JPS5873734A - Manufacture of rare earth metallic alloy - Google Patents

Manufacture of rare earth metallic alloy

Info

Publication number
JPS5873734A
JPS5873734A JP10748881A JP10748881A JPS5873734A JP S5873734 A JPS5873734 A JP S5873734A JP 10748881 A JP10748881 A JP 10748881A JP 10748881 A JP10748881 A JP 10748881A JP S5873734 A JPS5873734 A JP S5873734A
Authority
JP
Japan
Prior art keywords
rare earth
alloy
fluoride
yttrium
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10748881A
Other languages
Japanese (ja)
Other versions
JPS6364509B2 (en
Inventor
Kazuhiko Takatsuji
高辻 和彦
Masakazu Mihashi
三橋 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP10748881A priority Critical patent/JPS5873734A/en
Publication of JPS5873734A publication Critical patent/JPS5873734A/en
Publication of JPS6364509B2 publication Critical patent/JPS6364509B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a rare earth metallic alloy at a low cost by a simple process, by mixing a rare earth fluoride, metallic calcium and base metarllic powder, press-molding them, and heating them in an inert gas atmosphere. CONSTITUTION:A pellet is manufactured by mixing a rare earth fluoride such as yttrium fluoride, etc., and base metallic powder such as metallic calcium, copper, etc., and press-form them. This pellet is put into a graphite crucible, etc., is heated to a melting point or above of a base metal in an inert gas atmosphere, and is made to react. By this method, an excellent rare earth metallic alloy is obtained by one process.

Description

【発明の詳細な説明】 本発明は希土類金属合金の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing rare earth metal alloys.

従来希土類金属合金の製造方法としては、熔融状態の基
金属に希土類金属を添加して合金化する方法が一般的に
用いられている。
Conventional methods for producing rare earth metal alloys include adding rare earth metals to a molten base metal to form an alloy.

一方希土類金属は希土類酸化物もしくはハロゲン化物を
原料として、希土類金属の融点以上の温度で、熔融塩電
解法あるいはカルシウム及びす) +7ウム等の金属還
元法で製造されている。
On the other hand, rare earth metals are produced using rare earth oxides or halides as raw materials at temperatures above the melting point of the rare earth metals by molten salt electrolysis or metal reduction methods such as calcium and 7 um.

この方法では希十−金属を製造する工程と希土類金属合
金を製造する工程の2工程を必要とし。
This method requires two steps: a step of producing a rare metal and a step of producing a rare earth metal alloy.

希土類金属を製造する工程では高温を必要とする等、工
程が複雑化するとともに経済的にも高価なものとなって
いた。
The process of manufacturing rare earth metals requires high temperatures, making the process complex and economically expensive.

本発明によれば、希土類フッ化物を金属カルシウムで還
元し希土類金属とすると同時に基金属との合金化反応を
行わせることが出;来るため。
According to the present invention, a rare earth fluoride can be reduced with metallic calcium to form a rare earth metal, and at the same time an alloying reaction with a base metal can be carried out.

工程が簡単にカリ安価な希土類金属合金が得られる。更
に高一点の希土類金属については、融点以下の温度で還
元合金化反応を行わせるだめ。
A rare earth metal alloy can be obtained through a simple process and at low cost. Furthermore, for rare earth metals with a high point, the reduction alloying reaction must be carried out at a temperature below the melting point.

従来法に比して省エネルギー効果も大きい。本発明は希
土類フッ化物と金属カルシウムと基金属粉を混合し、ダ
イスを用いて加圧成型してペレットを作成し、このペレ
ットを酸化防止するために、不活性ガス雰囲気中で基金
属の融点以上に加熱することによって、1工程で希土類
金属合金を得る方法である。
It also has a large energy saving effect compared to conventional methods. In the present invention, rare earth fluoride, metallic calcium, and base metal powder are mixed, pressure molded using a die to create pellets, and in order to prevent oxidation, the melting point of the base metal is This is a method of obtaining a rare earth metal alloy in one step by heating to the above temperature.

なお本発明において用いられる希土類フッ化物は、混合
希土あるいは分離希土いずれも使用することが出来る。
The rare earth fluoride used in the present invention may be either a mixed rare earth or a separated rare earth.

次に実施例を示すが1本発明はとれによシ限定されるも
のではない。
Next, examples will be shown, but the present invention is not limited to these.

実施例1 フッ化イツトリウム85gと金属カルシウム粒60gと
銅粉920gを混合し、成型機で直径7−9高さ5mの
ペレットとした。
Example 1 85 g of yttrium fluoride, 60 g of metallic calcium particles, and 920 g of copper powder were mixed and formed into pellets with a diameter of 7-9 and a height of 5 m using a molding machine.

このペレットをグラファイトルツボ中に入れ。Place this pellet in a graphite crucible.

アルゴン雰囲気中で高周波誘導タロ熱によシ900℃で
1時間、更に1.250℃で2時間反応させた。
The reaction was carried out in an argon atmosphere by high-frequency induced taro heating at 900° C. for 1 hour, and then at 1.250° C. for 2 hours.

潜却後ス゛ラグと合金部゛を分離し950gの銅イツト
リウム合金を得た。
After diving, the slug and alloy part were separated to obtain 950 g of copper-yttrium alloy.

この合金中のイツトリウムの割合は4.8重量パーセン
トであり、原料フッ化イツトリウム中の90パーセント
のイツトリウムが合金化していた。
The proportion of yttrium in this alloy was 4.8% by weight, and 90% of the yttrium in the raw material yttrium fluoride was alloyed.

実施例24 プラセオジムとネオジムの混合フッ化物85gと金属カ
ルシウム50′gと銅粉800gを混合し、成型機で直
径7cIn、高さ4.5 crsのペレットとした。こ
のペレットをグラファイトルツボ中に入れ、アルゴン雰
囲気中で高周波誘導タ熱により850℃で2時間、更に
1.250℃で1時間反応させた。冷却後スラグと合金
部を分離し870gの合金を得た。
Example 24 85 g of a mixed fluoride of praseodymium and neodymium, 50 g of metallic calcium, and 800 g of copper powder were mixed and formed into pellets with a diameter of 7 cIn and a height of 4.5 crs using a molding machine. This pellet was placed in a graphite crucible and reacted at 850° C. for 2 hours and then at 1.250° C. for 1 hour under high-frequency induction heating in an argon atmosphere. After cooling, the slag and alloy portion were separated to obtain 870 g of alloy.

この合金中のプラセオジムとネオジムの割合は合計で6
1重量パーセントであり、原料のフッ化物中の74パー
セントのプラセオジムとネオジムが合金化していた。
The total proportion of praseodymium and neodymium in this alloy is 6
1% by weight, and 74% of praseodymium and neodymium in the raw material fluoride were alloyed.

実施例3 フッ化イツトリウム45gと金属カルシウム粒30gと
鉛粉400gを混合し、成型機で直径7crn、高さ2
cmのペレットとした。
Example 3 45 g of yttrium fluoride, 30 g of metallic calcium particles, and 400 g of lead powder were mixed and molded into a mold with a diameter of 7 crn and a height of 2
cm pellets.

このペレットをグラファイトルツボ中に入れアルゴン雰
囲気中で高周波誘導加熱により900℃で2時間反応さ
せた。冷却後スラグと合金部を分離し420gの鉛イツ
トリウム合金を得た。
This pellet was placed in a graphite crucible and reacted at 900° C. for 2 hours by high frequency induction heating in an argon atmosphere. After cooling, the slag and alloy portion were separated to obtain 420 g of lead yttrium alloy.

この合金中島イツトリウムの割合は51重量パーセント
であり原料フッ化イツトリウム中の80パーセントのイ
ツトリウムが合金化していた。
The proportion of Nakajima yttrium in this alloy was 51% by weight, and 80% of the yttrium in the raw material yttrium fluoride was alloyed.

実施例4 フッ化イツトリウム45gと金属カルシウム粒30gと
鉄粉400gを混合し、成型機で直径7crn、高さ2
.5 cmのペレットとした。
Example 4 45 g of yttrium fluoride, 30 g of metallic calcium particles, and 400 g of iron powder were mixed and molded into a mold with a diameter of 7 crn and a height of 2
.. It was made into a 5 cm pellet.

このペレットをアルミナルツボ中に入れ・アルゴン雰囲
気中で高周波誘導加熱により950℃で1時間、更に1
./+OO℃で1時間反応させた。冷却後スラグと合金
部を分離し415gの鉄イツトリウム合金を得た。
The pellets were placed in an aluminum crucible and heated to 950°C for 1 hour under high-frequency induction heating in an argon atmosphere, and then heated for 1 hour.
.. The reaction was carried out at /+OO°C for 1 hour. After cooling, the slag and alloy portion were separated to obtain 415 g of iron-yttrium alloy.

この合金中のイツトリウムの割合は5.6重量バーセン
トでアリ、原料フッ化イツトリウム中の85パーセント
のイツトリウムが合金化シていた。
The proportion of yttrium in this alloy was 5.6% by weight, and 85% of the yttrium in the raw material yttrium fluoride was alloyed.

実施例5 混合希十フッ化物(イツトリウム60チ、他重希土40
%)45gと金属カルシウム粒30gと銅粉400gを
混合し、成型機で直径7 cm 。
Example 5 Mixed dilute fluoride (60% yttrium, 40% other heavy rare earth)
%), 30 g of metallic calcium particles, and 400 g of copper powder were mixed, and molded into a diameter of 7 cm using a molding machine.

高さ2mのペレットとした。It was made into a pellet with a height of 2 m.

このペレットをグラファイトルツボ中に入れアルゴン雰
囲気中で高周波誘導加熱によ、!l) 850℃で1時
間1.250℃で1時間反応させた。冷却後、スラグと
合金部を分離し455gの合金を得た。
This pellet is placed in a graphite crucible and subjected to high frequency induction heating in an argon atmosphere! l) Reacted at 850°C for 1 hour 1. Reacted at 250°C for 1 hour. After cooling, the slag and alloy portion were separated to obtain 455 g of alloy.

この合金中の混合希土の割合は64重量パーセントであ
り、原料フッ化物中の87バーセントの希十が合金化し
ていた。
The proportion of mixed rare earth in this alloy was 64 percent by weight, and 87 percent of the rare earth in the raw material fluoride was alloyed.

実施例6 フッ化スカンジウム10gと金属カルシウム10gと銅
粉200gを混し、成型機で直径7crn。
Example 6 10 g of scandium fluoride, 10 g of metallic calcium, and 200 g of copper powder were mixed and molded into a mold with a diameter of 7 crn.

高さ1crnのペレットトシタ。Pellet Toshita with a height of 1crn.

このペレットをグラファイトルツボ中に入れアルゴン雰
囲気中で高周波誘導加熱により850℃で1時間、更に
1.200 ℃で1時間反応させた。
The pellets were placed in a graphite crucible and reacted in an argon atmosphere by high frequency induction heating at 850°C for 1 hour and then at 1.200°C for 1 hour.

冷却後スラグと合金部を分離し200gの合金を得た。After cooling, the slag and alloy portion were separated to obtain 200 g of alloy.

この合金中のスカンジウムは19重量パーセントであり
、原料のフッ化物中の86パーセントのスカンジウムが
合金化していた。
The scandium in this alloy was 19% by weight, and 86% of the scandium in the raw fluoride was alloyed.

Claims (1)

【特許請求の範囲】[Claims] 希土類フッ化物と金属カルシウムと基金属粉の混合加圧
成型物を不活性ガス雰囲気中で基金属の融点以上に加熱
反応させることにより、希土類金属合金を製造する方法
A method for producing rare earth metal alloys by heating and reacting a mixture of rare earth fluoride, metallic calcium, and base metal powder to a temperature above the melting point of the base metal in an inert gas atmosphere.
JP10748881A 1981-07-09 1981-07-09 Manufacture of rare earth metallic alloy Granted JPS5873734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10748881A JPS5873734A (en) 1981-07-09 1981-07-09 Manufacture of rare earth metallic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10748881A JPS5873734A (en) 1981-07-09 1981-07-09 Manufacture of rare earth metallic alloy

Publications (2)

Publication Number Publication Date
JPS5873734A true JPS5873734A (en) 1983-05-04
JPS6364509B2 JPS6364509B2 (en) 1988-12-12

Family

ID=14460480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10748881A Granted JPS5873734A (en) 1981-07-09 1981-07-09 Manufacture of rare earth metallic alloy

Country Status (1)

Country Link
JP (1) JPS5873734A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592394A1 (en) * 1985-10-28 1987-07-03 Us Energy PREPARATION OF RARE EARTH METAL AND IRON ALLOYS BY ALUMINOTHERMAL REDUCTION.
US4767455A (en) * 1986-11-27 1988-08-30 Comurhex Societe Pour La Conversion De L'uranium En Metal Et Hexafluorure Process for the preparation of pure alloys based on rare earths and transition metals by metallothermy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592394A1 (en) * 1985-10-28 1987-07-03 Us Energy PREPARATION OF RARE EARTH METAL AND IRON ALLOYS BY ALUMINOTHERMAL REDUCTION.
US4767455A (en) * 1986-11-27 1988-08-30 Comurhex Societe Pour La Conversion De L'uranium En Metal Et Hexafluorure Process for the preparation of pure alloys based on rare earths and transition metals by metallothermy

Also Published As

Publication number Publication date
JPS6364509B2 (en) 1988-12-12

Similar Documents

Publication Publication Date Title
CN110845237B (en) High-entropy ceramic powder, preparation method thereof and high-entropy ceramic block
US5346667A (en) Method of manufacturing sintered aluminum alloy parts
CN105908218A (en) High-purity rare earth metal and preparation method and application thereof
US3011982A (en) Refractory and method of making the same
CN105908020B (en) A kind of preparation method of aluminium composite tungsten material
EP0250163B1 (en) A method for the preparation of an alloy of nickel and titanium
US2159231A (en) Producing nickel alloy articles
JPS5873734A (en) Manufacture of rare earth metallic alloy
CA1175661A (en) Process for aluminothermic production of chromium and chromium alloys low in nitrogen
JPS61106461A (en) Manufacture of aluminum oxynitride refractories
CN110306075A (en) A kind of New-energy electric vehicle charging pile leads tellurium zirconium copper alloy continuous casting process with Cutting free height
US3011983A (en) Refractory and method of making the same
CN107974597A (en) The magnesium scandium alloy and its processing technology of a kind of die casting
CN105478780A (en) Method for preparing engine cylinder head by powder metallurgy process
US1969396A (en) Production of metallic articles
US2159604A (en) Metallic article
JP2018100428A (en) Method for manufacturing magnesium alloy
US3853537A (en) Sintering alloy
JPH05105979A (en) High density sintered zn-ni alloy and its production
US3066022A (en) Process for the manufacture of pulverized iron
CN114561570A (en) Nickel-based alloy Inconel601 and preparation method and application thereof
CN1683575A (en) Process for preparing semisolid non-dendritic zinc base alloy
US1882987A (en) Process of making metal articles
US2169187A (en) Copper base alloy
CN114574722A (en) Magnesium alloy ingot blank capable of being cold-formed and processing method thereof