JPS5872855A - Absorption type air conditioner - Google Patents

Absorption type air conditioner

Info

Publication number
JPS5872855A
JPS5872855A JP16868781A JP16868781A JPS5872855A JP S5872855 A JPS5872855 A JP S5872855A JP 16868781 A JP16868781 A JP 16868781A JP 16868781 A JP16868781 A JP 16868781A JP S5872855 A JPS5872855 A JP S5872855A
Authority
JP
Japan
Prior art keywords
liquid
gas
liquid tank
air conditioner
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16868781A
Other languages
Japanese (ja)
Inventor
大内 富久
臼井 三平
福田 民雄
林田 辰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16868781A priority Critical patent/JPS5872855A/en
Publication of JPS5872855A publication Critical patent/JPS5872855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は空気調和装置などに使用される吸収式空調機に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption air conditioner used in an air conditioner or the like.

従来のこの種吸収式空調機では、その発生器にやかん形
ボイラ、炉筒水管ボイラなどが使用されているため、貯
液量が多く、かつ運転起動時における冷凍能力の立上り
が遅い恐れがある。また運転起動時には発生器の温度お
よび圧力は低く、高圧側と低圧側との差圧が十分でない
ため、発生器から吸収器への液戻りが悪い。
Conventional absorption air conditioners of this type use kettle-type boilers, furnace water tube boilers, etc. for their generators, so they have a large amount of stored liquid, and there is a risk that the refrigeration capacity will be slow to rise at the time of start-up. . Furthermore, at the start of operation, the temperature and pressure of the generator are low and the differential pressure between the high pressure side and the low pressure side is insufficient, so liquid returns from the generator to the absorber is poor.

このため従来は吸収器に接続する液タンクおよび発生器
の容量を大きくして、液タンクに接続された循環ポンプ
の液面低下によるキャビテーションの発生を防止し、ま
た一時的に発生器に溶液を多量に貯えると共に、減圧弁
を調節して漱戻りを良好にする制御手段がとられていた
For this reason, conventional methods have been to increase the capacity of the liquid tank and generator connected to the absorber to prevent cavitation from occurring due to a drop in the liquid level in the circulation pump connected to the liquid tank, and to temporarily supply solution to the generator. In addition to storing a large amount of water, control measures were taken to adjust the pressure reducing valve to improve drainage.

上記のように液タンクおよび発生器の谷鍍を大きくし、
また封入溶液量を多くすると、熱容量の増大などにより
負荷応答性が悪くなシ、かつ起動してから冷凍能力かえ
られるまでに多大の時間を要するなどの欠点がある。
As mentioned above, increase the valley of the liquid tank and generator,
Furthermore, if the amount of sealed solution is increased, there are disadvantages such as poor load response due to an increase in heat capacity, and a long time required from startup to change of refrigeration capacity.

本発明は上記諸欠点を解消し、運転起動時における冷凍
能力の立上りを早くシ、かつ循環ポンプのキャビテーシ
ョンの発生を防止することを目的とするもので、発生器
を貫通ボイラ形加熱器と気液分離器により構成し、この
気液分離器と前記液タンクをバイパス戻シ管によシ接続
し、このバイパス戻り看に前記液タンクの液面に応じて
開閉する制傾1弁を設けたことを特徴とするものである
The purpose of the present invention is to eliminate the above-mentioned drawbacks, to quickly build up the refrigerating capacity at the start of operation, and to prevent the occurrence of cavitation in the circulation pump. The gas-liquid separator and the liquid tank are connected to a bypass return pipe, and the bypass return pipe is provided with a tilt control valve that opens and closes depending on the liquid level of the liquid tank. It is characterized by this.

以下本発明の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1は蒸発器、2は吸収器、3は液タン
ク、4は循環ポンプ、5は熱交換器、6は貫通ボイラ形
加熱器6A、燃焼器6Bおよび気液分離器6Cからなる
発生器、7は凝縮器で、これらの機器1〜7は配管によ
シ作動的に連結されている。8は蒸発器1と凝縮器7を
接続する配管9に設けられた膨張弁である。
In FIG. 1, 1 is an evaporator, 2 is an absorber, 3 is a liquid tank, 4 is a circulation pump, 5 is a heat exchanger, 6 is a through-boiler type heater 6A, a combustor 6B, and a gas-liquid separator 6C. 7 is a condenser, and these devices 1 to 7 are operably connected by piping. 8 is an expansion valve provided in a pipe 9 connecting the evaporator 1 and the condenser 7.

11は蒸発器1および吸収器2全接続する配管10と前
記気液分離器6Cとを連通する主戻シ管12に設けられ
た絞)、13は気液分離器6C内に設けら扛、その液面
の上昇時に開放するように主戻シ管12の一端12aに
設けられたフロート弁、14は気液分離器6Cと液タン
ク3とを連絡するバイパス戻り看で、このバイパス戻り
管14の液タンク3側開白部には液タンク3の液面下降
時に開放するフロート弁15が設けられている。
11 is a throttle provided in the main return pipe 12 that communicates the gas-liquid separator 6C with the pipe 10 that connects the evaporator 1 and absorber 2; 13 is a throttle provided in the gas-liquid separator 6C; A float valve 14 is provided at one end 12a of the main return pipe 12 so as to open when the liquid level rises, and 14 is a bypass return valve that connects the gas-liquid separator 6C and the liquid tank 3. A float valve 15 that opens when the liquid level of the liquid tank 3 falls is provided in the opening on the liquid tank 3 side.

次に上記のような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

液タンク3内の冷媒を含む溶液は、循環ポンプ4により
吸引して昇圧された後、熱交換器5を経て発生器6の加
熱器6Aに導入され、焼焼器6Bから発生する燃焼ガス
により加熱されながら気液分離器6Cに導入される。こ
の気液分離器6Cで分離された冷媒蒸気は凝縮器7に導
入され、ここで冷却されて凝縮、液化し、ついで膨張弁
8で減圧された後に、蒸発器lに導入されて蒸発し気化
する。この際、蒸発潜熱により冷房、冷凍作用が行われ
る。
The solution containing the refrigerant in the liquid tank 3 is sucked and pressurized by the circulation pump 4, and then introduced into the heater 6A of the generator 6 via the heat exchanger 5, where it is heated by the combustion gas generated from the burner 6B. It is introduced into the gas-liquid separator 6C while being heated. The refrigerant vapor separated by the gas-liquid separator 6C is introduced into the condenser 7, where it is cooled, condensed, and liquefied.Then, the pressure is reduced by the expansion valve 8, and then introduced into the evaporator 1, where it is evaporated and vaporized. do. At this time, cooling and freezing effects are performed by the latent heat of vaporization.

一方、気液分離器6Cで冷媒蒸気全発生した溶液はフロ
ート弁13.主戻シ管12.熱交換器5および絞り11
を経て吸収器2に導入され、ここで蒸発器1の冷媒蒸気
を吸収しながら冷却されて液タンク3に戻入される。
On the other hand, the solution in which all the refrigerant vapor is generated in the gas-liquid separator 6C is transferred to the float valve 13. Main return pipe 12. Heat exchanger 5 and throttle 11
The liquid is then introduced into the absorber 2, where it is cooled while absorbing the refrigerant vapor from the evaporator 1, and then returned to the liquid tank 3.

運転起動時、制圧側と低圧側との差圧が十分に大きくな
い状態においては、発生器6の気泡分離器6Cから吸収
器2への液戻シが悪いため、気液分離器6C内の液面が
上昇する。また加熱器6Aおよび熱交換器5内の溶液の
温度が低いため、溶液の流動状態は気液二相状態となら
ずに満液状態となって流れ、保持液量が増大するので、
相対的に液タンク3内の液量は不足するからその液面は
低下する。
At the start of operation, if the differential pressure between the pressure control side and the low pressure side is not large enough, the return of liquid from the bubble separator 6C of the generator 6 to the absorber 2 is poor, so that the gas-liquid separator 6C The liquid level rises. In addition, since the temperature of the solution in the heater 6A and the heat exchanger 5 is low, the flow state of the solution does not become a gas-liquid two-phase state, but flows in a full liquid state, and the amount of retained liquid increases.
Since the amount of liquid in the liquid tank 3 is relatively insufficient, the liquid level decreases.

そして液タンク3内の液面が循環ポンプ4の冷媒蒸気を
吸収する限界近くのある設だ点筐で低下すると、液タン
ク3日のフロート弁15は開く。
When the liquid level in the liquid tank 3 drops at a certain point near the limit for absorbing refrigerant vapor from the circulation pump 4, the float valve 15 of the liquid tank 3 opens.

このため気液分離器6C内の溶液はノくイノくス戻す管
14および70一ト升15を帷て液タンク3に戻入され
る。したカニって、液タンク3の液面の低下に応じて、
気液分離器6Cから液タンク3へ溶液が供給されるため
、循環ポンプ4の空転および冷媒蒸気の吸引によるキャ
ビテーションの発生を未然に防止することができる。
For this reason, the solution in the gas-liquid separator 6C is returned to the liquid tank 3 via the liquid return pipe 14 and the 70-meter square 15. In response to the decrease in the liquid level in the liquid tank 3, the crab
Since the solution is supplied from the gas-liquid separator 6C to the liquid tank 3, it is possible to prevent cavitation from occurring due to idle running of the circulation pump 4 and suction of refrigerant vapor.

次に吸収式空調機の起動時における立上り時間の遅れに
関係する熱容量について考察する。
Next, we will consider the heat capacity related to the delay in startup time of absorption air conditioners.

(1)封入溶液の冷媒を発生させ、溶液量をG、初期状
態からの#夏着をΔξ、冷媒の蒸発潜熱をiとすると、
前記Q、は次式で表わされる。
(1) Generate the refrigerant of the sealed solution, let the solution amount be G, #summer clothes from the initial state be Δξ, and the latent heat of vaporization of the refrigerant be i.
The above Q is expressed by the following formula.

ΣQII−GJ・Δξj・1   ・・・・・・・・・
(1)! (11)封入溶液の温度を上昇させるための前掛をQ2
.初期状態からの温度差をΔt、溶液の比重k Cp、
とすると、前記Q2は次式で表わされる。
ΣQII−GJ・Δξj・1 ・・・・・・・・・
(1)! (11) Q2 for increasing the temperature of the sealed solution
.. The temperature difference from the initial state is Δt, the specific gravity of the solution is k Cp,
Then, Q2 is expressed by the following formula.

ΣQzj=G1・C1゜j・Δ1.    ・・・・・
・・・・(2)(iii)上記叩と同様に各個所の構成
機器の温度レベルを上昇させるための熱量をQ、とする
と、とのQ3は次式で衣わされる。
ΣQzj=G1・C1゜j・Δ1.・・・・・・
(2) (iii) As in the above, if the amount of heat to raise the temperature level of the component equipment at each location is Q, then Q3 is expressed by the following equation.

ΣQ31=GJ−Cpj・Δ1.    ・・・・・・
・・・(3)flJ 、t ハフロンR−22およびテ
トラエチレングリコールジメチルエーテルの冷媒と吸収
剤との組合せにおいて、発生器(Δtキ100r)すな
わち溶液側では、Δξ−10%、CPPO25K(Il
l/〜・k−i、iキ45K(2f/Kgであるから、
Qs +Q! = G (0,10X 45+0.5X
 100)−GX55 (1(m )また構成材料では
、 Qs’−Gp (0゜lX100)=10XGρ(Km
)であシ、同一重量の増加に対して封入溶液の増大は構
成材料の重量増大に比べると、熱容量に対して5倍以上
に影響がある。したがって熱容量を小さくすることは、
限られた前置でしか加熱することができない吸収式空調
機において、冷凍能力の立上シ時間を早くするのに非常
に効果がある。
ΣQ31=GJ−Cpj・Δ1.・・・・・・
...(3) flJ, t In the combination of refrigerant and absorbent of Haflon R-22 and tetraethylene glycol dimethyl ether, on the generator (Δt x 100r), that is, on the solution side, Δξ-10%, CPPO25K (Il
l/~・ki, i ki 45K (2f/Kg, so
Qs +Q! = G (0,10X 45+0.5X
100)-GX55 (1(m) Also, for the constituent materials, Qs'-Gp (0゜lX100) = 10XGρ(Km
), for the same weight increase, an increase in the encapsulated solution has a five times greater effect on the heat capacity than an increase in the weight of the constituent materials. Therefore, reducing the heat capacity is
This is very effective in speeding up the start-up time of refrigerating capacity in absorption air conditioners that can only be heated in a limited number of pre-installed units.

また空調機の比、容性には、 7M度および溶液の冷媒
#贋のバランスの二要因が密接な関係を有し、その温度
については前記(1)〜(3)式で示すとおりである。
In addition, the ratio and capacity of an air conditioner are closely related to two factors: 7M degrees and the balance of refrigerant number in the solution, and the temperature is as shown in equations (1) to (3) above. .

一方溶液の冷媒濃度のバランスについては、循環ポンプ
の容量(Jp+サイクル内封入液童G。
On the other hand, regarding the balance of the refrigerant concentration in the solution, the capacity of the circulation pump (Jp + Liquid Doll G sealed in the cycle).

との間に一次遅れの関係がある。すなわち時定数會τと
すると、このτは次のとおりである。
There is a first-order lag relationship between That is, assuming that the time constant is τ, this τ is as follows.

τ”” G −/ G p        ・・・・・
・・・・(4)したがって同−容量の+t# )JJポ
ンプに対しては、できるたけ封入溶e、量を少なくする
ことが応答性を高めることになる。
τ”” G −/ G p ・・・・・・
(4) Therefore, for a JJ pump of the same capacity (+t#), reducing the amount of sealed molten e as much as possible will improve responsiveness.

第2図は他の実施例を示すもので%液タンク3の液面低
下を液面検知器17で検知し、この検知1ぎ号によりバ
イパス戻シ管14に設けた電磁弁16を開放するように
したものである。しかも電磁弁16の開閉時のばたつき
を防止するために、遅延回路18を設けることによシ、
1回の検知信号で一定時間電磁弁16を開放するように
構成されている。その他の構成は第1図に示す実施例と
同一であるから説明を省略する。
FIG. 2 shows another embodiment in which a drop in the liquid level in the liquid tank 3 is detected by a liquid level detector 17, and this detection signal opens a solenoid valve 16 provided in a bypass return pipe 14. This is how it was done. Moreover, in order to prevent flapping when the solenoid valve 16 opens and closes, the delay circuit 18 is provided.
The solenoid valve 16 is configured to open for a certain period of time with one detection signal. The rest of the configuration is the same as the embodiment shown in FIG. 1, so the explanation will be omitted.

上記実施夕0では冷房について説明したが暖房またはヒ
ートポンプ暖房サイクルについても同様であるから説明
を省略する。
Although cooling was explained in the above implementation night 0, the same applies to heating or a heat pump heating cycle, so the explanation will be omitted.

以上説明したように本発明によれば、液タンク内の面質
液量を少量にすることによp、キャビテーションの発生
を防止すると共に、封入液量を削減して応答性の向上全
はかp、かつ運動起動時の冷凍能力の立上りを早めるこ
とができる。
As explained above, according to the present invention, by reducing the amount of liquid in the liquid tank, the occurrence of cavitation can be prevented, and the amount of filled liquid can be reduced to improve responsiveness. p, and the rise of the refrigerating capacity at the time of starting the exercise can be accelerated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の吸収式空調機の実施例を
示す系統図である。 2・・・吸収器、3・・・液タンク、6・・・発生器、
6A・・・貫流ボイラ形加熱器、6C・・・気液分離器
、14・・・バイパス戻り管、15・・・制御弁。 代理人 弁理士 薄田利幸 罰 1  図 第  Z  図
FIGS. 1 and 2 are system diagrams showing an embodiment of an absorption air conditioner according to the present invention. 2... Absorber, 3... Liquid tank, 6... Generator,
6A... Once-through boiler type heater, 6C... Gas-liquid separator, 14... Bypass return pipe, 15... Control valve. Agent Patent Attorney Toshiyuki Usuda Punishment 1 Figure Z

Claims (1)

【特許請求の範囲】[Claims] 蒸発器、吸収器、液タンク、循環ポンプ、熱交換器、発
生器および凝縮器全作動的に連結してなる吸収式空調機
において、前記発生器を貫流ボイラ形加熱器と気液分離
器によ多構成し、この気液分離器とmJ We液タンク
をバイパス戻り管によシ接続し、このバイパス戻!ll
看に前記液タンクの液面に応じて開1覇する澗@j弁を
設けたことを特徴とする吸収式空調機。
In an absorption air conditioner in which an evaporator, an absorber, a liquid tank, a circulation pump, a heat exchanger, a generator, and a condenser are all operably connected, the generator is combined into a once-through boiler type heater and a gas-liquid separator. Connect this gas-liquid separator and the mJ We liquid tank to a bypass return pipe, and then connect this gas-liquid separator to the bypass return pipe! ll
An absorption type air conditioner characterized in that a valve is provided which opens depending on the liquid level in the liquid tank.
JP16868781A 1981-10-23 1981-10-23 Absorption type air conditioner Pending JPS5872855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16868781A JPS5872855A (en) 1981-10-23 1981-10-23 Absorption type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16868781A JPS5872855A (en) 1981-10-23 1981-10-23 Absorption type air conditioner

Publications (1)

Publication Number Publication Date
JPS5872855A true JPS5872855A (en) 1983-04-30

Family

ID=15872602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16868781A Pending JPS5872855A (en) 1981-10-23 1981-10-23 Absorption type air conditioner

Country Status (1)

Country Link
JP (1) JPS5872855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717243A (en) * 1990-04-02 1995-01-20 Rockwell Body & Chassis Syst Fr En Abrege Rockwell Bcs Fr Device for connecting window bottom part of door and sliding part of window lift in automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717243A (en) * 1990-04-02 1995-01-20 Rockwell Body & Chassis Syst Fr En Abrege Rockwell Bcs Fr Device for connecting window bottom part of door and sliding part of window lift in automobile

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
US2465904A (en) Absorption refrigeration apparatus and method including absorption liquid concentration control
JPS61110852A (en) Absorption heat pump/refrigeration system
US4127010A (en) Heat activated heat pump method and apparatus
US3491545A (en) Absorption refrigeration system
US3452551A (en) Multiple stage direct fired absorption refrigeration system
US2282503A (en) Refrigeration
US2400137A (en) Refrigeration
US2749095A (en) Air conditioning
US2223752A (en) Refrigeration
US2484669A (en) Method and device relating to absorption refrigerating apparatus
JPS5872855A (en) Absorption type air conditioner
US3556200A (en) Heating and cooling system
US3695053A (en) Dilution system for absorption refrigeration systems
Takeshita et al. Residential gas-fired absorption heat pump based on R22-DEGDME pair. Part 2 design, computer simulation and testing of a prototype
US2306199A (en) Refrigeration
US3555839A (en) Variable vapor pressure absorption refrigeration systems
US3695052A (en) Concentration control for multiple stage absorption refrigeration systems
US2333780A (en) Continuous absorption refrigerating system
US2814468A (en) Air conditioning
US2818234A (en) Heating and cooling system
CN110567207A (en) Refrigerant charge quantity determining method of refrigerating system and refrigerating system
US3528489A (en) Absorption heating and cooling systems
US3555840A (en) Refrigerant condensate dilution in absorption refrigeration systems
US3528491A (en) Absorption heating and cooling system