JPS58746A - Gaseous component detector - Google Patents

Gaseous component detector

Info

Publication number
JPS58746A
JPS58746A JP2862182A JP2862182A JPS58746A JP S58746 A JPS58746 A JP S58746A JP 2862182 A JP2862182 A JP 2862182A JP 2862182 A JP2862182 A JP 2862182A JP S58746 A JPS58746 A JP S58746A
Authority
JP
Japan
Prior art keywords
gas component
detection element
air
fuel ratio
component detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2862182A
Other languages
Japanese (ja)
Inventor
Yoshihiro Segawa
瀬川 芳弘
Susumu Sato
進 佐藤
Etsuro Yasuda
悦朗 安田
Tadashi Hattori
正 服部
Keiji Aoki
敬二 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2862182A priority Critical patent/JPS58746A/en
Publication of JPS58746A publication Critical patent/JPS58746A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To detect an air-fuel ratio with high accuracy without having any influence of the temperature of waste gas, by using a gaseous component detection element made of a transition metallic oxide and carrying a catalyst on this detection element. CONSTITUTION:The first and the second lead wires 8 and 9 are inserted into a lower holding body 2 and an upper holding body 5 of a housing 1 and electrodes 10 and 11 are connected to the tip ends of the wires 8 and 9. A gaseous component detection element 13 made of a transition metallic oxide such as titanium oxide etc. is provided between the electrodes 10 and 11 and a catalyst 14 such as platinum is stuck to its surface. On occasion of detecting the gas, characteristic for an air-fuel ratio of an electric resistance value of the element 13 is varied suddently by the action of the catalyst 14 bordering on some air-fuel ratio and accordingly, the detection is carried out with high accuracy without making compensation for a temperature of waste gas by decreasing a detection error of the air-fuel ratio in very small. Also, a response property is improved by the catalyst 14 even when the temperature is low.

Description

【発明の詳細な説明】 本発明は検出ガス中00.(酸素)、00(−酸化炭素
)、HC(炭化水素)等の成分の濃度変化を総体的な雰
囲気の変化として応答性よく検出し得る、特に内燃機関
の排気ガスのガス成分検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for detecting 0.00. A gas component detector that can detect changes in the concentration of components such as (oxygen), 00 (-carbon oxide), and HC (hydrocarbons) as changes in the overall atmosphere with good responsiveness, especially for internal combustion engine exhaust gas. It is.

ガス成分検出器は一般に広く使用されているが、近年、
内燃機関の排気ガス対策と関連して、内燃機関で燃焼に
供される混合気の空燃比を検出する手段としても使用さ
れるに至っている。
Gas component detectors are generally widely used, but in recent years,
In connection with exhaust gas countermeasures for internal combustion engines, it has come to be used as a means for detecting the air-fuel ratio of the air-fuel mixture used for combustion in the internal combustion engine.

即ち、内燃機関の排気ガス対策として例えば排気ガス浄
化用の触媒を用いる場合、この触媒に最大限の機能を発
揮させる(は、混合気の空燃比を適正の値に常に保持す
る必要があるが、通常の機関における気化器とか燃料噴
射式の機関における噴射装置とかでは、混合気の空燃比
が一定になるよう設定したとしても実際に祉空燃比は大
幅に変化する。従って空燃比を一定に保つには、何らか
の方法で実際の空燃比を検出し、その信号を前記気化器
とか噴射装置にフィードバックする必袈が生じるのであ
る。
In other words, when using a catalyst for exhaust gas purification, for example, as a countermeasure against exhaust gas from an internal combustion engine, it is necessary to ensure that the catalyst performs its maximum function (although it is necessary to always maintain the air-fuel ratio of the air-fuel mixture at an appropriate value). In the case of a carburetor in a normal engine or an injection device in a fuel injection type engine, even if the air-fuel ratio of the air-fuel mixture is set to be constant, the welfare air-fuel ratio actually changes significantly. In order to maintain this, it is necessary to detect the actual air-fuel ratio by some method and feed that signal back to the carburetor or injection device.

しかして、ガス成分検出器によって空燃比を検出するに
雌、このガス成分検出器で直接的に排気ガスの各成分の
濃度変化が混合気の空燃比に密接に関連することを利用
して空燃比を検出する。この場合、排気ガスは、周知の
通り、その温度およびガス成分の濃度変化が急激かつ大
幅であり、このため、この点を考慮した正確な検出器が
望まれる。
However, in contrast to detecting the air-fuel ratio using a gas component detector, this gas component detector directly uses the fact that changes in the concentration of each exhaust gas component are closely related to the air-fuel ratio of the air-fuel mixture to detect the air-fuel ratio. Detects fuel ratio. In this case, as is well known, the temperature of the exhaust gas and the concentration of gas components change rapidly and significantly, and therefore, an accurate detector that takes this point into account is desired.

従来、内燃機関の空燃比の検出は、ジルコニア等の固体
電解質を用いて、これを酸素濃淡電池として作用させ、
起電力の変化を検出する方法、あるいは遷移金属酸化物
を用いて、これの電気抵抗値の変化を検出する方法にて
行なわれている。
Conventionally, the air-fuel ratio of internal combustion engines has been detected using a solid electrolyte such as zirconia, which acts as an oxygen concentration battery.
This is done by detecting changes in electromotive force, or by using transition metal oxides and detecting changes in their electrical resistance.

しかしながら、前者の方法においては固体電解質のイオ
ン伝導が格子間に存在するイオン欠陥中を熱振動による
イオンの移動によって起こることから、起電力が生じる
。このため、固体電解質の温度が400℃以下の低温で
は起電力が生じず、従って排気ガス温度の低い内燃機関
の始動時などには応答性が著しく低下するという欠点を
有している。
However, in the former method, ion conduction in the solid electrolyte occurs due to the movement of ions through thermal vibrations in ion defects existing in the interstitial space, and therefore an electromotive force is generated. Therefore, when the temperature of the solid electrolyte is as low as 400° C. or lower, no electromotive force is generated, and therefore, the response is significantly reduced when starting an internal combustion engine with a low exhaust gas temperature.

一方後者の方法では、第171!!!llK示すごとに
前者の方法に比較して特性曲線の傾きがなだらかである
ため、ある一点の空燃比を検出しようとすると非常に精
度が悪いという欠点を有している。また排気ガス温度に
よっても電気抵抗値が変化するため、温度補償を行なわ
ないと任意の空燃比が制御できず、また温度補償によっ
て応答遅れが生じるという欠点がある。
On the other hand, in the latter method, the 171st! ! ! Since the slope of the characteristic curve is gentler than that of the former method, this method has the disadvantage that the accuracy is extremely low when attempting to detect the air-fuel ratio at a certain point. Furthermore, since the electrical resistance value also changes depending on the exhaust gas temperature, it is not possible to control an arbitrary air-fuel ratio without temperature compensation, and temperature compensation causes a delay in response.

本発明は後者の11移金属酸化物よりなるガス成分検出
素子を用い、このガス成分検出素子に触媒を担持するこ
とにより、所要空燃比を検出ガスの温度に影響を受けず
に、しかも精度よく検出しようとすることを目的とする
ものである。
The present invention uses a gas component detection element made of the latter 11-transfer metal oxide, and by supporting a catalyst on this gas component detection element, the required air-fuel ratio can be determined accurately without being affected by the temperature of the detected gas. The purpose is to detect.

また、本発明は上記ガス成分検出素子の電気抵抗値変化
を取出す電極を設け、この電極にリード線を電気的に接
続するとともに、このリード線に端子を電気的に接続し
、かつこれらリード線および端子を、電気絶縁性の保持
体の貫通穴に挿入固定し、この保持体の外側に取付用ハ
ウジングを固定したことにより、検出ガスを外界と隔絶
する壁に対する脱着が容易で、しかも検出器の作動のた
めの電気接続が簡単であることを目的とするものである
Further, the present invention provides an electrode for detecting changes in electrical resistance of the gas component detection element, a lead wire is electrically connected to this electrode, a terminal is electrically connected to this lead wire, and these lead wires are electrically connected to a terminal. By inserting and fixing the terminal into the through hole of the electrically insulating holder and fixing the mounting housing to the outside of this holder, it is easy to attach and detach the gas to be detected from the wall that separates it from the outside world. The purpose is to simplify the electrical connection for operation.

以下本発明のガス成分検出器を内燃機関の空燃比を検出
する手段として用いる場合の第1実施例について説明す
る。第1図、第2図および第8図において、lはハウシ
ングで電気良導体の金属よりなり、内燃機関の排気管な
どに取り付けられるためのねじ部1mおよび締付部1b
を有する。ハウシングlの下端部には、電気絶縁性のセ
ラミ。
A first embodiment in which the gas component detector of the present invention is used as means for detecting the air-fuel ratio of an internal combustion engine will be described below. In FIGS. 1, 2, and 8, l is a housing made of metal with good electrical conductivity, and has a threaded portion 1m and a tightening portion 1b for attachment to an exhaust pipe of an internal combustion engine, etc.
has. The lower end of the housing l is made of electrically insulating ceramic.

りよりなる円板状で下端にテーパ部2aを有する下部保
持体2が収納され、この下部保持体2は、その上mmと
ハウジング1との開にパッキングワフVヤ8を介在させ
、かつテーパ部2aとハウジング1の下端との間には電
気良導体の金属リング4を介在させて、前記ハウジング
1の下端を内側に熱かしめすることにより固定されてい
る。また、ハウジング1の上端部には、電気絶縁性のセ
ラミックよりなる円柱状で上端部にテーパ部5aを有す
る上部保持体5が前記下部保持体2と同様に、ハウジン
グ1との間にパッキングワッシャ6および金属リング7
を介在させて熱かしめされている。
A lower holding body 2 is housed in a disc-like shape having a tapered portion 2a at the lower end, and this lower holding body 2 has a packing waffle Vya 8 interposed between the upper mm and the housing 1, and has a tapered portion 2a. A metal ring 4 having good electrical conductivity is interposed between the portion 2a and the lower end of the housing 1, and the lower end of the housing 1 is fixed by heat caulking inward. Further, at the upper end of the housing 1, an upper holder 5 made of electrically insulating ceramic and having a cylindrical shape and a tapered part 5a at the upper end is provided, like the lower holder 2, with a packing washer between it and the housing 1. 6 and metal ring 7
It is heat caulked with a

前記下部保持体2および上部保持体5にはそれぞれ軸方
向の2個の貫通穴2b、2c、5b、5cが般けてあり
、下部保持体2および上部保持体5のそれぞれ一方の貫
通穴2b、5bには第1のリード818が、また、下部
保持体2および上部保持体5のそれぞれ他方の貫通穴2
 C+ 50には第2のリード線9がそれぞれ嵌挿しで
ある。前記各IJ −ドli8,9は8U842とかイ
ンコネル600(商品名)などの電気良導性の耐熱金属
よりなる。
The lower holding body 2 and the upper holding body 5 each have two through holes 2b, 2c, 5b, and 5c in the axial direction, and one through hole 2b of the lower holding body 2 and the upper holding body 5, respectively. , 5b, the first lead 818 is connected to the through hole 2 of the lower holder 2 and the upper holder 5, respectively.
The second lead wires 9 are inserted into the C+ 50 respectively. Each of the IJ-domains 8 and 9 is made of a heat-resistant metal with good electrical conductivity, such as 8U842 or Inconel 600 (trade name).

下部保持体2には、その下端面における目iJ記一方の
貫通穴2bと対応した部分に薄膜状の第1の電極lOが
、また、前記他方の貫通穴2Cと対応した部分に薄膜状
の第2の電極11がそれぞれ配設されている。これら各
電極10.11の配設は金(ムU)白金(Pt)などの
耐熱耐蝕性に優れた金属を下部保持体2の表面に真空蒸
着、スパッタリング等の方法で付着させることにより行
う。そして、前記第1.第2の電極10,114それぞ
れ前記第1.第2のリード線8,9と熱かしめプラズマ
溶接等の方法で接続されている。18は遣移金jlN醗
化物の薄膜よりなるガス成分検出素子である。該ガス成
分検出素子18の表面には白金(pt)、パッジラム(
Pd)、ロジウム(Rh)等の触媒14を付着させて相
持しである。この触媒14の付着方法燻例えばガス成分
検出素子18が薄膜であれば、真空蒸着等の方法で触媒
14をガス成分検出素子13に付着する。一方ガス成分
検出素子18が後述するように焼結体であればこれを例
えば塩化白金酸塩(H!PtCl4・6n、o)中に含
浸させ、水素気流中で還元後焼成し、触媒としてPtを
ガス成分検出素子13に付着せしめる。但し触媒14は
第1.第2の電極10.11間で電気的に導通するほど
多くガス成分検出素子13に付着させてはならない。し
かしてガス成分検出素子13は下部保持体2の下端面に
おいて第1、第2の電極10.11閲に配設されて第1
゜第2の電極10.11にそれぞれ電気的に導通してい
る。遷移金属酸化物としては、酸化チタン(Tie、)
 、酸化ニッケル(Nip)、酸化コバル) (Cod
) 、酸化マンガン(MnO)、亜鉛(ZmO)、酸化
銅(C!uO)、酸化チ身y (T iOz ) 、 
酸化tli(8mO,)などがあるが前記ガス成分検出
素子18の配設け、これら遷移金属酸化物のうち適当な
ものを選び、真空蒸着、電子ビーム蒸着等の方法で下部
保持体2の下端面に厚さ100ム〜1(11程度の薄膜
として付着させることにより行う。上部保持体6の各貫
通穴5 b+ 5 ’はそれぞれ上方部が第1.第2の
リード線8.9の径よりもかなり大きく形成されており
、この部分にそれぞれ管状の第1.第2の端子16.1
6が収納しである。
The lower holder 2 has a thin film-like first electrode IO in a portion corresponding to one of the through holes 2b on its lower end surface, and a thin film-like first electrode IO in a portion corresponding to the other through hole 2C. A second electrode 11 is provided respectively. The electrodes 10, 11 are arranged by depositing a metal having excellent heat and corrosion resistance, such as gold (MUR) or platinum (Pt), on the surface of the lower holder 2 by vacuum deposition, sputtering, or the like. And the above-mentioned 1. The second electrodes 10 and 114 are the first and second electrodes 10 and 114, respectively. It is connected to the second lead wires 8 and 9 by a method such as thermal caulking and plasma welding. Reference numeral 18 denotes a gas component detection element made of a thin film of transfer gold jlN fluoride. The surface of the gas component detection element 18 is coated with platinum (pt), paddillam (
A catalyst 14 such as Pd) or rhodium (Rh) is attached and supported. How to attach the catalyst 14 For example, if the gas component detection element 18 is a thin film, the catalyst 14 is attached to the gas component detection element 13 by a method such as vacuum deposition. On the other hand, if the gas component detection element 18 is a sintered body as described later, it is impregnated in, for example, chloroplatinate (H!PtCl4.6n,o), reduced and fired in a hydrogen stream, and Pt is is attached to the gas component detection element 13. However, the catalyst 14 is the first one. It must not be deposited on the gas component detection element 13 in such a large amount that electrical continuity occurs between the second electrodes 10 and 11. Thus, the gas component detection element 13 is disposed on the lower end surface of the lower holder 2 between the first and second electrodes 10 and 11.
゜They are electrically connected to the second electrodes 10 and 11, respectively. As a transition metal oxide, titanium oxide (Tie)
, nickel oxide (Nip), cobal oxide) (Cod
), manganese oxide (MnO), zinc (ZmO), copper oxide (C!uO), chimi oxide (T iOz ),
The gas component detection element 18 is arranged on the lower end surface of the lower holder 2 by selecting an appropriate transition metal oxide from among these oxides, and applying a method such as vacuum evaporation or electron beam evaporation to the lower end surface of the lower holder 2. This is done by attaching a thin film with a thickness of 100 μm to 1 (11 μm) to the top of the upper holding body 6. are also formed quite large, and tubular first and second terminals 16.1 are provided in these portions, respectively.
6 is for storage.

第1.第2の端子15.160下j!#にはそれぞれつ
げ15&11681が設けられ第1.第2の端子15.
16は前記つげ15al16&とその上方にそれぞれ圧
入されたりング17,18とKよって上部保持体すの各
貫通穴5b、5c内にそれぞれ保持され、かつ前記つげ
15m、16mとリング17.18と上部保持体5の貫
通穴5b、5cとから形成される空間にそれぞれガラス
シール19、ff1otどを充填して固定されている。
1st. Second terminal 15.160 lower j! # is provided with boxwood 15 & 11681 respectively. Second terminal 15.
16 is held in each of the through holes 5b and 5c of the upper holding body by rings 17, 18 and K which are press-fitted above the boxwoods 15al and 16&, respectively, and is connected to the boxwoods 15m and 16m and the rings 17 and 18 and the upper part. The spaces formed by the through holes 5b and 5c of the holder 5 are filled and fixed with glass seals 19, ff1ot, etc., respectively.

そして、第1OリードI18は第1の端子lb内に挿入
されて上端で第1の端子1Mの上端に溶接され、また、
第2のり一ドi19#i第2の端子16内に挿入されて
上端で第2の端子16の上端に溶接されている。なお、
21はガスケットである。
Then, the first O lead I18 is inserted into the first terminal lb, and its upper end is welded to the upper end of the first terminal 1M, and
The second glue i19#i is inserted into the second terminal 16, and its upper end is welded to the upper end of the second terminal 16. In addition,
21 is a gasket.

上記構成においてその作用を説明する。上記構成のガス
成分検出器社ハウジングlを用いて内燃機関の排気管に
装着され、従ってガス成分検出素子18は排気ガスに晒
される。排気ガスは、周知():と<、OHrNOit
、、00.HC,H,。
The operation of the above configuration will be explained. The gas component detector housing 1 having the above structure is attached to the exhaust pipe of an internal combustion engine, so that the gas component detection element 18 is exposed to exhaust gas. Exhaust gas is well known (): and <, OHrNOit
,,00. H.C.H.

CO,、N!等のガス成分から構成されており、この各
成分の濃度線燃焼前の混合気の空燃比によって変化する
。ガス成分検出素子18をなす遷移金属酸化物は上記の
各ガス成分のうち主としてo、、co、nc、a、等の
濃度即ち分圧の影響を受け、しかも、これら各成分それ
ぞれの分圧の変化よりもこれがもたらす総体的な雰囲気
の変化に応じた抵抗値を示す。
CO,,N! The concentration line of each component varies depending on the air-fuel ratio of the mixture before combustion. The transition metal oxide constituting the gas component detection element 18 is mainly affected by the concentration or partial pressure of o, co, nc, a, etc. among the above gas components, and moreover, The resistance value corresponds to the change in the overall atmosphere caused by the change rather than the change in resistance.

しかして本発明において、ガス成分検出素子18α・ガ
ス成分に晒される側の表面には触媒14が付着しである
ため、O,、CO,H(!、H,等のガス成分に対する
反応性を高め、特にガス成分検出素子18の周囲の01
分圧変化による該ガス成分検出素子18の電気抵抗値が
変化する特性を増大させ、01分圧変化に対して急激な
電気抵抗変化を得ることができる。この理由は次のよう
に考えられる。即ち、遷移金属酸化物のガス成分に晒さ
れている側の表面付近にCjO,HC,H,等の可燃性
のガス成分と01が存在すると、触媒14の作用K L
 ”) テco−1−1/20.−CO,、HC+IO
,→F e Ox 十”* 0 * Hz +−!−o
z ”m o等O反R5b=起きる。しかして、燃焼前
の混合気の空燃比が理論空燃比よりも濃い側では、ガス
成分の08が全てco 、nc等の反応に供され−(モ
ナ>co 、 nc社残っている状態なので、ガス成分
検出素子18の表面には上記反応によってOlはほとん
ど存在しないことが推察される。一方、燃焼前の混合気
の空燃比が理論空燃比よりも薄い側では、可燃性のガス
成分との反応にO2が供されてもなお0!喧残っている
状態なので、ガス成分検出素子18の表面にはOIが多
く存在することが推察される。
However, in the present invention, since the catalyst 14 is attached to the surface of the gas component detection element 18α on the side exposed to gas components, the reactivity to gas components such as O, CO, H(!, H, etc.) is reduced. 01 around the gas component detection element 18.
It is possible to increase the characteristic that the electrical resistance value of the gas component detection element 18 changes due to a change in partial pressure, and to obtain a rapid change in electrical resistance in response to a change in partial pressure. The reason for this is thought to be as follows. That is, if 01 and combustible gas components such as CjO, HC, H, etc. are present near the surface of the transition metal oxide on the side exposed to the gas components, the action of the catalyst 14 K L
”) Teco-1-1/20.-CO,,HC+IO
,→F e Ox 1”* 0 * Hz +-!-o
z ”m o etc. O anti-R5b = occurs. However, when the air-fuel ratio of the mixture before combustion is richer than the stoichiometric air-fuel ratio, all of the gas components 08 are subjected to reactions such as co and nc, and - (mona >co, nc company remains, so it is inferred that almost no Ol exists on the surface of the gas component detection element 18 due to the above reaction.On the other hand, the air-fuel ratio of the air-fuel mixture before combustion is lower than the stoichiometric air-fuel ratio. On the thin side, even if O2 is subjected to reaction with the combustible gas component, 0! still remains, so it is inferred that a large amount of OI exists on the surface of the gas component detection element 18.

つまりガス成分検出素子13の表面には08が存在する
か否かという二つの状頗しかあり得ないことが理解され
る。このような触媒14の作用によってIス成分検出素
子18の電気抵抗値afMe空燃比もしくはその近傍を
境に急激に変化するものと考えられる。
In other words, it is understood that there are only two possible conditions on the surface of the gas component detection element 13: 08 exists or not. It is thought that due to the action of the catalyst 14, the electrical resistance value of the I-sulfur component detection element 18 changes rapidly at or near the air-fuel ratio afMe.

前記構成よりなるガス成分検出器(おいて、ガス成分検
出素子13としてN型の半導体であるテlO1を用いた
場合の電気抵抗値変化を測定した結果が第1O図である
。この第10図かられかるように、理論空燃比近傍を境
にガス成分検出素子18の電気抵抗値が急激に変化して
いる。同図社縦軸に検出素子18の電気抵抗値(KΩ)
を対数目盛で表しており、横軸に空燃比(ム/F)を等
分目盛で表している。−この第1O図において、排気ガ
ス温度400℃でムの検出レベルを設定すれば、ガス成
分検出素子13の電気抵抗値が検出レベルより大きけれ
ば空燃沈火(薄混合気)、逆に電気抵抗値が検出レベル
より小さければ空燃比小(濃混合気)と判定でき、従っ
て理論空燃比点の近傍を墳に空燃比(ガス成分)を検出
でき、これをもとに空燃比制御を行うことができる。ま
た、検出レベルを正確に設定すれば、排気ガス温度の補
償は不要であることが第10図かられかる。従って運転
条件によって温度の戻動が大きい自動本の排気ガスO空
燃比制御に極めて好都合である。
Figure 1O shows the results of measuring changes in electrical resistance when using the gas component detector having the above configuration (in which TELO1, which is an N-type semiconductor, is used as the gas component detection element 13). As can be seen, the electrical resistance value of the gas component detection element 18 changes rapidly around the stoichiometric air-fuel ratio.The vertical axis of the figure shows the electrical resistance value (KΩ) of the detection element 18.
is expressed on a logarithmic scale, and the air-fuel ratio (mu/F) is expressed on an equal scale on the horizontal axis. - In this Figure 1O, if the detection level of the gas is set at an exhaust gas temperature of 400°C, if the electrical resistance value of the gas component detection element 13 is larger than the detection level, air-fuel combustion (lean mixture) occurs; If the resistance value is smaller than the detection level, it can be determined that the air-fuel ratio is low (rich mixture). Therefore, the air-fuel ratio (gas component) can be detected near the stoichiometric air-fuel ratio point, and the air-fuel ratio is controlled based on this. be able to. Furthermore, it can be seen from FIG. 10 that if the detection level is set accurately, compensation for the exhaust gas temperature is not necessary. Therefore, it is extremely convenient for automatic exhaust gas O air-fuel ratio control, which has large temperature reversals depending on operating conditions.

ここにおいて、第1図乃至第8図の構造を有したガス成
分検出器を2つ用意した。一方は触媒14が付着してあ
り、他方は触媒14が付着してない。
Here, two gas component detectors having the structures shown in FIGS. 1 to 8 were prepared. The catalyst 14 is attached to one side, and the catalyst 14 is not attached to the other side.

この2つのガス成分検出器の内燃機関の排気ガス温度δ
OO℃における電気抵抗値の空燃比に対する特性を第1
1図に示す。なおガス成分検出素子18としてTie、
を用いた。この第11図において、所定検出レベル人で
空燃比を制御すると仮定する。こO場合、検出回路の応
答遷れ、内燃機関へのフィードバックにより空燃比が変
化した排気ガスが検出器に到達するまでの遅れ等の総合
遅れによって検出器の検出する電気抵抗値はA1からム
麿の間の値を取ると考えられる。このため空燃比につい
てみてみると、触媒14が付着してない従来の検出器ピ
)ではblからす、の検出空燃比の誤差が生じる。なお
触媒14が付着している検出器←)でも畠!からalの
検出空燃比の誤差が生じるが、その誤差範回は小さいこ
とがわかる。この結果を更に検討するに、検出器の電気
抵抗値の空燃比に対する特性曲線の傾きが小さい程、検
出空燃比の誤差は小さくなる。従って触媒14を備えて
いなければ上記特性曲線の傾きは大きくなり、検出空燃
比O誤差が大きく、ある一点の所望空燃比を制御する場
合に適していないことがわかる。
The internal combustion engine exhaust gas temperature δ of these two gas component detectors
The first characteristic of the electrical resistance value with respect to the air-fuel ratio at OO℃ is
Shown in Figure 1. In addition, as the gas component detection element 18, Tie,
was used. In FIG. 11, it is assumed that the air-fuel ratio is controlled at a predetermined detection level. In this case, the electrical resistance value detected by the detector will vary from A1 due to the overall delay such as the response of the detection circuit and the delay until the exhaust gas whose air-fuel ratio has changed due to feedback to the internal combustion engine reaches the detector. It is thought to take a value between Maro. For this reason, when looking at the air-fuel ratio, an error occurs in the detected air-fuel ratio of the BL glass in the conventional detector (Pi) to which the catalyst 14 is not attached. In addition, the detector with the catalyst 14 attached←) is also Hatake! Although an error occurs in the detected air-fuel ratio of al, it can be seen that the error range is small. Further examining this result shows that the smaller the slope of the characteristic curve of the electrical resistance value of the detector versus the air-fuel ratio, the smaller the error in the detected air-fuel ratio. Therefore, it can be seen that if the catalyst 14 is not provided, the slope of the characteristic curve described above will be large, the detected air-fuel ratio O error will be large, and the system is not suitable for controlling a desired air-fuel ratio at a certain point.

特に触媒コンバーターの浄化性能がら空燃比の誤差をあ
る範囲に押える必要があり、この点からも検出空燃比の
誤差は小さい方が望ましい。
In particular, it is necessary to keep the error in the air-fuel ratio within a certain range due to the purification performance of the catalytic converter, and from this point of view as well, it is desirable that the error in the detected air-fuel ratio be small.

ところで前記のごとくガス成分検出素子18の表向には
触媒14が付着させてあり、この触媒140作用にてガ
ス成分であるO2とCO,O,とHe等が反応する際に
は反応熱が生じ、この反応熱によってIス成分検出素子
180表面温度が上昇す!、従って内燃機関始動時等の
ように排気ガス温度が低い場合でも、ガス成分検出素子
18の応答性が良くなる。
By the way, as mentioned above, the catalyst 14 is attached to the surface of the gas component detection element 18, and when gas components such as O2 and CO, O, and He react with each other due to the action of this catalyst 140, reaction heat is generated. This reaction heat causes the surface temperature of the I-sulfur component detection element 180 to rise! Therefore, even when the exhaust gas temperature is low, such as when starting the internal combustion engine, the responsiveness of the gas component detection element 18 is improved.

なお、第1.第2の電極10.11のガス成分検出素子
13における位置とガス成分濃度の変化に対する電気抵
抗値変化の応答時間との関係を示したのが第16図であ
る。この第16図かられかるように、本実施例のごとく
ガス成分検出素子18のガス成分に晒される側の表面も
しくはこの表面近傍のガス成分検出素子13の内f!E
K第1.1g2の電[jlO,11を位置せしめればガ
ス成分濃度の変化Kitするガス成分検出素子18の電
気抵抗値変化の応答時間を速めることができる。
In addition, 1. FIG. 16 shows the relationship between the position of the second electrode 10.11 on the gas component detection element 13 and the response time of a change in electrical resistance with respect to a change in gas component concentration. As can be seen from FIG. 16, f! of the gas component detection element 13 on the surface of the gas component detection element 18 exposed to the gas component or in the vicinity of this surface as in this embodiment. E
By locating the Kth 1.1g2 voltage [jlO, 11, it is possible to speed up the response time of the electrical resistance value change of the gas component detection element 18 in response to a change in the gas component concentration.

第4図および第5図は、ガス成分検出素子13として遷
移金属酸化物であるTiO,o焼結体を用い、この焼結
体の表面に、該表面に位置する第1、第2の電極10.
11が電気的に導通しないよう[Pt等の触媒14を付
着した第2夾施例を示すもので、他の構造は前記第1夾
施例と同じである。
4 and 5, a TiO,O sintered body which is a transition metal oxide is used as the gas component detection element 13, and first and second electrodes are placed on the surface of the sintered body. 10.
This shows a second embodiment in which a catalyst 14 such as Pt is attached so that 11 is not electrically conductive, and the other structure is the same as the first embodiment.

第6図は、ガス成分検出素子18として遷移金属酸化物
であるTiO□O焼結体を用い、このガス成分検出素子
13の電気抵抗値変化を取り出す第1.第2の電極10
.11を検出素子18のガス成分に晒されする側の表面
より数ミクロン程度内部に埋め込み、更にガス成分検出
素子13のガス成分に晒される備の表面[Pt等の触媒
14を付着した本発明の第3実施例を示すもので、他の
構造は前記第11j!施例と同じである。この第8実施
例によれば、第1.第2の電極10,1ltiガス成分
検出素子18の内部に埋め込んであるため、ガス成分検
出素子18のガス成分に晒される側の表面に#気ガス中
の不純@(例えばカーボン等)が付着しても第1.第2
の電極10.lluその不純物により悪影響を及ばされ
ることはない0また第16図から明らかなように、ガス
成分検出素子13の内部に数ミクロン程度、第1.第2
の電極10.11を埋め込んだだけではガス成分検出素
子13の電気抵抗値変化の応答時間は長くならない。
FIG. 6 shows a first example in which a TiO□O sintered body, which is a transition metal oxide, is used as the gas component detection element 18, and the change in electrical resistance of the gas component detection element 13 is extracted. Second electrode 10
.. 11 is embedded several microns inside the surface of the detection element 18 exposed to the gas component, and furthermore, the surface of the gas component detection element 13 exposed to the gas component [the present invention with a catalyst 14 such as Pt attached] is embedded. This shows the third embodiment, and the other structure is the same as the above-mentioned 11j! Same as the example. According to this eighth embodiment, the first. Since the second electrode 10, 1lti is embedded inside the gas component detection element 18, impurities in the gas (for example, carbon, etc.) may adhere to the surface of the gas component detection element 18 on the side exposed to the gas components. But first. Second
Electrode 10. lluThe impurities will not have an adverse effect.0 Also, as is clear from FIG. Second
Merely embedding the electrodes 10 and 11 does not increase the response time of the electrical resistance value change of the gas component detection element 13.

第7vliおよび第8図はそれぞれ上記第1実施例、第
2実施例に対応する本発明の第4.第5!l!施例を示
すものであって、該実施例において社遷移金属酸化物で
あ2 ’h t Ozの薄膜あるいは焼結体よりなるガ
ス成分検出素子18のガス成分に晒される個の表面に#
気ガス中の不純物が付着することを防ぐため、電気絶縁
性でかつガスを通過させる程度の気孔を有するコーテイ
ング材(例えばガンマアルミナ)80を触媒14も覆う
ようにしてガス成分検出素子13の表面に付着しである
7vli and FIG. 8 are the fourth embodiment of the present invention corresponding to the first embodiment and the second embodiment, respectively. Fifth! l! This example shows an example in which # is applied to the surface of the gas component detection element 18 which is made of a 2'h t Oz thin film or sintered body of transition metal oxide and is exposed to the gas component.
In order to prevent impurities in the gas from adhering, the surface of the gas component detection element 13 is coated with a coating material 80 (for example, gamma alumina) that is electrically insulating and has pores large enough to allow gas to pass through, so as to cover the catalyst 14 as well. It is attached to.

第9図は遷移金属酸化物であるTie、の焼結体をガス
成分検出素子18として用い、このガス成分検出素子1
f9のガス成分に晒される側の表面に第1の電[10を
付着し、ガス成分検出素子130電気抵抗値変化を第1
の電極10に電気的に接続導通しているリード線8と、
第2の電fi111に対し金属リング4を介して電気的
に導通しているハウリングlとの間で取り出すようKし
た本発明の第6実施例を示すものであって、他の構造は
前記第1実施例と同じである。
FIG. 9 shows a gas component detection element 18 using a sintered body of Tie, which is a transition metal oxide, as a gas component detection element 18.
A first electric current [10] is attached to the surface of f9 exposed to the gas component, and the change in electrical resistance of the gas component detection element 130 is measured by the first electrode.
a lead wire 8 that is electrically connected and conductive to the electrode 10;
This shows a sixth embodiment of the present invention in which the second electric current fi 111 is taken out between the howling l which is electrically connected via the metal ring 4, and the other structure is as follows. This is the same as the first embodiment.

次に、前記第g実施例の構造のガス成分検出器において
、ガス成分検出素子18としてZnO。
Next, in the gas component detector having the structure of the gth embodiment, ZnO is used as the gas component detection element 18.

8+aO茸 、酸化二オビウふ(NbsOs  ) 、
およびNiOを用いた場合のガス成分検出素子13の電
気抵抗値の空燃比および温度に対する特性をそれぞれ順
次、第1211乃至第15図に示す。この第12図乃至
第16図から明らかなように、理論空燃比近傍で電気抵
抗値が急激に変化しており、かつ理論空燃比近傍では排
気ガス温度によって電気抵抗値が変化していないことが
わかる。
8+aO mushroom, Niobium oxide (NbsOs),
1211 to 15 show the characteristics of the electrical resistance value of the gas component detection element 13 with respect to the air-fuel ratio and temperature when NiO and NiO are used, respectively. As is clear from Figures 12 to 16, the electrical resistance value changes rapidly near the stoichiometric air-fuel ratio, and the electrical resistance value does not change depending on the exhaust gas temperature near the stoichiometric air-fuel ratio. Recognize.

なお上述の第1実施例乃至第6実施例においては、触媒
14はガス成分検出素子18のガス成分に晒される側の
表面に付着したが、別にこれに限定されること#iなく
、ガス成分検出素子18の内部に触媒14を分散しても
よい。この場合、分散されえ触媒1411Cよってリー
ド[8、9あるいは第1.第2の電極10.11が互い
に短絡しないようKする必要がある。
In the first to sixth embodiments described above, the catalyst 14 is attached to the surface of the gas component detection element 18 on the side exposed to the gas component; however, the present invention is not limited to this; The catalyst 14 may be dispersed inside the detection element 18. In this case, the leads [8, 9 or the first . It is necessary to prevent the second electrodes 10.11 from shorting each other.

以上詳述したように本発明においては、遷移金属酸化物
よりなるガス成分検出素子に触媒を担持したから、この
触媒の作用によってガス成分検出素子の電気抵抗値の空
燃比に対する特性社ある空燃比を境に急激に変化し、従
って所望空燃比の検出誤差が極めて小さく、精度よくそ
の所望空燃比を検出することができる。また、これを検
出ガスの温度O影響を受けることなく行うことができる
As detailed above, in the present invention, since a catalyst is supported on the gas component detection element made of a transition metal oxide, the effect of the catalyst causes the electric resistance value of the gas component detection element to have a certain air-fuel ratio. Therefore, the detection error of the desired air-fuel ratio is extremely small, and the desired air-fuel ratio can be detected with high accuracy. Furthermore, this can be done without being affected by the temperature O of the detection gas.

また、本発明は上記ガス成分検出素子の電気抵抗値変化
を取出す電極を設け、この電極にリード線を電気的に接
続するとともK、このリード線に端子を電気的に接続し
、かつこれらリード線および端子を、電気絶縁性の保持
体の貫通穴に挿入固定し、この保持体の外@に取付用ハ
ウジングを固定したことにより、検出ガスを外界と隔絶
する壁に対する脱着が容易で、しか本検出器の作動のた
めの電気接続が簡単である。
Further, the present invention provides an electrode for detecting changes in electrical resistance of the gas component detection element, a lead wire is electrically connected to the electrode, a terminal is electrically connected to the lead wire, and a terminal is electrically connected to the lead wire, and a terminal is electrically connected to the lead wire. By inserting and fixing the wires and terminals into the through holes of the electrically insulating holder, and fixing the mounting housing to the outside of this holder, it is easy to attach and detach the detected gas from the wall that separates it from the outside world. The electrical connections for operation of this detector are simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1v!Jは本発明になるガス成分検出器の第1実施例
を示す断面正面図、第!!図岐第1図図示の本発明検出
器のガス成分検出素子近傍を詳細に示す断面正面図、第
3図は第2図の底面図、第4図は本発明検出器の第2実
施例のガス成分検出素子近傍を詳細に示す断面正面図、
第5図は第4図の底面図、第6図は本発明検出器の第8
実施例のガス成分検出素子の近傍を詳細に示す断面正面
図、第7gは本発明検出器の第4実施例のガス成分検出
素子の近傍を詳細に示す断面正面図、第8図は本発明検
出器の第5実施例のガス成分検出素子の近傍を詳細に示
す断面正面図、11!9図は本発明検出器の第6実施例
のガス成分検出素子の近傍を詳細に示す断面正面図、第
1O図は本発明の説明に供するもので、ガス成分検出素
子としてTie、を用いた場合の電気抵抗値の空燃比お
よび温度に対する特性図、第11図は本発明の説明に供
するもので、テi0.よりなるガス成分検出素子に触媒
を付着させたものと付着させないものとを比較しえ、電
気抵抗値の空燃比に対する特性図、第12図乃至第15
図は上記第2実施例の検出器においてガス成分検出素子
としてそれぞれZnO。 8 m O,、N b、 0.  、 N i Oを用
いた場合の電気抵抗値の空燃比に対する特性図、第16
図は本発明の説明に供するもので、ガス成分検出素子の
表面からの電極の深さに対する電気抵抗値の応答時間の
関係を表し声特性図、第17[は遷移金属酸化物である
テi02と固体電解質であるZrO□素子とO空燃比に
対する出力変化を示す特性図である。 l・・・ハウジング、5・・・保持体、8,9・・・リ
ード線、10.11−・電極、18・・・ガス成分検出
素子、14−・触媒、15.16・・・端子。 代理人弁理士   岡 部   騒 @1図 第2図 93図      第4図 第6図 第5図 1417/I直ガ■ 第7回 第8図 第9図 第10図 1燃に1−(Al/F) 第110 を 幣煉、比(A/F) 第12図 蕾詭ル(lyF) 第13図 電 匁畑尤cオ) 第14図 瞥 租熾比(怖) 第15図 ト I!!広尾(升) 第16図
1st v! J is a cross-sectional front view showing the first embodiment of the gas component detector according to the present invention; ! Figure 1 is a cross-sectional front view showing in detail the vicinity of the gas component detection element of the illustrated detector of the present invention, Figure 3 is a bottom view of Figure 2, and Figure 4 is a view of the second embodiment of the detector of the present invention. A cross-sectional front view showing the vicinity of the gas component detection element in detail;
FIG. 5 is a bottom view of FIG. 4, and FIG. 6 is a bottom view of the detector of the present invention.
7g is a sectional front view showing in detail the vicinity of the gas component detection element of the fourth embodiment of the present invention detector; FIG. 8 is a sectional front view showing the vicinity of the gas component detection element of the fourth embodiment of the present invention; FIG. Figure 11!9 is a cross-sectional front view showing in detail the vicinity of the gas component detection element of the fifth embodiment of the detector, and Figure 11!9 is a cross-sectional front view showing the vicinity of the gas component detection element of the sixth embodiment of the detector of the present invention in detail. , FIG. 1O is provided for explanation of the present invention, and FIG. , Tei0. Figures 12 to 15 are characteristic diagrams of electrical resistance versus air-fuel ratio, comparing gas component detection elements with and without a catalyst attached.
The figure shows ZnO as the gas component detection element in the detector of the second embodiment. 8 m O,, N b, 0. , Characteristic diagram of electrical resistance value versus air-fuel ratio when using N i O, 16th
The figure serves to explain the present invention, and shows the relationship between the response time of the electrical resistance value and the depth of the electrode from the surface of the gas component detection element. FIG. 3 is a characteristic diagram showing output changes with respect to a ZrO□ element, which is a solid electrolyte, and an O air-fuel ratio. l...Housing, 5...Holding body, 8, 9...Lead wire, 10.11--Electrode, 18...Gas component detection element, 14--Catalyst, 15.16--Terminal . Representative Patent Attorney Osamu Okabe @1 Figure 2 Figure 93 Figure 4 Figure 6 Figure 5 Figure 5 1417/I Naoga ■ 7th Figure 8 Figure 9 Figure 10 Figure 1 1-(Al/ F) The 110th is a comparison (A/F) The 12th figure is sophistry (lyF) The 13th figure is the electric mome field yoko) The 14th figure is the comparison (fear) The 15th figure is the I! ! Hiroo (masu) Figure 16

Claims (1)

【特許請求の範囲】[Claims] ガス成分に応じた電気抵抗値を示す遷移金属酸化物から
なるガス成分検出素子と、該ガス成分検出素子に担持し
た触媒と、前記ガス成分検出素子の電気抵抗値変化を取
出す電極と、該電極と電気的に接続したリード線と、該
リード線と電気的に接続した端子と、前記リード線およ
び前記端子が挿入固定される貫通穴を有する電気絶縁性
の保持体と、この保持体の外側に固定した取付用ハウジ
ングとを具備したことを特徴とするガス成分検出器。
A gas component detection element made of a transition metal oxide that exhibits an electrical resistance value depending on the gas component, a catalyst supported on the gas component detection element, an electrode for detecting changes in electrical resistance of the gas component detection element, and the electrode. a lead wire electrically connected to the lead wire, a terminal electrically connected to the lead wire, an electrically insulating holder having a through hole into which the lead wire and the terminal are inserted and fixed, and an outside of the holder. A gas component detector comprising: a mounting housing fixed to a mounting housing;
JP2862182A 1982-02-24 1982-02-24 Gaseous component detector Pending JPS58746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2862182A JPS58746A (en) 1982-02-24 1982-02-24 Gaseous component detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2862182A JPS58746A (en) 1982-02-24 1982-02-24 Gaseous component detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50026374A Division JPS5847660B2 (en) 1975-03-03 1975-03-03 gas save kenshiyutsuki

Publications (1)

Publication Number Publication Date
JPS58746A true JPS58746A (en) 1983-01-05

Family

ID=12253616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2862182A Pending JPS58746A (en) 1982-02-24 1982-02-24 Gaseous component detector

Country Status (1)

Country Link
JP (1) JPS58746A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168352A (en) * 1983-03-15 1984-09-22 Hitachi Ltd Gas detection element and gas-leak warning device
DE112016006331B4 (en) 2016-01-29 2021-07-22 Mitsubishi Electric Corporation Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168352A (en) * 1983-03-15 1984-09-22 Hitachi Ltd Gas detection element and gas-leak warning device
DE112016006331B4 (en) 2016-01-29 2021-07-22 Mitsubishi Electric Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
US4264425A (en) Device for detection of air/fuel ratio from oxygen partial pressure in exhaust gas
US5554269A (en) Nox sensor using electrochemical reactions and differential pulse voltammetry (DPV)
US4066413A (en) Gas component detection apparatus
US8377274B2 (en) Gas sensor and method for manufacturing the same
US4126532A (en) Oxygen sensor
US3915830A (en) Solid electrolyte electrochemical cell with self contained reference
JP5065413B2 (en) Sensor element with an anode inside
US6776895B2 (en) Method of producing a gas sensor element
JPS5824855A (en) Oxygen concentration detector
US3909385A (en) Oxygen sensor for automotive use
US4642174A (en) Apparatus for determining the oxygen content in gases
JP4418672B2 (en) Solid electrochemical cell for measuring the concentration of a component in a gas mixture
GB2052758A (en) Device for Detection of Air/Fuel Ratio From Oxygen Partial Pressure in Exhaust Gas
JP2001505311A (en) Gas sensor
JPS628743B2 (en)
US4383907A (en) Gas-analysis probe
JP4617599B2 (en) Gas sensor element and manufacturing method thereof
US6889536B2 (en) Air/fuel-ratio detecting apparatus
US4313810A (en) Oxygen concentration sensing apparatus
US4834863A (en) Oxygen sensor having a heater
US20030047452A1 (en) Gas sensor and method of manufacturing the same
JP2004004072A (en) Measurement sensor
JPS58746A (en) Gaseous component detector
US5970780A (en) Oxygen sensor
US4220517A (en) Oxygen concentration sensing apparatus