JPS5872744A - Device for adjusting damping force of plural-cylinder hydraulic buffer - Google Patents

Device for adjusting damping force of plural-cylinder hydraulic buffer

Info

Publication number
JPS5872744A
JPS5872744A JP17237581A JP17237581A JPS5872744A JP S5872744 A JPS5872744 A JP S5872744A JP 17237581 A JP17237581 A JP 17237581A JP 17237581 A JP17237581 A JP 17237581A JP S5872744 A JPS5872744 A JP S5872744A
Authority
JP
Japan
Prior art keywords
damping
damping force
valve
chamber
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17237581A
Other languages
Japanese (ja)
Inventor
Masami Hibino
日比野 壮美
Ken Mimukai
水向 建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP17237581A priority Critical patent/JPS5872744A/en
Publication of JPS5872744A publication Critical patent/JPS5872744A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To always obtain an optimal damping force under various operating conditions, by providing a damping force adjusting means having various orifices in series with damping valves, so that the width of adjustment of the damping force can be made large. CONSTITUTION:A piston 4 is fitted with damping valves 12, 13 which are placed in parallel with each other so that the valves are opened for one direction at elongation and contraction respectively. Working oil flows through a damping force adjusting means 15 and the damping valves 12, 13. In the adjusting means 15, a disc 18 having plural orifices 17 different in diameter is fitted on the tip of an operating rod 16 which extends through a piston rod 5 and can be rotated. The effective passing diameter (orifice diameter) of passages 19, 20 communicating with the damping valves 12, 13 is increased or decreased by the rotation of the rod 16. Since all the working oil is caused to flow through the variable orifices in series with the damping valves 12, 13 at any of the elongation and contraction, the damping force can be adjusted in a wide range.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は車両の複筒型油圧緩衝器において、減衰力の調
整!!:冒の改良に関する。 運転条flに応じて減衰力を調整することを可能−1− とした油圧緩衝器どして、例えば特開昭54−117=
186号公報に開示されたものは、ビスi〜ンに減衰弁
と並列に可変オリフィスを設
The present invention allows adjustment of damping force in a dual-tube hydraulic shock absorber for vehicles! ! : Concerning the improvement of profanity. A hydraulic shock absorber that makes it possible to adjust the damping force according to the operating condition fl is used, for example, in JP-A-54-117=
What was disclosed in the No. 186 publication is that a variable orifice is installed in parallel with a damping valve in the screw valve.

【]、オリフィス間度を外
部からの操作により増減して、減衰抵抗を調整している
。 しかしながら、この場合は、仮に可変オリフィスを全閉
したどしても、減衰弁からの油流があるため、オリフィ
ス全閉と全開での減衰力の調整中はそれほど大きくでき
ず、このため広範囲の運転条件に対応して常に最適な減
衰特性が得られるとは限らなかった。 本発明の目的は減衰力の調整11]を大きくとれるよう
にして、広範な運転条件に対応して常にa適な減衰力を
1りることである。 本発明は、シリンダの内部に摺動自由にビスi〜ンを収
装し、その上下に油室を画成するととしに、シリンダど
イの外側のアラタンエルとの間にリザーバ室を形成する
一方、シリンダ下部にベースバルブを設(1、このベー
スバルブはピストン伸側で10ぎ下部油室どリデーバ室
とを沖通づるブJ、ツク−2= 弁と、同じく圧倒で下部油室の上野油圧に応動して上部
油室とリザーバ室との連通側路を開くスプールとから構
成される一方、ピストンに伸側、圧側減衰弁を並列に設
(′j1これら両減衰弁と直列に可変オリフィスをもつ
減衰力調整手段を配設したものである。したがって圧側
行程では上部油室がスプールを介してリザーバ室と連通
し、かつヂエック弁が閉じるので、圧縮される下部油室
の作動油は全てピストンの減衰調整手段、圧側減衰弁を
通って上部油室からリザーバ室へと流れ、また、伸側行
程では、上部油室とリザーバ室の連通が断たれるので、
その作動油は全て伸側減衰弁から減衰力調整手段を経て
下部油室へと流れ、このJ:うにしていずれにおいても
減衰力調整手段に移動作動油の全量が流れ、よって減衰
力調整手段の聞磨変化に応じて大きく減衰特性を変化さ
せられるのである。 以下、本発明の実施例を図面にもとづいて説明する。 第1図において、アウターシェル1の内部には、−3− 同心的にアウターシリンダ2とインナーシリンダ3とが
配置され、インナーシリンダ3に摺動自由にピストン4
が収装される。 ピストン4のピストンロッド5は軸受6を貫通して外部
に延び、車体側へ図示しないブラケットを介して連結さ
れる。 アウターシェル1の下部にはブラケット8が固設され、
図示しない車軸が連結されるとともに、アウター、−イ
ンナーシリンダ2.3の下部にはベースバルブ9が取り
伺りられる。 ピストン4の−F下に油室Δ、Bが形成され、インナー
シリンダ3とアウターシリンダ2との間に油室Cが形成
され、油室AとCとは軸受6の通路10を介して連通す
る。 アウターシリンダ2とアウターシェル1との間には上部
をガス室Eとしたリザーバ室りが形成され、このリザー
バ室りはベースバルブ9のバルブ室Eと通路11を介し
て常時連通する。 ビス!〜ン4には伸側と圧側でそれぞれ一方向に開く減
衰弁12.13が並列に配置され、これら−4− 減衰弁12.13には減衰力調整1段15を経由して作
動油が流通する。 この調整手段15はピストンロッド5を貫通して回転す
る操作[1ツド16の先端に、異なった口径の複数のオ
リフィス17をもつ円l1118が取り付けられ、ロッ
ド16の回転により、各減衰弁12.13とそれぞれ連
通ずる通口19.20の通路有効径(オリフィス径)を
増減する。 なお、21は通口19.20および円盤18を収めたケ
ースで、ピストンロッド5に螺合している。 一方、ベースバルブ9は、インナー、アウターシリンダ
3.2に固定したバルブケース22の内孔23に、スプ
ール24が摺動自由に収装される。。 スプール24はスプリング25で上方に向けて付勢され
、油室Bの圧力とバルブ室Fの圧力のバランスする位置
へ移動する。 スプール24の中心には油室Bとバルブ室[とを結ぶ通
口26が設けられ、この通口26を圧側行程でスプリン
グ28に押されてヂJ、ツク弁27− 5 − が閉じる。 29はヂエック弁27の支持枠である。 スプール2/Iには通口26と外周を連通ずる側路30
が設けられ、この側路30はバルブケース22に形成し
た油室Cと連通ずる通孔31とスプール24の変位に伴
い選択的に接続Jる1゜スプール24の外周とバルブケ
ース22の内周との間にはダッシュポット室34が形成
され、スプール24の急な上方移動を緩和している。 以上のように構成され、次にその作用を説明する。 ピストンロッド5の伸側行程では、縮小する上部油室A
の圧力は高まり、拡大する油室8の圧力は低下しようと
する。 このため、ベースバルブ9のスプール24はスプリング
25とバルブ室Fの油圧により上方へ移動して、側路3
0と通孔31との連通を断つ一方、拡大−J−る油室B
にはブ丁ツク弁27が開いてリザーバ室りから通路11
、バルブ室Fを経由して作動油を導入りる。 −6− 一方、」一部油室Δの作動油は、これと常通】る油室C
が上記のように通孔31の連通を断たれて密閉して高圧
化するため、伸側減衰弁12を絆て下部油室Bに流入す
る。 このどき、減衰弁12と直列に通口19が配置されてい
るので、作動油には全て通口19から可変的なオリフィ
ス17を通る。 したがって、このΔリフイス17の開度を円盤18を回
わして調整することにJ、す、第2図にも示すように、
実質的な減衰力をオリフィス径に応じて大1]に調整で
きるのである。なお、第2図では、オリフィス17を開
いたとき(実線)と閉じたどさく熱線〉の2位置の制御
状態を示している。 (ただし、オリフィス17を閉じたときは漏れ流量によ
り高減衰力を生じる) 次に、ピストンロッド5が侵入する圧側行程では、前記
と逆に下部油室Bの圧力が高まり、上部油室△の圧力が
低下する。 このため、ベースバルブ9のチェック弁27は閉じると
ともにスプール24はスプリング25を−7− たわませつつ下方へ移動し、図のように側路30を通孔
31と接続する。 したがって縮小する油室Bの作動油は、全てがビスI・
ン4の通口20から圧側減衰弁13を通って上部油室A
へと流入し、かつビス1〜ンロツド5の侵入体積分の油
は、油室Cが前記にように通孔31、側路30を介して
バルブ室Fからリザーバ室りへと連通しているため、通
路10からこの粁路にJ、リリザーバ室りへと流れ出す
。 したがって、この圧側においても、油室Bの作動油は全
てオリフィス17を経由することになり、上記伸側と同
様にオリフィス径を変えることにより、大幅に減衰力を
変化させられるのである。 次に、第3図の実施例を説明すると、これは、第1図の
アウターシリンダ2をなくして油室Cを除去し、その代
わりにパイプ40によって上部油室Aをバルブケース2
2の通孔31と連通させたものである。 したがって、図のようにベースバルブ9のスプール24
が下方へ移動する圧側行程では、上部油−8− 室Δの余剰油は、通路10からパイプ40を経て、通孔
31、側路30、バルブ室F1リザーバ室りへと流出づ
°ることができ、アウターシリンダの省略により構造の
簡易化がはかられる。 以上のように本発明にJ:れば、伸側、圧側いずれの行
程でも、減衰弁と直列の減衰力調整手段(可変オリフィ
ス)に全ての作動油を流1ようにしたので、このオリフ
ィス径を選択することにより大11】に減衰力を調整で
き、運転条1!1に応じて最適な減衰特性を付与できる
という効果がある。 また、伸側行程にはベースバルブのチェック弁がlnl
いて、吸込不足を起こすことがなく、キャビテーラ3ン
や異品の発生を未然に防止できる。
[ ], the attenuation resistance is adjusted by increasing or decreasing the distance between the orifices by external operation. However, in this case, even if the variable orifice is fully closed, there is an oil flow from the damping valve, so the damping force cannot be increased that much while the orifice is fully closed and fully opened. It was not always possible to obtain optimal damping characteristics depending on the operating conditions. An object of the present invention is to enable the damping force to be adjusted to a large extent so that an appropriate damping force can be maintained at all times in response to a wide range of operating conditions. In the present invention, a cylinder is housed in a cylinder so as to be freely slidable, and an oil chamber is defined above and below the oil chamber, and a reservoir chamber is formed between the oil chamber and the oil chamber on the outside of the cylinder. , A base valve is installed at the bottom of the cylinder. It is composed of a spool that opens a communication side passage between the upper oil chamber and the reservoir chamber in response to hydraulic pressure, and the piston is equipped with expansion side and compression side damping valves in parallel ('j1 A variable orifice is installed in series with both of these damping valves. Therefore, in the compression side stroke, the upper oil chamber communicates with the reservoir chamber via the spool, and the check valve is closed, so that all the hydraulic oil in the lower oil chamber is compressed. It flows from the upper oil chamber to the reservoir chamber through the piston damping adjustment means and the compression side damping valve, and in the rebound stroke, communication between the upper oil chamber and the reservoir chamber is cut off.
All of the hydraulic oil flows from the rebound damping valve to the lower oil chamber via the damping force adjusting means, and in both cases, the entire amount of the moving hydraulic oil flows to the damping force adjusting means, so that the damping force adjusting means The damping characteristics can be greatly changed in response to changes in the wear. Embodiments of the present invention will be described below based on the drawings. In FIG. 1, an outer cylinder 2 and an inner cylinder 3 are disposed concentrically inside an outer shell 1, and a piston 4 can be freely slid on the inner cylinder 3.
will be installed. The piston rod 5 of the piston 4 extends outside through the bearing 6 and is connected to the vehicle body via a bracket (not shown). A bracket 8 is fixed to the lower part of the outer shell 1,
An axle (not shown) is connected thereto, and a base valve 9 is located at the bottom of the outer and inner cylinders 2.3. Oil chambers Δ and B are formed below −F of the piston 4, and an oil chamber C is formed between the inner cylinder 3 and the outer cylinder 2, and the oil chambers A and C communicate with each other through a passage 10 of the bearing 6. do. A reservoir chamber whose upper portion is a gas chamber E is formed between the outer cylinder 2 and the outer shell 1, and this reservoir chamber is always in communication with the valve chamber E of the base valve 9 via a passage 11. Screw! Damping valves 12.13 that open in one direction on the expansion side and compression side are arranged in parallel in the damping valves 12.13 on the expansion side and compression side, respectively, and hydraulic oil is supplied to these damping valves 12.13 via the damping force adjustment stage 15. circulate. This adjustment means 15 is operated by rotating through the piston rod 5.A circle 1118 having a plurality of orifices 17 of different diameters is attached to the tip of the rod 16, and rotation of the rod 16 causes each damping valve 12. The effective passage diameters (orifice diameters) of the passage ports 19 and 20 communicating with 13 are increased or decreased. Note that 21 is a case that houses the openings 19 and 20 and the disk 18, and is screwed onto the piston rod 5. On the other hand, in the base valve 9, a spool 24 is slidably housed in an inner hole 23 of a valve case 22 fixed to the inner and outer cylinders 3.2. . The spool 24 is urged upward by a spring 25 and moves to a position where the pressure in the oil chamber B and the pressure in the valve chamber F are balanced. A port 26 connecting the oil chamber B and the valve chamber is provided at the center of the spool 24, and this port 26 is pushed by a spring 28 during the compression stroke to close the valve 27-5-. Reference numeral 29 is a support frame for the check valve 27. The spool 2/I has a side passage 30 that communicates with the passage 26 and the outer circumference.
This side passage 30 communicates with an oil chamber C formed in the valve case 22 and selectively connects with a through hole 31 as the spool 24 is displaced. A dashpot chamber 34 is formed between the spool 24 and the spool 24 to prevent sudden upward movement of the spool 24. The device is configured as described above, and its operation will be explained next. In the extension stroke of the piston rod 5, the upper oil chamber A contracts.
The pressure in the oil chamber 8 increases, and the pressure in the expanding oil chamber 8 tends to decrease. Therefore, the spool 24 of the base valve 9 is moved upward by the spring 25 and the oil pressure in the valve chamber F, and
While cutting off the communication between 0 and the through hole 31, the enlarged oil chamber B
When the valve 27 opens, the passage 11 is opened from the reservoir chamber.
, hydraulic oil is introduced via the valve chamber F. -6- On the other hand, the hydraulic oil in the partial oil chamber Δ is the same as the normal oil chamber C.
As described above, the oil flows through the expansion side damping valve 12 and flows into the lower oil chamber B in order to cut off communication through the through hole 31, seal it, and increase the pressure. Now, since the vent 19 is placed in series with the damping valve 12, all of the hydraulic fluid passes from the vent 19 through the variable orifice 17. Therefore, the opening degree of the Δ refit 17 can be adjusted by turning the disk 18. As shown in FIG.
The actual damping force can be adjusted to a large value according to the orifice diameter. Note that FIG. 2 shows control states in two positions: when the orifice 17 is open (solid line) and when it is closed (solid line). (However, when the orifice 17 is closed, a high damping force is generated due to the leakage flow rate.) Next, in the pressure side stroke where the piston rod 5 enters, the pressure in the lower oil chamber B increases, contrary to the above, and the pressure in the upper oil chamber △ increases. Pressure decreases. Therefore, the check valve 27 of the base valve 9 closes, and the spool 24 moves downward while deflecting the spring 25 by -7-, connecting the side passage 30 with the through hole 31 as shown in the figure. Therefore, all of the hydraulic oil in the shrinking oil chamber B is
The upper oil chamber A passes through the pressure side damping valve 13 from the vent 20 of the engine 4.
The oil chamber C communicates from the valve chamber F to the reservoir chamber through the through hole 31 and the side passage 30 as described above. Therefore, it flows from the passage 10 to the reservoir room. Therefore, even on this pressure side, all the hydraulic oil in the oil chamber B passes through the orifice 17, and the damping force can be changed significantly by changing the diameter of the orifice as on the expansion side. Next, the embodiment shown in FIG. 3 will be explained. In this case, the outer cylinder 2 of FIG.
It communicates with the through hole 31 of No. 2. Therefore, as shown in the figure, the spool 24 of the base valve 9
In the pressure side stroke in which the oil moves downward, the excess oil in the upper oil chamber Δ flows out from the passage 10 through the pipe 40 to the through hole 31, the side passage 30, and the valve chamber F1 reservoir chamber. The structure can be simplified by omitting the outer cylinder. As described above, according to the present invention, all the hydraulic oil is made to flow through the damping force adjustment means (variable orifice) in series with the damping valve in both the expansion and compression strokes, so that the orifice diameter By selecting , the damping force can be adjusted to 11], which has the effect of providing the optimum damping characteristic according to the operating condition 1!1. In addition, the check valve of the base valve is lnl on the expansion side stroke.
Therefore, insufficient suction will not occur, and the occurrence of cavitella and foreign products can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の断面図、第2図は減衰力
特性を示す説明図、第3図は第2実施例の断面図である
。 1・・・アウターシェル、2・・・インナーシリンダ、
4・・・ピストン、5・・・ピストンロッド、9・・・
ベースバルブ、10・・・通路、12.13・・・減衰
弁、15・・・−9− 減衰力調整1段、16・・・操作ロッド、17・・・オ
リフィス、18・・・円盤、19.20・・・通口、2
2・・・バルブケース、24・・・スプール、25・・
・スプリング、26・・・通口、27・・・チェック弁
、30・・・側路、31・・・通孔、40・・・パイプ
、Δ、B、G、・・・油室、1〕・・・リザーバ室、F
・・・バルブ室、特許出願人   萱場工業株式会社 −10− 第2図 第3図
FIG. 1 is a sectional view of a first embodiment of the present invention, FIG. 2 is an explanatory diagram showing damping force characteristics, and FIG. 3 is a sectional view of a second embodiment. 1... Outer shell, 2... Inner cylinder,
4... Piston, 5... Piston rod, 9...
Base valve, 10... Passage, 12.13... Damping valve, 15...-9- damping force adjustment stage 1, 16... Operating rod, 17... Orifice, 18... Disc, 19.20... Entrance, 2
2...Valve case, 24...Spool, 25...
・Spring, 26...Port, 27...Check valve, 30...Side channel, 31...Through hole, 40...Pipe, Δ, B, G,...Oil chamber, 1 ]...Reservoir room, F
...Valve chamber, patent applicant Kayaba Kogyo Co., Ltd. -10- Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] シリンダの内部に磨動自由にピストンを収装し、その上
下に油室を画成するとともに、シリンダとその外側の1
1クタンエルとの間にリヂーバ室を形成する一力、シリ
ンダ下部にベースバルブを1iQG:j、このベースバ
ルブはピストン伸側で開ぎ下部油室とリザーバ室どを連
通するチェック弁と、同じく圧側で下部油室の−[昇油
圧に応動して下部油室とリザーバ室どの連通側路を開(
スプールとから構成される一方、ピストンに伸側、圧側
減衰弁を並列に設(」、これら両減衰弁と直列に可変オ
リフィスをもつ減衰力調整手段を配設したことを特徴と
する複筒型油圧緩衝器の減衰力調整装置。
A piston is housed inside the cylinder so that it can freely slide, and an oil chamber is defined above and below the piston.
A base valve is installed at the bottom of the cylinder to form a reservoir chamber between the cylinder and the pressure side. In response to the rising oil pressure in the lower oil chamber, the communication side passage between the lower oil chamber and the reservoir chamber is opened (
The piston is composed of a spool, a compression side damping valve, and a damping force adjusting means with a variable orifice is arranged in series with both damping valves. Damping force adjustment device for hydraulic shock absorbers.
JP17237581A 1981-10-28 1981-10-28 Device for adjusting damping force of plural-cylinder hydraulic buffer Pending JPS5872744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17237581A JPS5872744A (en) 1981-10-28 1981-10-28 Device for adjusting damping force of plural-cylinder hydraulic buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17237581A JPS5872744A (en) 1981-10-28 1981-10-28 Device for adjusting damping force of plural-cylinder hydraulic buffer

Publications (1)

Publication Number Publication Date
JPS5872744A true JPS5872744A (en) 1983-04-30

Family

ID=15940736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17237581A Pending JPS5872744A (en) 1981-10-28 1981-10-28 Device for adjusting damping force of plural-cylinder hydraulic buffer

Country Status (1)

Country Link
JP (1) JPS5872744A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149441A (en) * 1986-12-12 1988-06-22 Kayaba Ind Co Ltd Damping force regulating device for hydraulic buffer
FR2618507A1 (en) * 1987-07-21 1989-01-27 Sirven Jacques HYDRAULIC SHOCK ABSORBER PROVIDED WITH MEANS FOR VARYING THE OPERATING CHARACTERISTICS
JPH0624228A (en) * 1992-08-31 1994-02-01 Tokico Ltd Hydraulic damper
WO2011161990A1 (en) * 2010-06-21 2011-12-29 株式会社ショーワ Hydraulic damper
JP2015187474A (en) * 2014-03-27 2015-10-29 株式会社ショーワ hydraulic shock absorber
EP3211263A4 (en) * 2014-10-24 2018-06-13 KYB Corporation Hydraulic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541376A (en) * 1978-09-19 1980-03-24 Mitsubishi Electric Corp Moisture permeable gas shielding material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541376A (en) * 1978-09-19 1980-03-24 Mitsubishi Electric Corp Moisture permeable gas shielding material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149441A (en) * 1986-12-12 1988-06-22 Kayaba Ind Co Ltd Damping force regulating device for hydraulic buffer
FR2618507A1 (en) * 1987-07-21 1989-01-27 Sirven Jacques HYDRAULIC SHOCK ABSORBER PROVIDED WITH MEANS FOR VARYING THE OPERATING CHARACTERISTICS
US4972928A (en) * 1987-07-21 1990-11-27 Sirven Jacques M M Hydraulic damper with variable operating characteristics
JPH0624228A (en) * 1992-08-31 1994-02-01 Tokico Ltd Hydraulic damper
WO2011161990A1 (en) * 2010-06-21 2011-12-29 株式会社ショーワ Hydraulic damper
JP2012026564A (en) * 2010-06-21 2012-02-09 Showa Corp Hydraulic damper
CN102652231A (en) * 2010-06-21 2012-08-29 株式会社昭和 Hydraulic damper
US9175741B2 (en) 2010-06-21 2015-11-03 Showa Corporation Hydraulic shock absorber
JP2015187474A (en) * 2014-03-27 2015-10-29 株式会社ショーワ hydraulic shock absorber
EP3211263A4 (en) * 2014-10-24 2018-06-13 KYB Corporation Hydraulic device
US10184540B2 (en) 2014-10-24 2019-01-22 Kyb Corporation Liquid pressure device

Similar Documents

Publication Publication Date Title
JPS6224846Y2 (en)
JP4919045B2 (en) Damping force adjustable fluid pressure shock absorber
US6302248B1 (en) Damping force control type hydraulic shock absorber
JP3146392B2 (en) Damping force adjustable hydraulic shock absorber
KR950033174A (en) Damping force control hydraulic damper
JPH0356334B2 (en)
JPH06185562A (en) Hydraulic buffer
KR870001183B1 (en) Water-pressure damper
JPH06147252A (en) Hydraulic buffer
US20120097493A1 (en) Pressure regulator for shock absorber
JPH0396730A (en) Valve for hydraulic fluid and shock absorber including the same
JP2000193014A (en) Damping force regulation type hydraulic buffer
JPH023056B2 (en)
JPH07332425A (en) Damping force adjusting type hydraulic shock absorber
JPS5872744A (en) Device for adjusting damping force of plural-cylinder hydraulic buffer
JP2918293B2 (en) Variable damping force type shock absorber
JPH0828620A (en) Hydraulic shock absorber
JPH02217637A (en) Liquid pressure damper with variable damping force
JP3348234B2 (en) Damping force adjustable hydraulic shock absorber
JP2001041272A (en) Damping force adjustment type hydraulic buffer
JPS623553Y2 (en)
JPH08159202A (en) Pressure side damping force adjusting device of front fork
JPH0754899A (en) Damping force regulating type hydraulic buffer
JPH1061710A (en) Damping force adjusting hydraulic shock absorber
KR100349256B1 (en) Damper for varying damping force of electronic control suspension in vehicle