JPS5873951A - Thin alkaline battery - Google Patents

Thin alkaline battery

Info

Publication number
JPS5873951A
JPS5873951A JP56173420A JP17342081A JPS5873951A JP S5873951 A JPS5873951 A JP S5873951A JP 56173420 A JP56173420 A JP 56173420A JP 17342081 A JP17342081 A JP 17342081A JP S5873951 A JPS5873951 A JP S5873951A
Authority
JP
Japan
Prior art keywords
cathode
gold
battery
thin
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56173420A
Other languages
Japanese (ja)
Other versions
JPH0130256B2 (en
Inventor
Akira Kayama
加山 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP56173420A priority Critical patent/JPS5873951A/en
Publication of JPS5873951A publication Critical patent/JPS5873951A/en
Publication of JPH0130256B2 publication Critical patent/JPH0130256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To obtain a thin alkaline battery with excellent quality, which can be used as a power source for an ultra-thin electronic apparatus such as an electronic watch or an electronic table computer, by suppressing the amalgamation of a gold plating by additing Co to the gold or gold alloy of a cathode can. CONSTITUTION:In the figure, a cathode can of this invention, the entire surface of which is plated with a gold alloy added with Co, is illustrated. A thin alkaline battery is manufactured by using such a plated cathode can, according to an assembly method which is similar to that of the conventional battery. In this example, silver (II) oxide is used as a positive active material, and 25% NaOH is used as an electrolyte. The added amount of Co is varied according to the following 5 levels; 0, 0.5, 1.0, 1.5 and 2.0 (wt%). As the result of analysis performed on liquid-leakage resistance test result and self-discharge test result, it was found that an excellent leakage-resistant performace and a high preservation performance are achieved when the added amount of Co is below 1.0%.

Description

【発明の詳細な説明】 本発明は薄部アルカリ電池の改良に関する。[Detailed description of the invention] The present invention relates to improvements in thin-section alkaline batteries.

さらに詳しくは陰極缶の全面又は一部に配し死金合金に
Oot添加することKより耐漏液性の優れた薄部アルカ
リ電池を提供すること1@的とする。近年、密封型アル
カリ電池は電子腕時計、電卓、カメラ、補聴器などの各
種小部電子機器の発達に伴ない、ますます注目されその
需要が+1%まっている。%にボタシ!1!拳化銀電池
の性能改善が大きく寄与し、消*11KNの低減化と相
伴なって、小型薄I!電池の採用によるこれら機器の小
型薄型化に貢献している。m在電池としてFil D 
smの厚みのものが主流であり、電池外径1t6■のも
のから48■のもの壕で4種1[@i[める、これらの
電池は、第11iK示すような構造であり、11Ii際
化釧(i)、拳化II(わめるい#i際化水銀からなる
陽極活物質シを収停した陽極缶、5#iセパレータ、4
は氷化亜鉛を主成分とする陰極活物質5管充填した陰極
缶、6は絶縁と封ロt−兼ねたガスケントであり、ナイ
ロン、ポリエチレン、ポリプロピレン等から1にゐ、こ
のような構造で厚み2.0■より更K11m1!化管計
ろうとしえ場合に#i、陽極活物質の厚みは極めて薄く
なり、陽極活物質の成形が困難でToの、かつ陰極缶折
0返し部高さが極めて短かくなり、耐alilI性が損
なわれる欠点がめった。
More specifically, the object is to provide a thin alkaline battery with better leakage resistance than K by adding Oot to the dead metal alloy by disposing it on the entire surface or a part of the cathode can. In recent years, with the development of various small electronic devices such as electronic watches, calculators, cameras, and hearing aids, sealed alkaline batteries have been attracting more and more attention, and the demand for them has increased by 1%. Botashi to %! 1! Improvements in the performance of silver oxide batteries have made a major contribution, and together with the reduction of 11KN, small and thin I! The use of batteries contributes to making these devices smaller and thinner. Fil D as a battery
sm thickness is the mainstream, and batteries with outer diameters from 1t6cm to 48mm are available in four types. Kasen (i), Kenka II (Wamerui #i anode can containing anode active material made of internationalized mercury, 5 #i separator, 4
6 is a cathode can filled with 5 tubes of a cathode active material whose main component is frozen zinc, and 6 is a gasket that doubles as insulation and sealing. K11m1 more than 2.0■! In the case of #i, the thickness of the anode active material becomes extremely thin, making it difficult to mold the anode active material, and the height of the folded part of the cathode can becomes extremely short, resulting in poor alil I resistance. There are few flaws that spoil it.

また、この構造では1簡の厚みの電池は不可能であった
。そこで第2図のような電池が提案された0例えば特開
昭55−48048などは公知である。1はN1もしく
は鉄KN1メッキを施し良陽極缶、2け酸化銀(■)、
際化銀(璽)、あるいは拳化水at主体とする陽極活物
質であり、ベレット状に成形して陽極缶1の中央部に載
置する。
Furthermore, with this structure, it was impossible to produce a battery with a thickness of one strip. Therefore, a battery as shown in FIG. 2 has been proposed and is known, for example, in Japanese Patent Application Laid-Open No. 55-48048. 1 is a good anode can with N1 or iron KN1 plating, 2 oxide silver oxide (■),
It is an anode active material mainly composed of internationalized silver (seal) or fused water at, and is formed into a pellet shape and placed in the center of the anode can 1.

5#iセパレータであり立体状にくせ付けし、ベレット
状の陽極活物質上面より組込み、4Fi72ンジ部を有
する陰極缶でToの、水化亜鉛を主成分とする陰極活物
質5を充填させ、陽極缶内底部周辺部に前記セパレータ
の周辺部金倉して押圧載置されるよりな構造であるガス
ケント6と一体化して陽極缶内に押込み、クリンプ型に
より陽極缶先端部をかしめて封口する。このような構造
においては第1図のような従来電池構造そのまtK2.
0■以下にし九電池に比べ、陽極活物質の成形性。
A 5 #i separator is shaped into a three-dimensional shape, is incorporated from the top surface of a pellet-shaped anode active material, and is filled with a cathode active material 5 whose main component is zinc hydride in a cathode can having a 4Fi72 inch part. The separator is integrated with a gasket 6, which has a more rigid structure, which is pressed against the periphery of the inner bottom of the anode can, and the separator is pushed into the anode can, and the tip of the anode can is crimped with a crimp mold to seal the anode can. In such a structure, the conventional battery structure as shown in FIG. 1 is the same as tK2.
The moldability of the positive electrode active material is less than 0■ compared to 9 batteries.

あるいは電池の耐漏重性は若干改良されたが、2.0■
厚みの電池と比べた場合K11−1、耐漏液は不十分で
あり満足するものではなかつ良。それは、このような構
造では、ガスケット6の底部を圧縮することが糎とんど
出来ない為に、アルカリ電解液ががすぐ113図4mの
部分まではい上ってしまい、これ以後ガスケットの圧縮
を高める為にクリングによるかしめ會強くしても、電池
厚みt薄くする為に陰極缶などの板厚も薄(なっていて
強度が弱いので7ランジ部が内側にダレ込みゃすぐガス
ケントの引き込まれも生じ、かつ外部への経路も短いの
で効果がな(耐漏液性が悪かつ良、そこで、耐漏液t″
改善るために金メッキを採用してみた。
Alternatively, the leakage resistance of the battery has been slightly improved, but it is 2.0■
When compared with the thick battery of K11-1, the leakage resistance is insufficient and not satisfactory. This is because with such a structure, it is almost impossible to compress the bottom of the gasket 6, so the alkaline electrolyte quickly creeps up to the part 4m in Figure 113, making it difficult to compress the gasket from now on. Even if you strengthen the caulking with a cling to increase the strength, the thickness of the cathode can is also thin to make the battery thinner (thinner), so the strength is weaker, so if the 7 langes sag inward, the gasket may be pulled in easily. and the path to the outside is short, so it is ineffective (leakage resistance is poor and good, so leakage resistance t''
I tried using gold plating to improve it.

文献などに金メッキが耐漏液性に優れていると照会され
ている。しかし、金メッキはコストが高い為、まえ、z
O−以上の電池で#i金メッキ葡施かなくても満足のい
〈耐漏液性が得られる為、#1とんど使用されていな−
のが現状である。実際に第211に示す電池構造で1.
2■厚みの電池の陰極缶の全面に金メッキlalμ以上
施したところ、耐漏液性は金メッキなく電池に比べ大幅
に改善された。実験結果を解析したとζろ、寄与率は7
0チ″。
There are references in the literature that gold plating has excellent leakage resistance. However, since gold plating is expensive,
It is satisfactory even without #i gold plating with batteries of O- or above (because it provides leakage resistance, #1 is rarely used)
is the current situation. Actually, in the battery structure shown in No. 211, 1.
When the entire surface of the cathode can of a 2-inch thick battery was plated with gold or more than lalμ, the leakage resistance was significantly improved compared to a battery without gold plating. Analyzing the experimental results, the contribution rate is 7.
0chi''.

以上でめった。たしかに金メッキの効果は絶大であるが
、別の問題が発生してき良、それは、#Lメッキされた
表面がアマルガム化されゐこtだ。
I was disappointed with the above. It is true that the effect of gold plating is tremendous, but another problem has arisen, and that is that the #L-plated surface is amalgamated.

金は衆知のように非常にアマルガム化しやすい金属であ
る。それが電池に採用された場合には。
As everyone knows, gold is a metal that is highly susceptible to amalgamation. If it is used in batteries.

陰極合剤の主成分である氷化亜鉛中の水銀と反応し、ア
マルガム化される。ひどいものは製造稜1ケ月で目視で
ハツキリわかる嫌とアマルガム化されている。また、こ
のアマルガム化は進行性がめるので、さらに広がってい
く0.このアマルガム化現象は、電解液の漏出と同様に
問題でToQ、電池交換の時に陰極缶の表面の一部もし
くは全面がアマルガム化されて吟良場合には、取扱う八
に対し)1gの不安感を与えてしまう。
It reacts with mercury in frozen zinc, which is the main component of the cathode mixture, and is amalgamated. The worst ones are amalgamated and can be clearly seen with the naked eye after a month of production. Also, since this amalgamation is progressive, the 0. This amalgamation phenomenon is a problem similar to electrolyte leakage, and if a part or the entire surface of the cathode can becomes amalgamated when replacing the battery, it will cause a feeling of anxiety (for 8) when handling the battery. I end up giving.

本発明は、これらの欠点を除去するもので、金又Fi金
合会KcO1−添加することKより金メッキのアマルガ
ム化を抑制し、品質の優れ九簿型アルカリ電池を提供す
ることを目的とする。以下、実施例に基づき詳述する。
The present invention eliminates these drawbacks, and aims to provide a high-quality nine-book type alkaline battery that suppresses amalgamation of gold plating by adding K to gold or Fi-metal alloy KcO1-. . The details will be explained below based on examples.

第4rj!JIfi、本発明であるCof:添加した金
合金を全丙にメンキした陰極缶である。メッキ厚みはα
1μ以上施した。このようにメッキし良陰極缶を用い、
第2図に示す従来電池と同様な組立法により製造し良0
本奥施例ては、陽極活物質は際化銀00を使い、電解液
は2s*MaOfi  を用いた。co添加量は第1表
に示す5水準とした。
4th rj! JIfi, Cof of the present invention: It is a cathode can completely polished with added gold alloy. Plating thickness is α
A thickness of 1μ or more was applied. Using a good cathode can plated in this way,
Manufactured using the same assembly method as the conventional battery shown in Figure 2.
In this example, the anode active material used was silver oxide 00, and the electrolyte used was 2s*MaOfi. The amount of co added was set to five levels shown in Table 1.

第 11110o添加量 Oot′添加した金合金はすでに市販されており、Co
1〜2−添加し危オートνネクス0.Co(L1〜α2
96添加のオートロネクスCIなどの商品がめるが、本
実施例てIf Oo添加量の効果を定量的に評価する為
に、0−からashごとに5水準で、それぞれ各200
個づつ製造した0本実施例で使用した電池サイズは、外
@9.6■、総厚1.2−でおる、このように製造した
電池の耐aiim性tテストした。テスト条件は、一度
40℃、相対湿度90〜95−の恒温恒湿槽に80日間
保管後、アマルガム化され危数量を調べた。その結果1
112表に示す、テスト個数は各100個である。
No. 11110o Addition amount Oot' gold alloy is already commercially available, and Co
1-2-added dangerous auto νnex 0. Co(L1~α2
There are products such as Autoronex CI with 96 addition, but in order to quantitatively evaluate the effect of If Oo addition amount in this example, ash was added at 5 levels from 0- to 200
The battery size used in this example was 9.6 mm outside and 1.2 mm in total thickness.The batteries thus manufactured were tested for AIIM resistance. The test conditions were that after being stored in a constant temperature and humidity chamber at 40° C. and a relative humidity of 90 to 95 degrees for 80 days, it was amalgamated and the critical mass was examined. Result 1
The number of tests shown in Table 112 is 100 each.

IIf  表  耐晴液賦験結果 伺、判冑方法は、15倍の実体順黴鏡で電at観察して
、@極缶の一部にでもアマルガム化されていれば不良と
した6以上の様にCO添加量が増えるほどアマルガム化
数量は少なく効果が大となる仁とがわかつ良。
IIf Table The results of the test for clearing solution are as follows: Electron observation with a 15x magnification microscope, and if there is amalgamation in even a part of the can, it is judged as 6 or above as being defective. It is clear that as the amount of CO added increases, the amount of amalgamation decreases and the effect increases.

次に、これら電池の自己放電率を鯛ぺた。自己放電率は
初期容量t100とし、電池140℃で保存し曳のちの
残存容量とから求めた。放電抵抗FisOOKΩとし、
データは各水準24個の平均値を示す、結果t#!st
eに示す。
Next, we looked at the self-discharge rates of these batteries. The self-discharge rate was determined from the initial capacity t100 and the remaining capacity after the battery was stored at 140° C. and towed. The discharge resistance is FisOOKΩ,
Data represent the average of 24 items at each level, result t#! st
Shown in e.

以上の様に、00添加量が増えると自己放電率が高くな
り、容量がダクンすることがわかつ次。
As mentioned above, it is clear that as the amount of 00 added increases, the self-discharge rate increases and the capacity decreases.

耐漏箪賦験結果と自己放電試験mat解析した結果、C
O添加量#it、o嘩以下が耐漏液性、保存性に良好で
あることが判つ九、この結果全技術的に判断し喪場合、
゛耐漏液性(ここでは、アマルガム化について)が★好
になるのは、coが金に比べて水銀への溶解度が小さい
ので、純金に比べ金にCOを添加した方がアマルガム化
が抑制される為と思われる。′l@□己放NKついては
、CO量が増える#1ど自己放電率が悪くなるのは、陰
極合剤でめる亜鉛と局部m1lk反応を起こしている為
と思われる0本実施例では、陰極缶の全面K OOを添
加した金合金tメッキしたが、第5図a、bのように部
分メッキでも同様な効果が得られるのは言うまでもなく
、かつ、メッキでなくても、蒸着、クラッドなど罠よる
方法でも問題は全くない。
Leak resistance test results and self-discharge test mat analysis results, C
It has been found that an amount of O added of #it, or less, is good for leakage resistance and storage stability.
゛Leakage resistance (here, regarding amalgamation) is improved because CO has a lower solubility in mercury than gold, so adding CO to gold suppresses amalgamation compared to pure gold. This seems to be for the purpose of 'l@□ Regarding self-emitting NK, the reason why the self-discharge rate worsens as the amount of CO increases in #1 is thought to be due to the local m1lk reaction with zinc in the cathode mixture. In this example, Although the entire surface of the cathode can was plated with gold alloy T containing KOO, it goes without saying that the same effect can be obtained by partial plating as shown in Figure 5 a and b. There is no problem at all with methods such as traps.

以上述べたように、本発明は耐漏液性(アマルガム化も
含む)が非常に良(なり、保□存性wl!罠も優れ、電
子腕時計、電卓などの超薄型電子機器へのW1源用とし
て信S牲の優れえ電池として提供できるものであり、そ
の工業的価値は大なるものである。
As mentioned above, the present invention has very good leakage resistance (including amalgamation) and excellent storage stability, making it a W1 source for ultra-thin electronic devices such as electronic watches and calculators. It can be provided as a highly reliable battery for commercial use, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、蒙5図は従来電池の縦断面図。 第4図は本発明による金倉金管全面メッキした陰極缶を
示す縦断面図、 第’ a (’) e (b)はそれぞれ本発明による
金合金を部分的にメッキした陰極缶を示す縦断面図であ
る。 1、・、陽極缶、     4・・・陰極缶、2・・・
陽極合剤、    5・・・陰極合剤、6・・・セパレ
ータ、   6・・・ガスケット。 以  上 出願人 株式会社 第二精工舎 代量人 弁理士 最 上   務
Figures 1, 2, and 5 are longitudinal sectional views of conventional batteries. Fig. 4 is a longitudinal cross-sectional view showing a cathode can fully plated with Kanakura brass tube according to the present invention, and Figures 'a (') and e (b) are longitudinal cross-sectional views showing cathode cans partially plated with gold alloy according to the present invention. It is. 1. Anode can, 4... Cathode can, 2...
Anode mixture, 5... Cathode mixture, 6... Separator, 6... Gasket. Applicant: Daini Seikosha Co., Ltd. Patent Attorney Mogami

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも一極匈、lI極缶、絶縁及び封ロt−
着ねるガスケットにより構成され前記陰極缶の全面又は
一部にs ’jc&を添加した金合金を配した薄型アル
カリ電池。
(1) At least one pole can, one pole can, insulation and sealing t-
A thin alkaline battery composed of a wearable gasket and having a gold alloy added with s'jc& on the entire surface or a part of the cathode can.
(2)  Coの添加jlFi1重量多以下であること
を特徴とする特許請求の範1i@1項記載の薄型アルカ
リ電池。
(2) The thin alkaline battery according to claim 1i @ 1, characterized in that the amount of Co added is less than 1 weight.
JP56173420A 1981-10-29 1981-10-29 Thin alkaline battery Granted JPS5873951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56173420A JPS5873951A (en) 1981-10-29 1981-10-29 Thin alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56173420A JPS5873951A (en) 1981-10-29 1981-10-29 Thin alkaline battery

Publications (2)

Publication Number Publication Date
JPS5873951A true JPS5873951A (en) 1983-05-04
JPH0130256B2 JPH0130256B2 (en) 1989-06-19

Family

ID=15960113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56173420A Granted JPS5873951A (en) 1981-10-29 1981-10-29 Thin alkaline battery

Country Status (1)

Country Link
JP (1) JPS5873951A (en)

Also Published As

Publication number Publication date
JPH0130256B2 (en) 1989-06-19

Similar Documents

Publication Publication Date Title
US6794082B2 (en) Alkaline battery
CN1797811B (en) Negative electrode can, alkaline cell and production method for same
US5445908A (en) Alkaline dry cell
CN107408641B (en) Steel sheet for forming battery case and alkaline battery
US20090220861A1 (en) Method for producing alkaline battery, and alkaline battery
US20070148551A1 (en) Cylindrical alkaline battery
JP5091409B2 (en) Battery negative electrode can and manganese dry battery using the same
JP2003249232A (en) Cylindrical alkaline cell
JP3522303B2 (en) Button type alkaline battery
US20090169988A1 (en) AA and AAA Alkaline dry batteries
JPWO2005064711A1 (en) Manufacturing method of negative electrode can for battery and manganese dry battery using negative electrode can for battery
JPS5873951A (en) Thin alkaline battery
JP4851708B2 (en) Alkaline battery and manufacturing method thereof
JP2002216772A (en) Alkaline storage battery
JPH09147816A (en) Alkaline button battery
JP3505824B2 (en) Flat alkaline battery
JP2004502279A (en) Electrochemical cell with anode containing sulfur
JP3235143B2 (en) Alkaline battery
JP3178160B2 (en) Method for producing negative electrode for button-type alkaline battery and button-type alkaline battery
WO2022091662A1 (en) Alkali battery and method for producing same
KR20070021116A (en) Negative electrode can for battery and manganese dry battery utilizing the same
JPH0760685B2 (en) Zinc alkaline battery
JP2000021459A (en) Button type air zinc battery
KR870002067B1 (en) Process for producing ago cathode material
JPH05174828A (en) Zinc alkaline battery