性と相似
形であ−て上記グ素子組の残余の一素子の位置を占めて
なり、/水平列おいて隔てたコ水乎列間において同一垂
直列上では第1の光電変換素子と第2の光電変換素子、
ないし第3の光電変換素子とgJダの光電変換素子の組
合せのいずれかとなることを特徴とする単板カラー撮像
装置。 2、上記第1の光電変換素子と上記第2の光電変換素子
が水平に隣接した組が上記第3の光電変換素子と上記第
グの光電変換素子が水平に隣接した組と入替る境界が、
垂直方向に隣接する水平列間に右いて水平方向に/素子
変位する配置となることを特徴とする特許請求の範囲第
1項記載の単板カラー撮像装置。 3、上記/水平列隔てた一水平列間の同一垂直列上に存
在する一画素間で加算された信号は、高域透過フィルタ
を通過して高輝度信号成分となることを特徴とする特許
請求の範囲第1項ないし第一項記載の単板カラー撮像装
置。
[Claims] 1. An imaging device consisting of a group of light receiving elements arranged horizontally and vertically, in which different types of photoelectric conversion elements each sensitive to a different spectral band are adjacent to each other in the horizontal direction. In a color imaging device in which a pair of photoelectric conversion elements is arranged in a horizontal direction, and a set of photoelectric conversion elements is arranged repeatedly in the horizontal direction, the sensitive spectral characteristics of the first photoelectric conversion element and the sensitive spectral characteristics of the second photoelectric conversion element are The added characteristic has a finite response over the entire visible region, occupies the position of the first half of the above group of elements, and has the sensitive spectral characteristics of the third photoelectric conversion element and the sensitive spectral characteristics of the third photoelectric conversion element. The added characteristic is similar to the added characteristic of the sensitive spectrum characteristics of the first photoelectric conversion element and each of the first photoelectric conversion elements, and occupies the position of the remaining one element of the group of elements, / A first photoelectric conversion element and a second photoelectric conversion element on the same vertical column between the water columns separated by a horizontal column,
A single-chip color imaging device characterized in that it is a combination of a third photoelectric conversion element and a gJ da photoelectric conversion element. 2. There is a boundary where a horizontally adjacent set of the first photoelectric conversion element and the second photoelectric conversion element replaces a horizontally adjacent set of the third photoelectric conversion element and the third photoelectric conversion element. ,
2. The single-chip color imaging device according to claim 1, wherein the single-chip color imaging device is arranged so that the elements are displaced in the horizontal direction between vertically adjacent horizontal rows. 3. A patent characterized in that the signal added between one pixel existing on the same vertical column between one horizontal column separated by the above/horizontal column passes through a high-pass transmission filter and becomes a high-luminance signal component. A single-chip color imaging device according to claims 1 to 1.
JP56173980A 1981-10-29 1981-10-29 Single plate type color image pickup device Pending JPS5875394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56173980A JPS5875394A (en) 1981-10-29 1981-10-29 Single plate type color image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56173980A JPS5875394A (en) 1981-10-29 1981-10-29 Single plate type color image pickup device

Publications (1)

Publication Number Publication Date
JPS5875394A true JPS5875394A (en) 1983-05-07

Family

ID=15970569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56173980A Pending JPS5875394A (en) 1981-10-29 1981-10-29 Single plate type color image pickup device

Country Status (1)

Country Link
JP (1) JPS5875394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630106A (en) * 1982-02-15 1986-12-16 Matsushita Electric Industrial Co., Ltd. Color solid-state imager with color filter having an overlapping segmented filter arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630106A (en) * 1982-02-15 1986-12-16 Matsushita Electric Industrial Co., Ltd. Color solid-state imager with color filter having an overlapping segmented filter arrangement

Similar Documents

Publication Publication Date Title
US9736437B2 (en) Device for acquiring bimodal images
JP3735867B2 (en) Luminance signal generator
RU2551649C2 (en) Colour image forming apparatus
US9288454B2 (en) Color imaging apparatus having color imaging element
US9431444B2 (en) Single-plate color imaging element including color filters arranged on pixels
US9313466B2 (en) Color imaging element
JP2001268582A (en) Solid-state image pickup device and signal processing method
JP2733859B2 (en) Color imaging device
JP2004153823A (en) Image processing system using local linear regression
JPH0225593B2 (en)
US8982253B2 (en) Color imaging element
JP3450374B2 (en) Color imaging device
JP3576600B2 (en) Color imaging device
JPS5875394A (en) Single plate type color image pickup device
JPS5875393A (en) Single plate type color image pickup device
Honda et al. A novel Bayer-like WRGB color filter array for CMOS image sensors
JPS59154891A (en) Single board color image pickup device
JPS6129287A (en) Color solid-state image pickup device
JPS6334373Y2 (en)
JPS59153391A (en) Solid-state color image pickup device
JP4296028B2 (en) Digital camera
JPS59143486A (en) Image pickup device of single board color
JPS59288A (en) Solid-state color image pickup device
JPS6351633B2 (en)
JPH0366282A (en) Color image pickup device