JPS5873850A - Method and apparatus for generating magnetic field - Google Patents

Method and apparatus for generating magnetic field

Info

Publication number
JPS5873850A
JPS5873850A JP56173589A JP17358981A JPS5873850A JP S5873850 A JPS5873850 A JP S5873850A JP 56173589 A JP56173589 A JP 56173589A JP 17358981 A JP17358981 A JP 17358981A JP S5873850 A JPS5873850 A JP S5873850A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
coils
generating
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56173589A
Other languages
Japanese (ja)
Inventor
Tamio Yoshida
吉田 多見男
Akinori Fujita
明徳 藤田
Hiromi Kawaguchi
博己 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP56173589A priority Critical patent/JPS5873850A/en
Publication of JPS5873850A publication Critical patent/JPS5873850A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils

Abstract

PURPOSE:To minimize the occupation space of a coil with minimization of the entire coils and enlargement of the internal space of the coils by arranging the coil for generating gradient field on a common cylindrical surface in an NMR imaging or the like. CONSTITUTION:A cylindrical bobbin 50 is wrapped with an flexible electric insulation sheet 51 on which a Z-axis magnetic field generating coil having a gradient in direction of X, Y and Z. A small diameter radius difference with a necessary range is provided between a group of the coils, for example, the coils (21-24) overlapping each other in the position and a group of the coils 11 and 12 for electric insulation therebetween. Coils for generating gradient field in various directions and an offsetting coils are formed in an integral coil device 52 and a coil 53 is arranged coaxially in a cylindrical space inside a static field generating air core coil 53 maintaining a clearance 54. In this manner, the various coils for generating gradient field are constructed by combining coil elements containing a circular arc having the common axis.

Description

【発明の詳細な説明】 この発明は、核磁気共鳴断層像撮像(以下「NMRイメ
ージング」という)等に用いらする勾配磁界発生用装置
およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for generating a gradient magnetic field used in nuclear magnetic resonance tomography imaging (hereinafter referred to as "NMR imaging"), and a method for manufacturing the same.

たとえばNMRイメージンクにおいては、被検体におけ
るその共鳴位置を決χするため1通常の方法とし1.て
場所的に均一で時間的に一定な磁界(以下「静磁界」と
いう。)に加えて、場所的に大きさが異り勾配を有する
磁界(以′1;「勾配磁界」または[傾斜磁界jという
)が印加さ1.る、共鳴位置を一定に限定するためには
直交する3軸方向に勾配を持つ磁界が必要であり、静磁
界方向Iz軸方向とすると、X、Y、73軸方向にその
大きさが直線的に変化するZ軸方向の磁界が印加さする
勾配磁界発生用コイルとしては、従来たとえば第6図の
ように、差動コイルを互いに直交するX。
For example, in NMR imaging, one common method is used to determine the resonance position in an object: 1. In addition to a magnetic field that is uniform in location and constant in time (hereinafter referred to as ``static magnetic field''), there is also a magnetic field that varies in size locally and has a gradient (hereinafter referred to as ``gradient magnetic field'' or [gradient magnetic field]). j) is applied 1. In order to limit the resonance position to a certain value, a magnetic field with gradients in three orthogonal axes is required, and if the static magnetic field direction is the Iz-axis direction, its magnitude is linear in the X, Y, and 73-axis directions. Conventionally, as a gradient magnetic field generating coil to which a magnetic field in the Z-axis direction which varies as shown in FIG.

Y、  Z軸上に配置する方式が用いら1ている。コイ
ル(61) 、 (62)、コイル(63) 、 (6
4) 、コイル(65) 、 (66)はそnそjLX
軸方向、X軸方向、Z軸方向に勾配ヲ有するZ@力方向
磁場を発生させるコイルである。しかしこのような構成
では、広い試料空間にわたって直線性の良い磁界を得る
ためには大型のコイルが必要となり、そlを収容するた
めにN MR映像装置全体として巨大となる難点があっ
た。
A method of arranging them on the Y and Z axes is used. Coil (61), (62), Coil (63), (6
4) , coil (65), (66) are
This is a coil that generates a Z@force direction magnetic field having gradients in the axial direction, the X-axis direction, and the Z-axis direction. However, with this configuration, a large coil is required to obtain a magnetic field with good linearity over a wide sample space, and the NMR imaging apparatus as a whole becomes huge to accommodate it.

この発明は上述の問題点を解消し、NMH映像装置等に
好適な占有空間の小さい勾配磁界発生用装置及びその製
造方法を提゛倶しようとするもQ)であ、。     
  ”・l・゛・ 本発明の第一の特徴は勾配磁界発生用の客コイルが共通
の円筒面上に配置し得る構成を有する点にある。
The present invention solves the above-mentioned problems and provides a gradient magnetic field generating device that occupies a small space and is suitable for NMH imaging devices and the like, and a method for manufacturing the same.
``・l・゛・ The first feature of the present invention is that the customer coils for generating gradient magnetic fields can be arranged on a common cylindrical surface.

いま均−磁界発生用電磁石として空心コイルを用いnば
、その空心部分には円柱状の空間が残さnることになる
。従って勾配磁界発生用のコイルの形杖、配置が、はぼ
同一の円筒面上に収納されるものであわば、NMR映像
装置の磁界発生用コイル全体を小形に形成できるととも
に、勾配磁界発生用コイルの内部空間も広くとることが
できる本発明においては、好ましくは直交軸方向に勾配
を持つ磁界を発生するための各コイルが共通の円筒面上
に配置さn、任意の方向への任意の強度の勾配磁界発生
用コイルの占有空間を極めて小さくすることができる。
If an air-core coil is used as the electromagnet for generating a uniform magnetic field, a cylindrical space will be left in the air-core portion. Therefore, if the shape and arrangement of the gradient magnetic field generating coils are housed on the same cylindrical surface, the entire magnetic field generating coil of the NMR imager can be made compact, and the gradient magnetic field generating coils can be made compact. In the present invention, which allows the internal space of the coil to be large, it is preferable that each coil for generating a magnetic field having a gradient in the direction of orthogonal axes is arranged on a common cylindrical surface. The space occupied by the coil for generating a strong gradient magnetic field can be made extremely small.

本発明の第二の特徴は、勾配磁界発生用コイルに適した
コイル製造方法として可撓性シート上に:l: 各コイルの展−図に相当するパターンを形成した、、:
1 後、crtを直接または円筒ボビン上に巻きつけて:・
[・す・。
The second feature of the present invention is that, as a coil manufacturing method suitable for a gradient magnetic field generating coil, a pattern corresponding to the expansion diagram of each coil is formed on a flexible sheet.
1 After that, wrap the CRT directly or on a cylindrical bobbin:・
[·vinegar·.

円筒形コイルを構成する点にある。The point is to form a cylindrical coil.

以下図面に基いて本発明の実施例について説明する。Embodiments of the present invention will be described below based on the drawings.

第1図はZ軸方向に傾斜を有する2軸方向磁界(′″2
方向勾配磁界“と略称する。)を発生させるためのコイ
ル鉄索であり、  ”’M、axwell  Pa1r
”と呼ばわる構成を有する。即ちZ軸を軸として2個の
同一半径の円形コイル11.(1mかX軸とY軸を含む
平面(XY平面)に対象に配置さ121図の如く同一の
大きさの電流が逆向きに流さnる。(原理的にはコイル
曲とコイル(12のアンペア・ターンが等しけnばよい
が0本発明では同一巻数、同一電流値として説明する。
Figure 1 shows a biaxial magnetic field ('''2
It is a coiled iron rope for generating a directional gradient magnetic field (abbreviated as "'M, axwell Pa1r").
In other words, two circular coils 11. of the same radius with the Z axis as the axis are placed symmetrically on a plane (XY plane) containing the X axis and the Y axis (1 m or The current flows in the opposite direction.(In principle, it is sufficient that the coil bend and the coil (12 ampere turns) are equal, but in the present invention, the same number of turns and the same current value will be explained.

)計算結果で1虚コイルの−5 半径1と間隔2dsとの関係はたとえばd、−72JI
力;適当である。
) In the calculation result, the relationship between the -5 radius 1 and the spacing 2ds of 1 imaginary coil is, for example, d, -72JI
Power: Appropriate.

こnによって静磁界を別にす口ば、原点(0)の位置で
零であり、原点に対象にZ軸の正方向、負号向に直線的
に磁界の強度が変化する一様な勾配のZ軸方向磁界(9
1図下部に示す)力S発生さnる。
By this, if we separate the static magnetic field, we have a uniform gradient that is zero at the origin (0) and whose intensity changes linearly in the positive and negative directions of the Z-axis symmetrically at the origin. Z-axis direction magnetic field (9
A force S (shown at the bottom of Figure 1) is generated.

第2図はX軸方向に勾配を有するZ軸方向磁界−X軸方
向勾配磁界“と略称する。)を発生させ仝ためのコイル
会素の構成を示し、 z@を輪とする円弧部分と2軸に
平行な@線部分より成る[サドル形−1の同形、同大、
同一巻数の411ilのコイルa、 ■、 cs、 +
241がXY平面に対象かつYz平簡に対象に配置さ1
.同じ大きさの電流(一般的には同一アンペア・ターン
の電流)が図の向きに流さnる。
Figure 2 shows the configuration of a coil element for generating a Z-axis magnetic field with a gradient in the X-axis direction (abbreviated as "X-axis gradient magnetic field"). Consists of @ line parts parallel to the two axes [same shape, same size as saddle shape-1,
411il coils a, ■, cs, + with the same number of turns
241 is placed symmetrically on the XY plane and symmetrically on the Yz plane 1
.. Currents of the same magnitude (generally, currents of the same ampere-turn) flow in the direction shown.

この構成にそる合成磁界の軸方向成分Hzは内側円弧間
隔2f1.外側円弧間隔2f2を適当に選ぶことにより
、原点に対象に4Z軸に沿って直線的に変化することが
わか−・た。(第2図下部に示す。)静磁界の大きさも
考慮したらえで種々の11・f2の値に対する磁界分合
を計算したところ次式の場合付近が最適であることが結
論さまた。
The axial component Hz of the resultant magnetic field according to this configuration is equal to the inner circular arc interval 2f1. It has been found that by appropriately selecting the outer arc interval 2f2, it changes linearly along the 4Z axis symmetrically to the origin. (It is shown in the lower part of Fig. 2.) When we calculated the magnetic field fraction for various values of 11·f2 by considering the magnitude of the static magnetic field, we concluded that the optimum value is near the following formula.

L+==0.4a f2= 1.4 a             (11
α=1.20− なお、生成さする磁界はZ成分のみでな(、X成分も若
干生成されるが、その大きさはX、Y座標に依存せずZ
座標に依存するのみであることもわかった。
L+==0.4a f2=1.4a (11
α=1.20- Note that the generated magnetic field is not only the Z component (although some X component is also generated, its magnitude does not depend on the X and Y coordinates and the Z component
It was also found that it only depends on the coordinates.

X軸方向に勾配を有するZ4h方向の磁界(Y方向勾配
磁界)を発生させるためのコイlし幣素は上述の第2図
のX方向勾配磁界発生装置を、Z軸方向位置を変えずに
Z軸のまわりに90°回転【11.コイル(2)とコイ
ルツウコイル■とコイル(至)とがそ1そnXz平面に
対象となる状態に配置することり一より得ら1.後述の
第4内に記号G、母、 @、 cllAで水さ1.てい
る。なお*  ’1+  ’2+ αの最適値は第2図
の場合と同じである。
The coil element for generating a magnetic field in the Z4h direction (Y-direction gradient magnetic field) having a gradient in the Rotate 90° around the Z axis [11. Coil (2), coil to coil ■, and coil (to) are arranged in a symmetrical state on the nXz plane.1. The symbol G, mother, @, cllA in the 4th section below 1. ing. Note that the optimal value of *'1+'2+α is the same as in the case of FIG.

第3図は勾配磁界の零点1a!界零の点)の位置を可変
にするためのオフセット用コイルであり。
Figure 3 shows the zero point 1a of the gradient magnetic field! This is an offset coil for varying the position of the field zero point).

Z軸を軸として原点に対象に配置さまた1対σ)円形コ
イル(311,Wとで構成さしる。計算の結jld2Q
)最適値はd、 = aであることがわかった。コイJ
しく31)とコイル@には図のように同方向に同一アン
ペア・ターンの[ffが流さする。、この電流値を変化
すると、こ1に応じてオフセyl・磁界6if化する、
たとえば2方向勾配磁界発生コイ5.lしく第1図)と
同時に印加すjl、ば、Z方向勾配磁界Q)ゼロ点の位
置が5J変となる。
It consists of a pair of circular coils (311, W) arranged symmetrically at the origin with the Z axis as the axis. Calculation result jld2Q
) The optimal value was found to be d, = a. Koi J
As shown in the figure, the same ampere-turn [ff] is applied to the coil 31) and the coil @ in the same direction. , When this current value is changed, the off-sail/magnetic field becomes 6if according to this value.
For example, two-way gradient magnetic field generating coil 5. At the same time as shown in Fig. 1), the position of the zero point of the Z-direction gradient magnetic field Q) is changed by 5J.

なお1以上の各方間の勾配磁界発生コイル(11+ 。Note that one or more gradient magnetic field generating coils (11+) between each direction.

口、C!11〜はおよびオフセット用コイル(311,
t32には。
Mouth, C! 11~ and offset coil (311,
At t32.

パルス電流が印加され、磁界の勾配の大きさは。A pulsed current is applied and the magnitude of the magnetic field gradient is.

パルス高さ等fl!*次変化して切換えらする。Pulse height etc. fl! *Next change and switch.

第4図は以上に述べた各コイルを構成する円弧の軸が共
通となる状態に配置した本発明の磁界発生装置の概略構
成図を示し、各コイルをXz平面に投影した状態を表し
ている。各記号の内容は。
FIG. 4 shows a schematic configuration diagram of the magnetic field generator of the present invention in which the axes of the arcs constituting each of the coils described above are common, and each coil is projected onto the Xz plane. . What does each symbol mean?

lIl〜3因の場合と同じである。It is the same as the case of lIl~3 factors.

以上に述べた各方向の勾配磁界発生用コイルおよびオフ
セット用コイルは、すべて共通の軸(Z軸)を有するの
で、はぼ共通の円筒向上に配置することが可能となる。
Since the gradient magnetic field generation coils and offset coils in each direction described above all have a common axis (Z-axis), it is possible to arrange them almost on a common cylinder.

(コイル同志が重ならないようにするため多少の半径差
を必娶とする場合も生じるが、実際上問題ではない。)
従ってこnらの各コイルlt1個の、内筒形コイル装置
に形成して静磁界発生用空心コ、、、1イル關の内部に
うまく収納す111化 ることができる。  1 従−)でコイル全体としての占有空間を非常に小さくす
ることができるとともにコイル内部に広い円柱状空間を
確保することができるので、NMRイメージング装置用
としてきわめて好適である。
(There may be cases where it is necessary to have a slight radius difference to prevent the coils from overlapping, but this is not a practical problem.)
Therefore, each of these coils can be formed into an inner cylindrical coil device and housed inside an air-core coil for generating a static magnetic field. 1), the space occupied by the coil as a whole can be made very small, and a wide cylindrical space can be secured inside the coil, making it extremely suitable for use in NMR imaging devices.

第5図は本発明による磁界発明用コイIしの具体的な構
成例及び好適な製作法を示して−)る。ω番よコイルを
保持するための円筒ボビンであり、プラスチックその他
の適当な非磁性電気絶縁材料で構成さする。(51)は
ボビンω上に巻かまた可撓性の電気絶縁性シートであり
、薄金属板σ)表(lj!こ絶縁を施したもの、プラス
チックその他の電気絶1Iit性材質のシートいづ1で
もよい。シート61)1曇こ番虚第1〜4図について述
べた。x、y、z各方向に勾配分有するZ軸方向磁界発
生相コイJしbS形成さする。
FIG. 5 shows a specific example of the construction and a preferred manufacturing method of the coil I for magnetic field invention according to the present invention. This is a cylindrical bobbin for holding the ω-th coil, and is made of plastic or other suitable non-magnetic electrically insulating material. (51) is a flexible electrically insulating sheet wound on a bobbin ω, which is a thin metal plate σ) (lj!) insulated, or a sheet made of plastic or other electrically insulating material. Sheet 61) 1 Illustrated Figures 1 to 4 have been described. A Z-axis magnetic field generating phase coil J and bS having gradients in each of the x, y, and z directions is formed.

(図では簡単のため第2図のコイルの一部のみを示す。(The diagram only shows a part of the coil in Figure 2 for simplicity.

) 各コイルの配置関係は、基本的をこIよ第1〜4図に示
さ口る座標系との関係により定まる力5.各コ4 jl
zのデ(メンシ四ンdl、dz、f1.fz、”Ji上
述の最適値に選定するのが望ましく10 相互に位置が重なるコイル同志、たとえiiミコイル2
1〜24)のグループとコイル(111,(121のグ
ループとの間には必装な範囲の微少な半径差を与え1両
者間は電気的に絶縁が施される。具体的番こは一枚のシ
ート上の同じ位置で両グJレーが開を電気絶縁層で分離
するか、別々のシー場・上1こコイルグループを形成し
た後積層してもよt+1゜各方向勾配磁界発生用コイル
f−?よびオフセット用コイルは一体のコイル装置:F
+3Iこ形成さ11.第5図の右側の断面図に示される
よ5番と、空隙−6蜀を保って静磁界発生用空心コイ1
しく至)の内部の円柱状空間にコイル(至)と共軸配置
さする。使用特番ζ(f静砒界発生用コイル(へ)には
、たとえ1.fjoooガウス程度の磁界を発生するか
、コイル装[1631こよる磁界ははるかに小さくてす
むので、ジュー jし発熱憂こ対する冷却方法、コイル
の位置等の取扱(、Nの点で。
) The arrangement relationship of each coil is basically determined by the force 5. Each child 4 jl
It is desirable to select the optimal value of z as described above.
A minute radius difference is provided between the groups of coils (1 to 24) and the groups of coils (111 and (121), and electrical insulation is provided between them. Both grays can be separated at the same position on the same sheet by an electrical insulating layer, or they can be laminated after forming a separate sheet field/upper coil group.T+1°For generating gradient magnetic fields in each direction. Coil f-? and offset coil are integrated coil device: F
+3I formed 11. As shown in the cross-sectional view on the right side of Fig. 5, the air-core coil 1 for static magnetic field generation is
The coil is placed coaxially with the coil in the cylindrical space inside the coil. Special number for use ζ How to handle the cooling method, coil position, etc. (in terms of N).

63 & @は別個の1ニブ(・とじた方力5よL)。63 & @ is a separate 1 nib (closed direction 5 L).

シートf!L材も0上にコイlしを形成するため曇とC
よ。
Seat f! Since L material also forms a coil on top of 0, it becomes cloudy and C.
Yo.

たとえば第5図の上部に示さするよう番こ、各コイルの
展開図に相当する導体1<ターンcm、+漁・・・・・
・を平面の状態でのシート部材61)1各こ形成し、こ
1を円筒ボビンω上に巻Aつ(すて製作すること力Sで
きる。(因では簡単のため番こ導体〕(ターン0)一部
のみを示す。) 上記方法によって複雑な形状のコイルを簡易。
For example, as shown in the upper part of Fig. 5, conductor 1 < turn cm, + fishing, which corresponds to the developed view of each coil.
Form each sheet member 61) in a flat state, and wind this 1 on a cylindrical bobbin ω with a force S. 0) Only a part is shown.) The above method makes it easy to create coils with complex shapes.

経済的に量産することができる。この方法はとくにサド
ル形コイルc!i−■の製作に適している。サドル形コ
イルではコイルの展開パターン自体が閉回路を形成して
いるからである。
It can be mass-produced economically. This method is especially suitable for saddle-shaped coils! Suitable for producing i-■. This is because the deployment pattern of the saddle shape coil itself forms a closed circuit.

円形−z 4 ル1llI、 (121,(Ill、 
@ニツイテハ、 シー 1−61)を円筒形に巻いたと
き展開パターンの位置が運rJす、連続したコイルを形
成するように、導体パターンの端部の位置関係に留意し
、かつ円筒コイル組立時に導体パターンの端部同志を適
宜接続する必要がある。
Circular-z 4 le1llI, (121, (Ill,
When winding the cylindrical coil (1-61) into a cylindrical shape, the position of the unfolded pattern will change.In order to form a continuous coil, pay attention to the positional relationship of the ends of the conductor pattern, and when assembling the cylindrical coil. It is necessary to connect the ends of the conductive patterns as appropriate.

なお、各コイルをプリンI・回路技術等により。In addition, each coil is manufactured using Purin I circuit technology.

円筒ボビンω上にIM接影形成てもよいことはいうまで
もない。
It goes without saying that IM projection may be formed on the cylindrical bobbin ω.

以上の説明からもわかるように0本発明では勾配磁界発
生用の各コイルを共通の軸を有する円弧を含むコイル要
素の組み合わせにより構成することにより、以下の如く
顕著な効果を得ることができる。
As can be seen from the above description, in the present invention, by configuring each coil for generating a gradient magnetic field by a combination of coil elements including arcs having a common axis, the following remarkable effects can be obtained.

l>  k、コイル1痣ぼ共通力円筒面ト4こ形成する
ことができ、コイル全1v5台腎辛貫÷きわめて小さく
することができる1、 2) 従って空心コイルの空心部に収容することができ
るので、、NMR映象装置に適用すわば装置全体の大巾
な小形化を達成することができる。
1, 2) Therefore, it is possible to form 4 cylindrical surfaces with a common force of 1 coil, and the total size of the coil can be reduced to 1 v, 5 units, ÷ extremely small. Therefore, it is possible to significantly reduce the size of the entire NMR imaging device.

この場合コイル内部に広い円柱空間を確保することがで
きるので1人体等長形物体を収容するのに好適である。
In this case, since a wide cylindrical space can be secured inside the coil, it is suitable for accommodating an object having the same length as a human body.

3)コイルが円筒面内に形成されるので、各コイルの展
開図に相当する導体パターンを可撓性平面板上に形成し
、こ1をそ1.自体直接巻くか:円筒ホモン上に巻きつ
けて構成することができる。従って勾配磁界発生用の複
雑な形状のコイルを簡易。
3) Since the coils are formed within a cylindrical surface, a conductor pattern corresponding to the developed view of each coil is formed on a flexible flat plate. Direct winding or winding: It can be constructed by winding it around a cylindrical body. Therefore, complex-shaped coils for generating gradient magnetic fields can be simplified.

経済的に製作することができ を産にも適している。It can be produced economically and is also suitable for production.

す・vinegar·

【図面の簡単な説明】[Brief explanation of drawings]

11【 第1図〜第3図は本発明による勾配磁界発生用コイルの
各要素の概略構成図、第4図は本発明の勾配磁界発生用
コイルの概略構成図、第5図は本発明の磁界発生装置の
具体的構成例図、第6図は従来の勾配磁界発生装置の1
例図である。 111+、tlB・・・2軸方向勾配磁界発生用コイル
■〜(至)・・・X軸方向勾配磁界発生用コイル(ハ)
〜■・・・Y軸方向勾配磁界発生用コイルci11.■
・・・オフセット用コイルcm、as・・・導体パター
ン ω・・・円筒ボビン 69・・・可撓性絶縁ジート ロ・・・勾配磁界発生相等コイル装置 −・・・静磁界発生用コイル・ 特許出願人 株式会社島津製作所 代理人 弁理士 武石端彦
11 [Figures 1 to 3 are schematic configuration diagrams of each element of the gradient magnetic field generation coil according to the present invention, Figure 4 is a schematic configuration diagram of the gradient magnetic field generation coil according to the present invention, and Figure 5 is a schematic configuration diagram of each element of the gradient magnetic field generation coil according to the present invention. A specific example of the configuration of a magnetic field generator, FIG. 6 shows one of the conventional gradient magnetic field generators.
This is an example diagram. 111+, tlB... Coil for generating gradient magnetic field in two-axis direction ~ (to)... Coil for generating gradient magnetic field in X-axis direction (c)
~■... Y-axis direction gradient magnetic field generation coil ci11. ■
...Offset coil cm, as...Conductor pattern ω...Cylindrical bobbin 69...Flexible insulation JETRO...Gradient magnetic field generation phase coil device -...Static magnetic field generation coil・Patent application Person Shimadzu Corporation Representative Patent Attorney Hatahiko Takeishi

Claims (5)

【特許請求の範囲】[Claims] (1)共通の軸をもつ円弧を含み前記共通の軸と同一方
向の磁束を発生させる複数のコイル要素を、各コイルの
磁界強度が前記共通の軸と直交する方向に変化するよう
に0組み合わせ←ことを特徴とする。磁界発生用装置。
(1) A plurality of coil elements including circular arcs having a common axis and generating magnetic flux in the same direction as the common axis are combined so that the magnetic field strength of each coil changes in a direction perpendicular to the common axis. ←It is characterized by Device for generating magnetic field.
(2)前記コイル要素の各々を前記共通軸を軸とする共
通の円筒向上に配tか拳たことを特徴とする特許請求の
範囲第1項記載の磁界発生用装置。
(2) The magnetic field generating device according to claim 1, wherein each of the coil elements is arranged in a common cylinder having the common axis as the axis.
(3)前記コイル要素の一部が、前記共通軸を含む平面
に対象に配置さVた複数のサドル形コイル片より成るこ
とを特徴とする特許請求の範囲第1項または第2項記載
の磁界発生用装置。
(3) A portion of the coil element is comprised of a plurality of saddle-shaped coil pieces arranged symmetrically in a plane including the common axis. Device for generating magnetic field.
(4)前記コイル要素を前記共通の軸と共軸の円筒状空
心コイルの内部に配置したことを特徴とする特許請求の
範囲第1項または第2項記載の磁界発生用装置。
(4) The magnetic field generating device according to claim 1 or 2, wherein the coil element is arranged inside a cylindrical air-core coil coaxial with the common axis.
(5)  コイル要素の展開図に相当する形状の導体パ
ターンを可撓性絶縁シート上に形成した後。 こnを円筒形に形成することを特徴とする。磁界発生用
装置の製造方法。 +61  前記コイル要素がサドル形コイルより成るこ
とを特徴とする特許請求の範囲第5項記載の磁界発生用
コイル0)製造方法。
(5) After forming a conductor pattern in a shape corresponding to the developed view of the coil element on the flexible insulating sheet. It is characterized by forming this n into a cylindrical shape. A method of manufacturing a device for generating a magnetic field. +61 The method for producing a magnetic field generating coil 0) according to claim 5, wherein the coil element is a saddle-shaped coil.
JP56173589A 1981-10-28 1981-10-28 Method and apparatus for generating magnetic field Pending JPS5873850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56173589A JPS5873850A (en) 1981-10-28 1981-10-28 Method and apparatus for generating magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56173589A JPS5873850A (en) 1981-10-28 1981-10-28 Method and apparatus for generating magnetic field

Publications (1)

Publication Number Publication Date
JPS5873850A true JPS5873850A (en) 1983-05-04

Family

ID=15963380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56173589A Pending JPS5873850A (en) 1981-10-28 1981-10-28 Method and apparatus for generating magnetic field

Country Status (1)

Country Link
JP (1) JPS5873850A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645787A1 (en) * 1993-09-24 1995-03-29 Innovations Rayons X Et Techniques Ressuage Magnetoscopie Ixtrem Process and device for creating in an object one or several magnetic fields in different directions or treating time variable fields
JP2009056232A (en) * 2007-09-03 2009-03-19 Toshiba Corp Magnetic particle imaging apparatus and coil arrangement method
US9435869B2 (en) 2008-12-04 2016-09-06 Koninklijke Philips N.V. Magnetic resonance imaging system with satellite gradient coils

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645787A1 (en) * 1993-09-24 1995-03-29 Innovations Rayons X Et Techniques Ressuage Magnetoscopie Ixtrem Process and device for creating in an object one or several magnetic fields in different directions or treating time variable fields
FR2710449A1 (en) * 1993-09-24 1995-03-31 Crescenzo Eric Magnetizing or demagnetizing device of an object without direct contact with magnetic poles or current leads.
JP2009056232A (en) * 2007-09-03 2009-03-19 Toshiba Corp Magnetic particle imaging apparatus and coil arrangement method
US9435869B2 (en) 2008-12-04 2016-09-06 Koninklijke Philips N.V. Magnetic resonance imaging system with satellite gradient coils

Similar Documents

Publication Publication Date Title
JP3295938B2 (en) Direct-acting contactless power supply
JPS60240111A (en) Transformer
JP2019504498A (en) Magnetic field generator
JPH0378592B2 (en)
JPH08316031A (en) Correction magnetic field generator
JPS5873850A (en) Method and apparatus for generating magnetic field
JP6394840B2 (en) Inductor
US5623208A (en) Z-axis magnetic field gradient coil structure for magnetic resonance system
JP3377822B2 (en) Magnetic resonance imaging equipment
JP2557905B2 (en) Magnetic field generator
RU2444076C1 (en) Transformer
JP2021019104A (en) Reactor device
JP3350143B2 (en) Magnetic resonance imaging equipment
JPH01104252A (en) Magnetic resonance imaging apparatus
JP3849824B2 (en) Gradient magnetic field coil and magnetic resonance imaging apparatus provided with the same
JPH097862A (en) Power consumption device taking advantage of property of vector
Komma et al. The effect of different air-gap positions on the winding losses of modern planar ferrite cores in switch mode power supplies
US10547218B2 (en) Variable magnetic monopole field electro-magnet and inductor
JP2500305Y2 (en) Gradient magnetic field generating coil
Grotz The Use of Mirror Image Symmetry in Coil Winding, Applications and Advantages in Magnetic Field Generation
JPH0252287A (en) Superconducting magnetic shield body
CN114242404A (en) External iron core
JPS61216410A (en) Core type uniform field magnetic
JPH03220500A (en) Coil for electromagnet for deflection of charged particle
JPH07313490A (en) Gradient magnetic field generator for magnetic resonance imaging apparatus