JPS58736A - Evaluating method for image - Google Patents

Evaluating method for image

Info

Publication number
JPS58736A
JPS58736A JP9741481A JP9741481A JPS58736A JP S58736 A JPS58736 A JP S58736A JP 9741481 A JP9741481 A JP 9741481A JP 9741481 A JP9741481 A JP 9741481A JP S58736 A JPS58736 A JP S58736A
Authority
JP
Japan
Prior art keywords
image
edge
response
measured
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9741481A
Other languages
Japanese (ja)
Inventor
Kenichi Yoshida
吉田健一
Yasuji Hattori
小野公三
Kozo Ono
津野浩一
Koichi Tsuno
服部保次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9741481A priority Critical patent/JPS58736A/en
Publication of JPS58736A publication Critical patent/JPS58736A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To determine the response of square wave gratings easily without requiring test charts for square waves, etc. by irradiating a diffusion surface light source to an edge, inputting the image thereof to an optical system to be measured, measuring the inclination of the response thereof and operating the same. CONSTITUTION:A diffusion surface light source 15 is irradiated to a knife edge 16 to make an edge image. This image is inputted to an optical system 17 to be measured, and the output image thereof is scanned at a right angle to the edge direction by a one-dimensioal scanning system 18, whereby an edge response curve is determined. The inclination of the rising straight line thereof is determined and an analog output is obtained. After this output is digitized with an A/D converter 19, it is operated with a computer 20 to determine the optical transmission function of the system 17. In accordance with this, the response of a square wave grating is determined and the figure is outputted to an X-Y plotter 21. Therefore, the image is easily evaluated simply by measuring the inclination of the edge response without using test charts for square waves and sine waves.

Description

【発明の詳細な説明】 本発明はiir像評像評価方間し、m像伝送路などの被
測定系の任意周期の矩形波格子応答を簡単に求めること
ができる画像評価方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image evaluation method that can easily obtain a rectangular wave grating response of an arbitrary period of a measured system such as an m-image transmission line.

第1図及び第2図に従来のIIIIl像評飢装盾の例を
それぞれ示す。両従来例とも被測定光学系のOT F 
(Optical Transfer Functio
n ;光学的伝達関数)を測定する装置である。
FIGS. 1 and 2 show examples of conventional IIII image shields, respectively. In both conventional examples, the OT F of the optical system to be measured
(Optical Transfer Function
n; optical transfer function).

ts1図の従来例では、漸次的に全1ij1周波数が変
化する矩形波テストチャートlt−レンズ糸2により被
測定光学系3に結像させ、この被測定光学系3の伝送像
をレンズ系4を介してフィルム5に撮影する。このとき
、被測定光学系3は例えば回転運動の如くランダムに動
かされる。
In the conventional example shown in FIG. The image is photographed on film 5 through the camera. At this time, the optical system 3 to be measured is moved randomly, for example, by rotational movement.

フィルム5の像を濃度計6でスキャンすることによシ、
そのレコー〆6cKOTFを表わす鼓形7が記録される
。なお、6aは受光素子、6bはアンプ・である。
By scanning the image of the film 5 with the densitometer 6,
A drum shape 7 representing the record end 6cKOTF is recorded. Note that 6a is a light receiving element, and 6b is an amplifier.

第2心の従来例では、光源8.レンズ系9及び拡散板l
Oによりスリット板11の像を被測定光学系3に結像さ
せ、このスリット像をレンズ系12を介して正弦波ドラ
ム13に結像させる。正弦波ドラム13は順次的に空間
周波数が変化する正弦波テストチャー)13aをドラム
13bに巻付けたものである。この正弦波ドラム13を
回転させながらスリット像と正弦波との重ね合誓を受光
装置14で受光することによ91重ね合せがスリット像
の7−リエ変俟となっているため、この出力自体がOT
Fを衣わす。
In the conventional example of the second core, the light source 8. Lens system 9 and diffuser plate l
The image of the slit plate 11 is formed on the optical system 3 to be measured by O, and this slit image is formed on the sine wave drum 13 via the lens system 12. The sine wave drum 13 is made by winding a sine wave test chart 13a whose spatial frequency changes sequentially around a drum 13b. While rotating this sine wave drum 13, the light receiving device 14 receives the superposition of the slit image and the sine wave, and the 91 superposition becomes a 7-layer variation of the slit image, so this output itself is OT
Dress F.

ところが、第1図の矩形波テストチャートlや第2図の
正弦波テストチャー)13a−は、その空間周波数が漸
次的に変化する必要があると共に高い精度が要求される
ため、製作が非常に困難であル、コストも極めて萬い。
However, the rectangular wave test chart 1 in Fig. 1 and the sine wave test chart 13a in Fig. 2 require gradual changes in their spatial frequency and require high precision, so they are very difficult to manufacture. It is difficult and extremely costly.

本発明は上記従来技術に鑑み、製作が困難でコスートの
高い矩形波や正弦波のテストチャートを用いることなく
、簡単に、m像伝送路などの光学系を評価できるlii
像評価方式を提供すること全目的とする。そのため本発
明では、拡WI面光源をナイフェツジ郷に照射してエツ
ジ#を作p、このエツジ像を被測定光学系に入力し、こ
の出力像をエツジ方向と直角に走査してエツジ応答曲I
i5!を求め、このエツジ応答曲線の立上シ直線の傾き
を計算し、この傾きから矩形波格子応答を演算によ逆数
値やグラフとして得る。
In view of the above-mentioned prior art, the present invention makes it possible to easily evaluate optical systems such as m-image transmission lines without using rectangular wave or sine wave test charts that are difficult to manufacture and expensive.
The overall purpose is to provide an image evaluation method. Therefore, in the present invention, an expanded WI surface light source is irradiated onto the naive edge to create edge #, this edge image is input to the optical system to be measured, and this output image is scanned perpendicular to the edge direction to create edge response curve I.
i5! The slope of the rising straight line of this edge response curve is calculated, and the rectangular wave grating response is calculated from this slope as an inverse value or a graph.

第3図は本発明を適用して構成した矩形波格子応答測定
装置のブロック構成を示す。第3図において15は拡散
面光源であシ1例えば第2因に示される如く光源8.平
行光用レンズ系9及び拡散板10の組合せで実現され、
一様な光を発生する。16はナイフェツジでTor、ナ
イフェツジ16の背後を拡散面光源15で煕明すること
によシ、第4図に示すステップ関数U (X)で表わさ
れるエツジ像ができる。但しxViエツジ面内でエツジ
方向と直角な方向即ちX方向の座標であシ、エツジ像は と正規化され゛る。
FIG. 3 shows a block configuration of a rectangular wave grating response measuring device constructed by applying the present invention. In FIG. 3, reference numeral 15 indicates a diffused surface light source 1. For example, as shown in the second factor, light source 8. Realized by a combination of parallel light lens system 9 and diffuser plate 10,
Generates uniform light. Reference numeral 16 denotes a knife with Tor. By illuminating the back of the knife 16 with a diffuse surface light source 15, an edge image represented by a step function U (X) shown in FIG. 4 is created. However, xVi is a coordinate in a direction perpendicular to the edge direction within the edge plane, that is, in the X direction, and the edge image is normalized as follows.

17は被測定光学系で1り?+、入力されたエツジ像に
対し、第4図に示す応答関数e (x)で表わされるエ
ツジ応答像を出力する。レンズ系や写真記録材あるいは
元伝送路などの一般的な光学系では、実験により推定し
てエツジ応答関数e(x)  を。
Is 17 the optical system to be measured? +, Outputs an edge response image expressed by the response function e (x) shown in FIG. 4 with respect to the input edge image. In general optical systems such as lens systems, photographic recording materials, or original transmission lines, the edge response function e(x) can be estimated experimentally.

とモデル化できる。エツジ応答像は被測定光学系17の
OTFによって入力エツジ像が変化したものであるから
、上記エツジ応答モデルを用いれば1式(2)の立上り
係数αを知る仁とによりOTFが定まる。この係数αは
X=Qにおけるエツジ応答関数e(x)の接線10#4
きmから求ま多。
It can be modeled as Since the edge response image is the input edge image changed by the OTF of the optical system 17 to be measured, if the above edge response model is used, the OTF can be determined by knowing the rise coefficient α of Equation 1 (2). This coefficient α is the tangent line 10#4 of the edge response function e(x) at X=Q
I want more from you.

α 2           °式(3) の関係がある。α 2            °Formula (3) There is a relationship between

18は、被測定光学系17からの出力像をエツジ方向と
直角に走査する光電変換系であ夕。
Reference numeral 18 denotes a photoelectric conversion system that scans the output image from the optical system to be measured 17 at right angles to the edge direction.

例えば、先端に微小なピンホールやスリットを有する光
電変換素子を直線移動させるようにした一次元走査系が
用いられ、走査に従って第4図の関数e (x) と同
じ変化のアナログ16号を出力する。光電変換系18か
らの出カイJ!r号をx−〇で微分すれば第4図中の接
IIMtの峻きmが求まるが、この例では、アナログ・
デジタル変換器19でデジタル化したのちコンピュータ
(CPU)20のデジタル演算によシmか水まる。
For example, a one-dimensional scanning system is used in which a photoelectric conversion element with a minute pinhole or slit at its tip is moved in a straight line, and analog No. 16 with the same change as the function e (x) in Figure 4 is output as it is scanned. do. Output from photoelectric conversion system 18 J! If we differentiate r with respect to x-〇, we can find the steepness m of tangent IIMt in Fig.
After being digitized by a digital converter 19, it is processed by a computer (CPU) 20 for digital calculation.

ところで、成る糸のインパルス応答kh (X)表する
と、その系のOTFであるH(ω)は。
By the way, if the impulse response of the thread consisting of kh (X) is expressed, then the OTF of the system, H(ω), is:

H(ω) = / h(x)e” dx    −、式
(4)で表わされる。創成(2)のエツジ応答モデルが
示ナインパルス応答はb  h(x) ” 、1. e
(x)であること及び式(3)のα= 2 mよシαが
求まることから。
H(ω) = / h(x)e" dx -, expressed by equation (4). The edge response model of creation (2) shows that the nine-pulse response is b h(x) ", 1. e
(x) and α in equation (3) can be found by α = 2 m.

となる。これを式(4)に代入すればこの被測定光学系
17のOTF tr! 。
becomes. By substituting this into equation (4), the OTF tr! of this optical system to be measured 17 is obtained. .

第6図は式(6)のOTFを示すが、これらは必要があ
ればコンピュータ20がX−Yプロッタ21に図形を出
力させる。
FIG. 6 shows the OTF of equation (6), and if necessary, the computer 20 causes the X-Y plotter 21 to output the figures.

式(6)’によシ被測定光学系17のOTFが求まると
、:yンビュータ20はこのOTFから演算によって矩
形波格子応答を求め、その結果1x−YfHツタ21に
図形出力させたり、あるいはプリンタ22にコントラス
トや分解能勢の数値を出力させる。
When the OTF of the optical system 17 to be measured is determined according to equation (6)', the viewer 20 calculates the square wave grating response from this OTF, and outputs the result to the 1x-YfH vine 21 as a figure, or The printer 22 is made to output numerical values of contrast and resolution.

演算について説明するに、先ず単一矩形波に対する応答
を考える。入力単一矩形波は第7図1 に示す振幅が−で変移点がX−±Σaの関数r1<x)
と考えられ。
To explain the calculation, first consider the response to a single rectangular wave. The input single rectangular wave is a function r1<x) with an amplitude of - and a transition point of X-±Σa as shown in Figure 7-1.
It is thought that.

と表わされる。この単一矩形波rl(X)の7−りエ変
換形電(*)=F (rl (x) )は。
It is expressed as The 7-Rie transformed form of this single rectangular wave rl(X) is (*)=F(rl(x)).

、   シω mn  Σ R1(−)に□     ・・・式(8)であるから、
仁の栴(1)と式(6)のOTF’よシ単−矩形波に対
する被測定光学系17の応答ft(x)は、フーリエ逆
変換によシ。
, ω mn Σ R1(-) □ ...Since formula (8),
The response ft(x) of the optical system to be measured 17 to a single rectangular wave is determined by the inverse Fourier transform using the OTF' of equation (1) and equation (6).

f 1(X) −F−(Rt (4’) H(”) ]
と求まる。第7図中のfs (X)がこの式(9)の概
略t−表わす・ 第8図に示すような一般の矩形波r〜(X)に対する応
答f、(x)は、I#−短形波fl (X)に対する応
答fs (X)の±np (但し、nは整数、pはピッ
チ)の重会せとして考えられるから。
f 1(X) -F-(Rt (4') H('') ]
That's what I find. fs (X) in Fig. 7 represents the approximate t- of this equation (9). The response f, (x) to a general rectangular wave r~(X) as shown in Fig. 8 is I This is because it can be considered as a superposition of ±np (where n is an integer and p is a pitch) of the response fs (X) to the shaped wave fl (X).

で表わされる。この弐〇(lが被測定光学系17の矩形
波格子応答であり1.コンピュータ20 Vcよp式(
9)と式(1(lが演算され、必要に応じてX−Yプロ
ッタ21で第8図のf。o(X)の如く図形表示される
It is expressed as This 2〇(l is the square wave grating response of the optical system to be measured 17, and 1. Computer 20 Vc and p formula (
9) and the equation (1(l) are calculated, and graphically displayed as f.o(X) in FIG. 8 using the X-Y plotter 21 if necessary.

矩形波格子応$ f、(X)から、コントラスト及び分
解能が次のようにして求まる。
From the square wave grating response $f,(X), the contrast and resolution are determined as follows.

画像1←)のコントラス) C(i (x) )を、最
大値1m□及び最小値1−t−用いて1次式〇υで表わ
すものとする。
The contrast of image 1←) C(i (x) ) is expressed by a linear equation 〇υ using a maximum value of 1 m□ and a minimum value of 1-t-.

i wax −1= C(1(x))−一らi5]−一   ・・・弐〇υし
たがって、被測定光学系17のコントラストC(f−(
x))は、 で与えられる。但し1式(9)と弐〇〇よシ。
i wax −1= C(1(x))−1 i5]−1 ・・・2〇υ Therefore, the contrast C(f−(
x)) is given by. However, Type 1 (9) and 2〇〇.

fm=Σft(号−np) n−一〇− xx−asut(ma)as  scoth(mp) 
  一式Iである、簡単のために、デユーティが0.5
の矩形波を考えれば 、 =g 2@  、 @−1と
なり、式(13と式α尋は f、t、=’*ainh(丑)as−”scoth(n
p)  ・・・式C1612 となる。
fm=Σft(No.-np) n-10-xx-asut(ma) as scotth(mp)
Set I, for simplicity, the duty is 0.5
If we consider the rectangular wave of
p) ... Formula C1612 is obtained.

式α々に式峙と式α◆又は式αSと式αer代入して演
算すればmmt”知ることKよって任意のピッチの入力
矩形波に対するコントラストが求まシ。
By substituting the equations and the equations α◆ or the equations αS and the equations αer into the equations α, the contrast for the input rectangular wave of any pitch can be found by knowing “mmt”.

プリンター22に数値出力される。なお、コントラスト
を求める演算はh P = 2 mp として代置と式
OGを用いた第9図の如きコントラストカーフ”C(:
 P )を予め計算してテーブルとしておき1mに対応
して任意ピッチのコント2ストをテーブルから読出すと
良い。
A numerical value is output to the printer 22. Note that the calculation for calculating the contrast is based on the contrast curve "C (:
P ) is calculated in advance and prepared as a table, and it is preferable to read out a control 2 strike of an arbitrary pitch corresponding to 1 m from the table.

次に解像度について説明する。コントラストの許容値を
C*とじ、このC*を満次すP−2mpをP*とする。
Next, resolution will be explained. Let C* be the allowable contrast value, and let P-2mp that satisfies C* be P*.

電が定まれば、第9図のコントラストカーブからP が
決まり、先に求めたmより次式αnを演算することによ
り。
Once the electric current is determined, P is determined from the contrast curve shown in FIG. 9, and by calculating the following formula αn from the previously determined m.

が数値出力される。is output numerically.

或いは、第9図の代カにhmをパラメータとした線密度
1ctイン/saw)に対するコントラストカーブC(
f、 (x) )が第10図の如く表わせる。このカー
f′t−テーブルとしておき、求まったmとコントラス
トの許容値C*から被測定光学系17の分解能?−ヲ読
出すことができる。
Alternatively, the contrast curve C(
f, (x)) can be expressed as shown in FIG. Using this car f't table, determine the resolution of the optical system to be measured 17 from the determined m and contrast tolerance C*. − Can be read.

もちろんh#110図のコントラストカーフを用いて任
意ピッチの矩形波に対するコントラストct−、先に求
めたmから算出することができる。
Of course, the contrast ct- for a rectangular wave of an arbitrary pitch can be calculated from the previously determined m using the contrast curve in diagram h#110.

数値例を示す、被測定光学系17のエツジ応答の傾き。The slope of the edge response of the optical system to be measured 17, showing a numerical example.

が、 m= 50 であったとすると、p=0.05mの矩形波に対するコ
ントラストCFi、、 (a)  第9図ではP=2mp  =2X50X0.
05=5より。
Assuming that m=50, the contrast CFi for a square wave of p=0.05m, (a) In Fig. 9, P=2mp =2X50X0.
From 05=5.

C= 0.69 より。C=0.69 Than.

C=0.69 となる。一方、許容コントラストC*がC*=0.33 (1)  第9図ではP*=2  となるから、式an
よ(b)  第10図ではm;50のカーブとC*=0
.33より。
C=0.69. On the other hand, since the allowable contrast C* is C*=0.33 (1) P*=2 in FIG. 9, the formula an
yo(b) In Figure 10, m;50 curve and C*=0
.. From 33.

となる。becomes.

以上詳細に説明したように1本発明によれは。As explained above in detail, one aspect of the present invention is as follows.

拡散面光源をエツジに照射し、このエツジ1#を被測定
光学系に入力してその応答の傾きを測定するだけで曳い
ため従来の如く矩形波や正弦波のテストチャートを必要
とせず測定が容異となる。また、エツジ応答の傾きを測
定するだけで。
The measurement can be carried out by simply irradiating the edge with a diffuse surface light source, inputting this edge 1# into the optical system to be measured, and measuring the slope of the response, so there is no need for a square wave or sine wave test chart as in the past. It looks strange. Also, by simply measuring the slope of the edge response.

必要な特性は演算によ多求まるため、任意周期(ピッチ
)の矩形波格子に対する応答が自由に得られる。このよ
うに1本発明はレンズ系等の一般の光学系、あるいは各
種l1ii像伝送路の解像度評価装置をはじめとし5画
像評価全般に極めて有効である。
Since many of the necessary characteristics can be determined through calculations, responses to rectangular wave gratings of any period (pitch) can be obtained freely. As described above, the present invention is extremely effective for image evaluation in general, including general optical systems such as lens systems, and resolution evaluation devices for various types of image transmission paths.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図線従来用いられているOTF測定装置の例を
それぞれ示す構成図、第3図は本発明を実現する装置例
の構成図、第4図はエツジ応答のグラフ、第5図はイン
/マルス応答のグラフ、第6図はOTFのグラフ、第7
図は巣−矩形波応答のグラフ、第8図は矩形波格子応答
のグラフ、第9.10図はそれぞれコントラストカーブ
を示すグラフである。 図面中。 15は拡散面光源。 16はナイフェツジ。 17は被測定光学系。 18は一次元走食系。 19はアナログ・デジタル変換器。 20はコンピュータ。 21はX−Y7”ロツター。 22はプリンター、 u(x)は入力エツジ像。 e(x)はモデル化したエツジ応答−WA。 f、、、(x)は矩形波格子応答曲線。 mはエツジ応答の傾き。 pは矩形波のピッチ cHコントラストである。 特許出願人 住友電気工業株式会社 代理人 弁理士  光  石  士  部(他1名)第
1図 第2図 第4図 / 第5図 第7図
Figures 1 and 2 are block diagrams showing examples of conventionally used OTF measuring devices, Figure 3 is a block diagram of an example of a device implementing the present invention, Figure 4 is a graph of edge response, and Figure 5 is a diagram showing the configuration of an example of a conventional OTF measuring device. Graph of in/malus response, Figure 6 is the graph of OTF, Figure 7
Figure 8 is a graph of the nest-square wave response, Figure 8 is a graph of the square wave grating response, and Figures 9 and 10 are graphs showing contrast curves. In the drawing. 15 is a diffused surface light source. 16 is Naifetsuji. 17 is an optical system to be measured. 18 is a one-dimensional running system. 19 is an analog/digital converter. 20 is a computer. 21 is the X-Y7" rotor. 22 is the printer, u(x) is the input edge image. e(x) is the modeled edge response - WA. f, , , (x) is the square wave grating response curve. m is the Slope of the edge response. p is the pitch cH contrast of the square wave. Patent applicant Sumitomo Electric Industries Co., Ltd. Agent Patent attorney Tsutomu Mitsuishi (and 1 other person) Figure 1 Figure 2 Figure 4/ Figure 5 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)拡散面光源により背後から照射されたエツジ像を
被測定光学系−入力させるエツジ像形成系と、被測定光
学系の出力像をエツジ方向と直角に走査する光電変換系
と1元電変換系からの出力信号によシ前記出力像の立上
り直線の傾きを算出し、この傾きと予め定めたエツジ応
答の関数モデルとから被測定光学系の光学的伝達関数、
単一矩形波応答特性、任意周期の矩形波格子応答特性、
コントラスト、分解能勢の光学的特性を演算により求め
る演算処理系とからなる画像評価方式。
(1) An edge image forming system that inputs an edge image illuminated from behind by a diffuse surface light source into the optical system to be measured, a photoelectric conversion system that scans the output image of the optical system to be measured perpendicular to the edge direction, and a single source The slope of the rising straight line of the output image is calculated based on the output signal from the conversion system, and the optical transfer function of the optical system to be measured is calculated from this slope and a predetermined edge response function model.
Single square wave response characteristic, arbitrary period square wave grating response characteristic,
An image evaluation method that consists of a calculation processing system that calculates optical characteristics such as contrast and resolution.
(2)上記光学的特性を数値、グラゝフ等で表示する出
力表示系を備えたことを特徴とする特許請求の範囲第1
項記載の画像評価方式。
(2) Claim 1 comprising an output display system that displays the optical characteristics in numerical values, graphs, etc.
Image evaluation method described in section.
JP9741481A 1981-06-25 1981-06-25 Evaluating method for image Pending JPS58736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9741481A JPS58736A (en) 1981-06-25 1981-06-25 Evaluating method for image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9741481A JPS58736A (en) 1981-06-25 1981-06-25 Evaluating method for image

Publications (1)

Publication Number Publication Date
JPS58736A true JPS58736A (en) 1983-01-05

Family

ID=14191813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9741481A Pending JPS58736A (en) 1981-06-25 1981-06-25 Evaluating method for image

Country Status (1)

Country Link
JP (1) JPS58736A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969153A (en) * 1972-11-06 1974-07-04
JPS562527A (en) * 1979-06-21 1981-01-12 Ricoh Co Ltd Mtf measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969153A (en) * 1972-11-06 1974-07-04
JPS562527A (en) * 1979-06-21 1981-01-12 Ricoh Co Ltd Mtf measuring instrument

Similar Documents

Publication Publication Date Title
US3743427A (en) Modulation transfer function measurement system and method
JP2001507133A (en) High-speed 3D image parameter display apparatus and method
US4653909A (en) Sinusoidal determination of limiting optical resolution
Rasigni et al. Autocovariance functions for polished optical surfaces
JPS58736A (en) Evaluating method for image
Cha Interferometric tomography for three-dimensional flow fields via envelope function and orthogonal series decomposition
Dutton et al. A semiautomatic method for interpreting shearing interferograms
Sciammarella Techniques of fringe interpolation in moiré patterns
GB2106241A (en) Measuring surface roughness
JPH05118906A (en) Method and device for acoustic measurement
Carasso et al. Probe waveforms and deconvolution in the experimental determination of elastic Green’s functions
Chen et al. Digital processing of Young's fringes in speckle photography
JPH02226033A (en) Judging method for transfer function
Yerges Measurement and evaluation of noise and discomfort
Berlinghieri et al. Data requirements for the mapping of ultrasonic fields with conventional light diffraction
Hung et al. Surface inspection of automotive bodies by reflective computer vision
JPS6148864B2 (en)
JP3184283B2 (en) Image evaluation method
Pendergrass et al. A high-resolution, low-frequency spectrum analyzer
JPH0560614A (en) Preparing method of background curve of spectrum and processing device of spectrum data
JPS60135810A (en) Apparatus for measuring surface state of skin
Graham Sensitivity and resolution limitations of various moiré methods
Basuray et al. A new method for edge image analysis
Schnabel Jr et al. Modulation transfer function (MTF) measurement techniques for lenses and linear detector arrays
JP2000006502A (en) Dimensional accuracy measuring method of output image by image output apparatus and reference plate for measurement