JPS5874867A - Fuel injection controlling method for internal combustion engine - Google Patents

Fuel injection controlling method for internal combustion engine

Info

Publication number
JPS5874867A
JPS5874867A JP56173833A JP17383381A JPS5874867A JP S5874867 A JPS5874867 A JP S5874867A JP 56173833 A JP56173833 A JP 56173833A JP 17383381 A JP17383381 A JP 17383381A JP S5874867 A JPS5874867 A JP S5874867A
Authority
JP
Japan
Prior art keywords
fuel
valve
solenoid valve
fuel injection
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56173833A
Other languages
Japanese (ja)
Other versions
JPH0251065B2 (en
Inventor
Yoshihisa Yamamoto
義久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP56173833A priority Critical patent/JPS5874867A/en
Priority to US06/428,619 priority patent/US4499876A/en
Publication of JPS5874867A publication Critical patent/JPS5874867A/en
Publication of JPH0251065B2 publication Critical patent/JPH0251065B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0205Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To enable to prevent occurrence of an accident such as overrun of an engine, by operating a valve mechanism for controlling operation of a fuel metering actuator or a driving system for feeding fuel under pressure under the trouble mode in case that some trouble is caused at a portion of an injection means in its fuel increasing state. CONSTITUTION:When a solenoid valve 12 is closed and a solenoid valve 13 is opened in response to the output signal of a control means 30, a piston 9 and a plunger 8 are depressed for injection of fuel. Here, the quantity of injected fuel is controlled on the basis of the valve opening time of the third solenoid valve 13 of a fuel metering actuator. With such an arrangement, if the valve 13 becomes inoperable in its valve opened state, the valve opening timing of the solenoid valve 12 is delayed from the normal timing and current supply to the solenoid valve 13 is stopped. From the next cycle timing on, the valve 12 is opened retroactively according to the timing in advance of the above delay time from the normal valve opening time of the valve 13. Thus, fuel can be supplied although the fuel metering accuracy is not so good, and overrun of the engine due to the above trouble can be prevented without stopping operation of the engine.

Description

【発明の詳細な説明】 本発明は内燃機関特にディーゼルエンジン用燃料噴射装
置の故障時における制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling a fuel injection device for an internal combustion engine, particularly a diesel engine, when the fuel injection device fails.

電子制御式の燃料噴射装置がこれ迄広く用いられてお夛
、これはぜストy及びシランジャからなる圧送系と、噴
射ノズルと、圧送系の作動を主として制御する弁機構と
、噴射量を調量制御するアクチェエータから成)、各種
検出器の情報に基づく制御装置からの制御信号によって
作動するインジェクタ装置を各気筒毎に備えたものであ
る。この1種のものでは制御性の爽さから、圧送系を制
御する弁機構及び噴射量を調量するアクチェエータに電
磁弁を用いたものが多く、特に加減速時の調量精度の点
からアクチェエータとして調量専用の電磁弁を設けてい
る。しかしながら電磁弁は他の機能部品と比べて故障率
が高く、さらに調量用の電磁弁が開弁したttで停止す
ることはエンジンのオーバランにつながるため極めて危
険度が高く、この故障の時には機関の運転(停止させる
ように構成されている従来の制御方法では、たとえば1
気筒が故障しても機関は異常振動をするなど運転に故障
を生ずるために機関を停止してしまう。しかして、これ
によ〕1次の危険はさけられるが、この故障が高速道路
であったシ、冬の山道であった〉、地平かなたの畑であ
れば2次の危険即ち運転できないことで事故を招いたシ
、帰還が容易にてき′ないという問題が発生する。そこ
で最近のエーデニーズとして運転性能は慈〈なっても可
能な限シ目的地迄帰れるようにすることが要求されてい
る。従来の方法ではもちろんこの要求を満足することは
できない。
Electronically controlled fuel injection devices have been widely used until now, and they consist of a pressure delivery system consisting of a diesel engine and a syringe, an injection nozzle, a valve mechanism that mainly controls the operation of the pressure delivery system, and a valve mechanism that adjusts the injection amount. Each cylinder is equipped with an injector device that is operated by a control signal from a control device based on information from various detectors. Many of these types use electromagnetic valves for the valve mechanism that controls the pressure feeding system and the actuator that adjusts the injection amount for ease of control. A solenoid valve exclusively for metering is installed. However, solenoid valves have a higher failure rate than other functional parts, and stopping at tt, when the metering solenoid valve opens, is extremely dangerous as it can lead to engine overrun. In conventional control methods configured to operate (stop)
Even if a cylinder fails, the engine will stop because it will cause abnormal vibrations and other operational problems. Therefore, the first danger can be avoided, but if the breakdown was on a highway, a mountain road in winter, or a field on the horizon, there would be a second danger, that is, the inability to drive. However, the problem arises that it is not easy to return home due to accidents. Therefore, modern vehicles are required to have driving performance that allows them to return to their destination as far as possible, even if the situation is poor. Conventional methods, of course, cannot satisfy this requirement.

この発明は、Toる気筒のインジェクタ装置の一部1例
えば調量電磁弁(アクチェエータ)が開、弁状態となっ
た11故障した場合でも機関に損傷を与えることなく運
転を継続することができる燃料噴射制御方法を提供する
ことを目的とする。
This invention provides a fuel that can continue operating without damaging the engine even if a part of the injector device for a cylinder, for example, a metering solenoid valve (actuator) opens and enters a valve state. The purpose of this invention is to provide an injection control method.

本発明においては、各気筒毎のインジェクタ装置におけ
る調量制御のための例えばアクチェエータが燃料供給可
能状態のt\故障したことを検知した時は、少くとも故
障したインジェクタ装置の −・作動を停止することな
く故障モーF運転に切シ換え、シランジャ下方のポンプ
作動油室に故障したアクチェエータを経て供給される燃
料の量を、ピストン及びfツyyヤの上昇を可能にする
弁機構の動作を制御することにより調量するようにして
いる。
In the present invention, when it is detected that the actuator for metering control in the injector device for each cylinder is in a fuel supply ready state and has failed, at least the operation of the failed injector device is stopped. Switches to failure mode F operation without any problem, controls the amount of fuel supplied to the pump operating oil chamber below the sylanger via the failed actuator, and controls the operation of the valve mechanism that allows the piston and f-tension to rise. I try to measure it by doing this.

従って、ある気筒のインジェクタ装置の一部に故障が生
じても、機関の運転を停止する必要がなく、多少加減速
性は悪くなっても、通常運転に近い状態が維持でき、ま
た機関のオーパーツyあるいは異状振動発生による機関
の損傷等も避けることができる。
Therefore, even if a failure occurs in a part of the injector device of a certain cylinder, there is no need to stop engine operation, and even if acceleration/deceleration performance deteriorates, a state close to normal operation can be maintained, and the engine Damage to the engine due to parts y or abnormal vibrations can also be avoided.

以下図画によって本発明の詳細な説明すると、第1図に
おいて1番号1は各気筒毎に設けたインジェクタ装置、
2′は高圧圧力源、3は低圧圧力源を全体として示す。
The present invention will be explained in detail with reference to the drawings below. In FIG. 1, numeral 1 indicates an injector device provided for each cylinder;
2' indicates a high pressure source, and 3 indicates a low pressure source as a whole.

インジェクタ1はボア4内を油密を保って図の左右に摺
動する例えばスジ−lし弁などの切替弁5と、?アロ、
7内を油密を保って実質上一体状態において上下に摺動
する小径のシランジャ8.大径のぜストン9と、シラン
ジャ8からの圧送される燃料を受けとる噴射ノズル10
と、三つの電磁弁11.12.13とから成る。切替弁
5の一部におけるポア4内は切替弁作動油室14を形成
し、この室14は、二路の開閉弁である電磁弁11、配
管15を介して低圧圧力源3と連通すると共に、同じく
二路の開閉弁である電磁弁12を介して燃料リデーパタ
ンク16に接続する。作動油室14の反対側においては
ね17が切替弁5を図の左方に、即ち作動油室14を小
さくする方向に、押圧している。切替弁5の中間小直径
部におけるポア4内と、ピストン9の上側におけるlア
Tとによってぜストン作動油室18が形成される。この
ぜストン作動油室18は。
The injector 1 has a switching valve 5, such as a line valve, which slides from side to side in the figure while maintaining oil tightness inside the bore 4. Aro,
8. A small-diameter syringe that slides up and down in a substantially integral state while maintaining oil tightness inside 7. A large-diameter gas cylinder 9 and an injection nozzle 10 that receives the fuel pressure-fed from the sylanger 8
and three solenoid valves 11, 12, and 13. The inside of the pore 4 in a part of the switching valve 5 forms a switching valve operating oil chamber 14, and this chamber 14 communicates with the low-pressure pressure source 3 via a solenoid valve 11, which is a two-way on-off valve, and piping 15. , is also connected to a fuel redaper tank 16 via a solenoid valve 12, which is also a two-way on-off valve. On the opposite side of the hydraulic fluid chamber 14, a spring 17 presses the switching valve 5 to the left in the figure, that is, in a direction that makes the hydraulic fluid chamber 14 smaller. A gas cylinder hydraulic oil chamber 18 is formed by the inside of the pore 4 in the intermediate small diameter portion of the switching valve 5 and the l aa T above the piston 9. This gas stone hydraulic oil chamber 18 is.

切替弁5が左右の二つの位置のどちらにあるかに応じて
二つのポー)19.20に切替的に連通する。その一つ
の1−)19は配管21によって高圧圧力源2へ、他方
のポート20は絞〕22を介してタンク16へ戻される
。シランジャ8の下側におけるポア6内に形成されるポ
ンプ作動油室23はノズル10と連通すると共に、逆止
弁24、二路の開閉弁である上述した調量用電磁弁13
を介して低圧圧力源3に連通する。制御装置30の入力
I−トは図示しない各種センサに、電気的に接続され、
かつ出力ポートは前述の3つの電磁弁11.12.II
K電気的に接続されこれらに制御信号を送る。
Depending on which of the two positions, left and right, the switching valve 5 is in communication with the two ports 19 and 20. One of the ports 1-) 19 is returned to the high-pressure source 2 via a pipe 21, and the other port 20 is returned to the tank 16 via a restriction 22. A pump hydraulic oil chamber 23 formed in the pore 6 on the lower side of the syringe 8 communicates with the nozzle 10, and also includes a check valve 24 and the above-mentioned metering solenoid valve 13, which is a two-way on-off valve.
It communicates with a low pressure source 3 via. The input I-to of the control device 30 is electrically connected to various sensors (not shown),
And the output ports are the three electromagnetic valves 11.12. II
K are electrically connected and send control signals to them.

圧力源2,3はfンプ201.301、リリーフ弁20
2,302、フイヤタ203,303゜アキ具ムレータ
204.304から我る通常の定油圧源を構成する。
Pressure sources 2 and 3 are f pump 201.301, relief valve 20
2, 302, Fiyata 203, 303, Aki-tool mul- tators 204, 304 constitute a normal constant oil pressure source.

以上述べた本発QIHC係るシステムの作動を述ると、
図の位置では電磁弁11は閉、12は開であるから高圧
源2は切替弁作動油室14から切離されかつこの室14
はリデーパタンク16と通じている。それ故に、ばね1
TKよって切替弁5は左側の位置をとL/−)20がピ
ストン作動油室18と導通し、この室18内の燃料かり
ず一パタンク16に解放され得る状路になる。この状態
で、電磁弁13に噴射量に対応した長さの開弁時間を与
える信号が制御装置30から入ると、この時間だけ図示
の如く開弁し低圧源3からの燃料は逆止弁24を介して
ポンプ作動油室23に導入され所定量充填され、その後
調量用電磁弁13は閉とされる。このとき、ぜストン9
.シランジャ8は上昇する。
The operation of the QIHC system described above is as follows:
In the illustrated position, the solenoid valve 11 is closed and the solenoid valve 12 is open, so the high pressure source 2 is separated from the switching valve operating oil chamber 14 and this chamber 14
communicates with Redeemer Tank 16. Therefore, spring 1
Therefore, when the switching valve 5 is in the left position, the L/-) 20 is in communication with the piston hydraulic oil chamber 18, and becomes a path through which the fuel in this chamber 18 can be released into the tank 16. In this state, when a signal giving the solenoid valve 13 an opening time corresponding to the injection amount is input from the control device 30, the valve is opened for this period as shown in the figure, and the fuel from the low pressure source 3 is transferred to the check valve 24. The oil is introduced into the pump hydraulic oil chamber 23 through the pump and filled with a predetermined amount, and then the metering solenoid valve 13 is closed. At this time, Zestone 9
.. Siranjar 8 rises.

電磁弁11−が開に12が閉に切替えられると、圧力源
3からの油圧が管路15を介し切替弁作動室14に作用
すると同時に1この室14はリデーパタンク16から切
離される。その結果、切替弁5はばね17に抗し図の右
方に動き、ポート20を閉としポート19を開とする。
When the electromagnetic valve 11- is switched to open and the solenoid valve 12 is switched to close, the hydraulic pressure from the pressure source 3 acts on the switching valve operating chamber 14 through the conduit 15, and at the same time, this chamber 14 is separated from the reduction tank 16. As a result, the switching valve 5 moves to the right in the figure against the spring 17, closing the port 20 and opening the port 19.

かくして、高ε源2からの油圧が配管21を介しぜスト
ン作動油室18へ導びかれ、この油圧によって、Vpス
トン9、シランジャ8は下方へ移動する。このとき、ポ
ンプ室23の圧力を理論的には圧力源2の油圧のピスト
ン−シランジャの断爾積比倍に増圧した超高圧がポンプ
作動油室23に生ずる。この超高圧燃料は逆止弁24に
よって逆流を妨げられノズル10に供給され図示しない
内燃機関の燃焼室に噴射される。
Thus, the hydraulic pressure from the high ε source 2 is guided to the piston hydraulic oil chamber 18 through the piping 21, and this hydraulic pressure moves the Vp stone 9 and the sylanger 8 downward. At this time, an extremely high pressure is generated in the pump working oil chamber 23, which theoretically increases the pressure in the pump chamber 23 to twice the piston-silanger sectional area ratio of the oil pressure of the pressure source 2. This ultra-high pressure fuel is prevented from flowing back by the check valve 24, is supplied to the nozzle 10, and is injected into a combustion chamber of an internal combustion engine (not shown).

以上が通常運転時の作動であるが、さらにこれを第2図
のタイミング図にそって説明する。jI2の電磁弁12
が閉であ夛、タイ建ングムで第1の電磁弁11が開にな
ると、スプールは油圧によって右方へ移動し、つづいて
ピストン・シランジャが押下げられる。ので燃)科を噴
射する。つぎにタインングBで第1の電磁弁11が閉と
なっておシ、第2の電磁弁12を開とするスプールは左
方へ押しもどされるそして第2の電磁弁12は閉とされ
る。この状態でタイミング0より第3の電磁弁を開とし
、タイミングDtで開弁しておくこの間にシランジャ及
びピストンが押し上げられ、噴射燃料が導入される。第
1図に示されるのはこの間の状態である。タイミングp
で−3の電磁弁を閉とするとその状態で再び次のサイク
ルのタイミングAとなるわけである。この時噴射量の制
御は■ の時間で行表われることがわかる。したがって
部分負荷の場合には図の破線のようにな〕制御開弁時間
はWとなる。
The above is the operation during normal operation, and this will be further explained along the timing diagram of FIG. 2. jI2 solenoid valve 12
When the valve is closed and the first solenoid valve 11 is opened at the timing, the spool is moved to the right by hydraulic pressure, and the piston syringe is subsequently depressed. Therefore, inject fuel. Next, at tine B, the first solenoid valve 11 is closed, and the spool that opens the second solenoid valve 12 is pushed back to the left, and the second solenoid valve 12 is closed. In this state, the third electromagnetic valve is opened at timing 0, and during this period, the sylanger and piston are pushed up and the injected fuel is introduced. What is shown in FIG. 1 is the state during this period. timing p
Then, when the solenoid valve -3 is closed, timing A of the next cycle is reached again in that state. It can be seen that the control of the injection amount is carried out in the time indicated by (2). Therefore, in the case of partial load, the controlled valve opening time becomes W as shown by the broken line in the figure.

次に同様のタイセンダ図第3図を使用して故障篭−ドの
制御方法を説明する。ここで注意すべきは、第3の電磁
弁が開弁した11作動しない点である。従って第3の電
磁弁に対しては通電せず図に4ypしていない。図のタ
イ建ングムで第1の電磁弁を開とし、噴射に至るの社通
常運転と同じである。しかして第2の電磁弁の開弁は通
常運転よ)遅れるようにし、この遅れの時4間は定量的
には次サイクルのタイミングムからおよそ通常運転の制
御開弁時間OD  だけ逆にさかのぼってタイミングB
を決め、そこで開弁する。第3の電磁弁はすでに開弁し
ているのでこの状態でスプールが左へ移動すると同時に
噴射燃料が導入され次サイクルのタイミングム即ち噴射
タイミングによって導入が終了する従って噴射量の制御
はBム(ムは次サイクル)の時間によって行なわれるわ
けであるこのモーrでは前にも述べたように加・減速時
の調量精度が悪い。それは制御時間Bムのムが次サイク
ルの噴射タイミングでs1シそれを予想してBのタイミ
ングを決めている為で、加減速時にはムのタイミングが
タイ電ン〆Bで想定していたものと変わってしまうため
である。しかしながらエンジンを何とか運転継続すると
いう目的に対しては十分である。
Next, a method of controlling a failure cage will be explained using a similar Tysender diagram (FIG. 3). What should be noted here is that the third solenoid valve does not operate when it is opened. Therefore, the third solenoid valve is not energized and is not shown in the figure. The first solenoid valve is opened at the timing shown in the figure, and the process leading to injection is the same as normal operation. Therefore, the opening of the second solenoid valve is delayed (as compared to normal operation), and this delay time is quantitatively calculated by going backwards from the timing of the next cycle by approximately the control valve opening time OD of normal operation. timing B
Decide and then open the gate. Since the third electromagnetic valve is already open, the injected fuel is introduced at the same time as the spool moves to the left in this state, and the introduction ends at the timing of the next cycle, that is, the injection timing.Therefore, the control of the injection amount is B ( In this motor, the metering accuracy is poor during acceleration and deceleration, as described above. This is because the timing of B is determined by anticipating that the control time B is the injection timing of the next cycle, and when accelerating and decelerating, the timing of B is the same as that expected in the tie electric terminal B. This is because it will change. However, it is sufficient for the purpose of somehow continuing to operate the engine.

次に第4図の7四−チャー)K従って全体の制御の流れ
を説明する。初期条件をセット後、各種センナ情報を入
力する。例えばTDCマーク、エンジン回転数、アクセ
ル位置、冷却水温、潤滑油温、吸入空気温、吸入空気圧
、排気温圧力源圧力などである。
Next, the overall control flow will be explained. After setting the initial conditions, input various Senna information. Examples include TDC mark, engine speed, accelerator position, cooling water temperature, lubricating oil temperature, intake air temperature, intake air pressure, exhaust temperature, pressure source pressure, etc.

後述するように、これらのセンナ情報により調量電磁弁
13の異常を検出し故障していなければ通常篭−ドの調
量・タイミングの演算を制御装置30で行い第2図のよ
うな制御をする。そして再びセンナ情報を入力し、この
ループによって時々刻々演算を行なう。故障が発見され
ると故障そ−rとなシ、調量・タイミングの演算を行い
第3図のような制御をする。これは故障気筒のわかるよ
うなシステムでは故障気筒のみそうでなければ全気筒と
してかまわない。ことで故障の検出方法は、例をあげる
と、回転数上/すは例えば一定回転毎にパルスの出るも
のを用い瞬一時の回転数がわかるものを用いる。制御装
置30はこれを監視し、爆発毎の回転変動が判別回転数
を越えた時異常とみなす。あるいはぎストン位置センナ
を設−て吸入量をフィードバックするなどの方法がある
As will be described later, an abnormality in the metering solenoid valve 13 is detected based on the sensor information, and if there is no failure, the controller 30 normally calculates the metering and timing of the cage, and performs control as shown in FIG. do. Then, the senna information is input again, and calculations are performed moment by moment through this loop. When a failure is discovered, the metering and timing calculations are performed to perform control as shown in FIG. 3. In a system where the faulty cylinder can be identified, if only the faulty cylinder is detected, then all cylinders may be counted. As an example of a method for detecting a failure, a method that generates a pulse at every constant rotational speed is used to detect the instantaneous rotational speed. The control device 30 monitors this and considers it to be abnormal when the rotational fluctuation for each explosion exceeds the determined rotational speed. Alternatively, there is a method of providing feedback on the amount of intake by installing a stopper position sensor.

本発明は調量と圧送駆動の制御が別々のアクチェエータ
て行なわれていればすべて適用できる例えば電磁弁11
’t 12は2ボジシ冒ン3ポートのもの1つでも可能
であるし、さらにはスゾーIvS自体を油圧・電磁弁で
作動させず電磁力で直接動かすようなンレノイド直動飄
のものでももちろん適用できる。また圧力源の構成・数
・作動油の種類を問わないことはいうまでもなく、ノズ
νの盤を問わないし例えばシランジャにスビlし回路を
設けるなどの機構改良をしたものも本発明を適用できる
ことは明白である。また実施例ではディジタiし制御回
路を用いているが、もちろんアナ四グ回路でこれを実施
することも可能である。また調量の電磁弁は別の型のも
のでも良いし、その配置は絞シ22の上流、下流にあっ
ても嵐く、さらにそのいずれの場合も絞シ22紘調量燃
料の入口側にあってもかまわない。
The present invention can be applied to any case in which metering and pressure feeding are controlled by separate actuators, such as the solenoid valve 11.
't 12 can be used with a 2-position, 3-port type, and of course can also be applied to a linear direct-acting type that moves the suzo IvS itself directly by electromagnetic force without operating it with a hydraulic or solenoid valve. can. It goes without saying that the configuration, number, and type of hydraulic fluid of the pressure sources are not limited, and the present invention is applicable to any mechanical improvements, such as installing a slotted circuit in the sylanger. It is obvious that it can be done. Furthermore, although a digital control circuit is used in the embodiment, it is of course possible to implement this with an analog/4G circuit. In addition, the metering solenoid valve may be of a different type, and its placement may be upstream or downstream of the throttle valve 22, and in either case, the metering solenoid valve may be located on the inlet side of the metering fuel. It doesn't matter if there is.

ここで注目ナベきは、調量回路の電磁弁以外の部分の故
障た゛とえば絞シが脱落するなどの場合、システム構成
によっては電磁弁の故障と誤って検出されてしまう可能
性がある。このようなシステムではその気筒のみ前記故
障モードの運転をすれば調量用の電磁弁が閉じたtまと
なるのでその気筒は作動を停止する。ここで作動停止を
さけるにはその後同様の方法で作動停止を検知している
時第5図の制御タイミングで制御し、調量電磁弁の開弁
時間を正一時のCDよ〕OD′に変更し短くするような
第2の故障モードに移るようにすればよい。
It is important to note here that if there is a failure in a part of the metering circuit other than the solenoid valve, such as when the throttle valve falls off, it may be mistakenly detected as a failure in the solenoid valve, depending on the system configuration. In such a system, if only that cylinder is operated in the failure mode, the metering solenoid valve remains closed and that cylinder stops operating. In order to avoid the stoppage of the operation, use the same method to control the control timing shown in Figure 5 when the stoppage of the operation is detected, and change the opening time of the metering solenoid valve from CD to OD'. What is necessary is to move to a second failure mode that shortens the time.

上述のように本発明においては、圧送駆動系と。As mentioned above, in the present invention, the pumping drive system.

その作動を制御する弁機構と、調量を行なうための別個
のアクチェエータをもつインジェクタ装置を各気筒毎に
備え、各種センナ情報を入力して、制御装置から弁機構
及びアクチェエータを制御する信号を出力する燃料噴射
装置において、インジェクタ装置の一部が燃料供給可能
状態、即ち噴射量増稠で故障した時、調量を行なうアク
チェエータあるいは圧送駆動系の作動を制御する弁機構
を故障モードで作動させることによって調量を可能にし
機関の運転を止めることなくかつ故障によって発生する
オーパランなどの危険を回避できる。
Each cylinder is equipped with an injector device that has a valve mechanism that controls its operation and a separate actuator for metering, inputs various sensor information, and outputs signals that control the valve mechanism and actuator from the control device. In a fuel injection system, when a part of the injector device fails in a state where fuel can be supplied, that is, when the injection amount increases, the valve mechanism that controls the actuator for metering or the operation of the pressure feeding drive system is operated in a failure mode. This enables metering without stopping engine operation and avoids dangers such as over-run caused by malfunctions.

しかもディジタ3回路を用いた場合にはこの方法によれ
ば基本的には構成2を追加、変更することなく制御fa
ミグツム変更だけで可能であるという効果を合わせもつ
Moreover, when three digital circuits are used, this method basically allows control fa without adding or changing configuration 2.
It also has the effect of being possible only by changing Migtum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の模式構成図、112図は通常
モードでの制御・作動タイミング図、 第3図は故障モードでの制御・作動タイミング図。 第4図は全体の制御の流れを示すフローチャート。 第5図は本発明の他の実施例における故障モードでの制
御作動タイ々ング図である。 1・・・インジェクタ装置 2.3・・・圧力源5・・
・切換弁      8−・シランジャ9・・・ぜスト
ン    10・−噴射ノズル11.12−・・第1.
第2電磁弁 13・−調量用アタチェエータ(第5電磁弁)30−制
御装装置。 代理人 浅 村   皓 外4名 第1図 牙2図 第3図 第4図 第5図
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, FIG. 112 is a control/operation timing diagram in normal mode, and FIG. 3 is a control/operation timing diagram in failure mode. FIG. 4 is a flowchart showing the overall control flow. FIG. 5 is a control operation timing diagram in a failure mode in another embodiment of the present invention. 1... Injector device 2.3... Pressure source 5...
・Switching valve 8-・Silanger 9...Stone 10・-Injection nozzle 11.12-・・1st.
2nd electromagnetic valve 13 - Attacheator for metering (fifth electromagnetic valve) 30 - Control device. Agents Asamura and Akira 4 people Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 (1)  VPストンとそれに連結されたシランジャを
有しぜストンの圧下によウシランジャ下方のポンプ作動
油室内の燃料を圧送する圧送系と、圧送された燃料を噴
射する噴射ノズルと、ぜストン上方のピストン作動油室
内の油圧を変えてピストン及びシランジャの上下運動を
制御する弁機構と。 fランジャ下方のがンゾ作動油室に供給される燃料の量
、即ち燃料噴射量を調量するアクチュエータからなル1
機関の運転状態を検出する検出器からの情報に基づく制
御装置からの制御信号によ)作動するインジェクタ装置
を各気筒毎に備えた内燃機関の燃料噴射制御方法におい
て、上記インジェクタ装置の一部が燃料供給可能な状態
の11故障したとき、 少くとも故障したインジェクタ装置の作動を、故障モー
Vで運転できるように、上記調量するアクチェエータも
しくは、上記弁機構の動作を制御することによシ燃料噴
射量を制御することを特徴とする内燃機関の燃料噴射制
御方法。 (2、特許請求の範囲第1項の燃料噴射制御方法であっ
て、 上記故障モード運転における上記弁機構の動作の制御は
、ぜストン上方のピストン作動油室内の油圧を減少させ
、シランジャの上昇可能となる時期を正規の燃料噴射時
期よシ所定時間前に開始するように、シ、!ランジャ下
方のポンプ作動油室に故・障した調量アクチェエータを
通って供給される燃料の量を制御することを特徴とする
内燃機関の燃料噴射制御方法。 (3)特許請求の範11項の燃料噴射制御方法であって
。 上記アクチェエータを電磁弁で構成したことを特徴とす
る内燃機関の燃料噴射制御方法。
[Scope of Claims] (1) A pressure delivery system that includes a VP stone and a sylanger connected to the VP stone, and that pumps fuel in a pump operating oil chamber below the syringe under pressure by the VP stone, and an injection system that injects the pressure-fed fuel. A nozzle and a valve mechanism that controls the vertical movement of the piston and syringe by changing the oil pressure in the piston hydraulic oil chamber above the piston. The actuator below the f ranger is an actuator that adjusts the amount of fuel supplied to the hydraulic oil chamber, that is, the amount of fuel injection.
In a fuel injection control method for an internal combustion engine in which each cylinder is provided with an injector device that is operated (by a control signal from a control device based on information from a detector that detects the operating state of the engine), a part of the injector device is When a failure occurs in a state in which fuel can be supplied, at least the operation of the failed injector device is controlled in the failure mode V by controlling the operation of the metering actuator or the valve mechanism. A fuel injection control method for an internal combustion engine, the method comprising controlling an injection amount. (2. The fuel injection control method according to claim 1, wherein the control of the operation of the valve mechanism in the failure mode operation reduces the hydraulic pressure in the piston hydraulic oil chamber above the piston, causing the syringe to rise. Controls the amount of fuel supplied to the pump hydraulic chamber below the plunger through the faulty metering actuator so that the available timing starts a predetermined time before the regular fuel injection timing. (3) A fuel injection control method for an internal combustion engine, characterized in that: (3) A fuel injection control method for an internal combustion engine, characterized in that the actuator is constituted by a solenoid valve. Control method.
JP56173833A 1981-10-30 1981-10-30 Fuel injection controlling method for internal combustion engine Granted JPS5874867A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56173833A JPS5874867A (en) 1981-10-30 1981-10-30 Fuel injection controlling method for internal combustion engine
US06/428,619 US4499876A (en) 1981-10-30 1982-09-30 Fuel injection control for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56173833A JPS5874867A (en) 1981-10-30 1981-10-30 Fuel injection controlling method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5874867A true JPS5874867A (en) 1983-05-06
JPH0251065B2 JPH0251065B2 (en) 1990-11-06

Family

ID=15967996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56173833A Granted JPS5874867A (en) 1981-10-30 1981-10-30 Fuel injection controlling method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5874867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743208B1 (en) * 1998-08-28 2007-07-26 베르트질레 슈바이츠 악티엔게젤샤프트 Apparatus for the injection of fuel for a reciprocating piston combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08216021A (en) * 1995-02-10 1996-08-27 Fanuc Ltd Truing method for and manufacture of grinding wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743208B1 (en) * 1998-08-28 2007-07-26 베르트질레 슈바이츠 악티엔게젤샤프트 Apparatus for the injection of fuel for a reciprocating piston combustion engine

Also Published As

Publication number Publication date
JPH0251065B2 (en) 1990-11-06

Similar Documents

Publication Publication Date Title
US4499876A (en) Fuel injection control for internal combustion engines
EP0531533B1 (en) Pressure accumulation type fuel jetting device
US6748923B2 (en) Injection system for an internal combustion engine and method for regulating and/or bleeding of said system
US6948480B2 (en) Injection system with an emergency operation function and an associated emergency operation method
JP2006207384A (en) Fuel injector for internal combustion engine
KR20010043493A (en) Fuel injection system
US4173208A (en) Fuel systems for an internal combustion engine
US5954032A (en) Control of an injection system for a multicylinder internal combustion engine
US6840224B2 (en) Pressure-elevating type fuel injecting system
US5868111A (en) Fuel injection control system for a multi-cylinder internal combustion engine
CN100443713C (en) Injection unit and injection method for an internal combustion engine
JP2003524725A (en) Compact Two-Stage Solenoid Valve for Injector of Fuel Injection System for Internal Combustion Engine
CN103958883B (en) Method for making spraying system work
US20110116938A1 (en) Method for controlling a high-pressure fuel pump
US6792917B2 (en) Pressure-elevating type fuel injecting system
JP2000505859A (en) Injector system for oil regeneration in combustion engines
JPS5874867A (en) Fuel injection controlling method for internal combustion engine
US8312864B2 (en) Method and device for the volume flow control of an injection system
CN1057818C (en) Injection device for the injection of fuel in a reciprocating piston internal combustion engine
JP3212408B2 (en) Fuel / water injection device
CN215719166U (en) Fuel supply system and fuel supply assembly thereof
JPH10318100A (en) Method for measuring fuel supplied to fuel injection valve and fuel injection system for executing injection in internal combustion engine
JPH07259688A (en) Fuel injection device for directly injecting type diesel engine
CN111656000A (en) Assembly comprising a high-pressure pump and a regulating device arranged upstream thereof
JP2897464B2 (en) Accumulator type fuel injection device