JPS587149A - Photoconductive receptor - Google Patents
Photoconductive receptorInfo
- Publication number
- JPS587149A JPS587149A JP10488881A JP10488881A JPS587149A JP S587149 A JPS587149 A JP S587149A JP 10488881 A JP10488881 A JP 10488881A JP 10488881 A JP10488881 A JP 10488881A JP S587149 A JPS587149 A JP S587149A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- amorphous silicon
- layer
- nitrogen
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
請九導電効果を有した感光層を基板上に備えた元導電感
光体に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive photoreceptor having a photosensitive layer having a conductive effect on a substrate.
光照射紫受けることに」、り電了−IF孔対紮発牛し、
この電子−iF.孔対が蓋電流と12で流れるために抵
抗率が低干′1〜る几導電効果11(〜た感光層金基板
ーIー.vc備えた元導電感光体は光検出手段及び光電
変換手段として現在広く一般に用いられている,、例え
ば撮像素子の元検出部、太陽電池の光電変換セル、電」
r写真感光体等(′Cである。To receive the light irradiation purple, ridenryo-IF hole vs. ligature,
This electron-iF. The electrically conductive effect 11 (which has a low resistivity due to the cap current flowing through the hole pair) and the conductive photoreceptor with the photosensitive layer gold substrate is used as a photodetecting means and a photoelectric conversion means. Currently, it is widely used as a detector, for example, as the original detection part of an image sensor, a photoelectric conversion cell of a solar cell,
r Photographic photoreceptor, etc. ('C).
近年、前記感元層金形成する判別として非晶質シリコン
が、製造工程が簡即、吸光係数が大きい、大面積化が容
易、埒らIc p − n型制御が可能である等の皿内
により特V′C注目ケあびている。In recent years, amorphous silicon has been used to form the sensitive layer, as it has a simple manufacturing process, a large extinction coefficient, can be easily made into a large area, and is capable of controlling Ic p-n type. Due to this, special attention has been paid to V'C.
しかしながら、非晶質シリコンは分光感度領域が狭く、
特に可視領域及び太陽光の波長領域全十分カバーしえな
いという重大な欠点ケ有しており、そのためff実際の
テバイスに非晶質シリコンを感光層として用いた場合法
のような欠点盆有することになる。撮像素子の場合は可
視y色全域ケカバ して撮像勿行なうことかできない、
太陽電池の場合は変換効率が十分に得られない、電子写
真感光体の場合は特定の色彩のものだけしか複写できな
いこととなる。However, amorphous silicon has a narrow spectral sensitivity region;
In particular, it has a serious drawback that it cannot adequately cover the entire visible region and the wavelength region of sunlight, and therefore it has a number of drawbacks similar to those when amorphous silicon is used as a photosensitive layer in actual devices. become. In the case of an image sensor, it is impossible to capture an image by covering the entire visible Y color range.
In the case of a solar cell, sufficient conversion efficiency cannot be obtained, and in the case of an electrophotographic photoreceptor, only a specific color can be copied.
従って、非晶質/リコン葡感光層として用いた光導電感
光体を有した様々なテバイスは、今日光学的特性の点で
十分満足のいくものとして一般に受入れられろものに至
っていないのが現状である4、
することにある。Therefore, various devices with photoconductive photoreceptors used as amorphous/licon photosensitive layers have not yet been generally accepted as fully satisfactory in terms of optical properties. 4. There is something to do.
かかる目的は窒素ケ6〜37原子係含んだ水素化非晶質
シリコンからなる青感受光部と微結晶シリコンと非晶質
シリコンとが均一に分布したものであり更にこれら微結
晶シリコンと非晶質シリコンとはその結晶構造が連続的
(で変化する構造を有1−るシリコンからなる赤感受尾
部とから構成された感光層音形成1−ることにより達J
収される。This purpose is to create a blue-sensitive light-receiving area made of hydrogenated amorphous silicon containing 6 to 37 atoms of nitrogen, and a uniform distribution of microcrystalline silicon and amorphous silicon. High-quality silicon is a photosensitive layer composed of a red sensitive tail made of silicon whose crystal structure is continuous (and has a structure that changes).
will be collected.
本発明者等は水素化非晶質シリコンに窒累原子全多*に
含有させることにより青感度を向」ニさせることができ
ることケ以下に記載される実験を行なうことにより見い
出した。The present inventors have discovered by conducting the experiments described below that the blue sensitivity can be improved by including a total amount of nitrogen atoms in hydrogenated amorphous silicon.
実験に用いられた試別は次の様にして作製された。The specimen used in the experiment was prepared as follows.
グロー放電反応室中に設置された石英基板又はS+
基板に垂直VC0,8K、 Gの磁場ケ印加し、次にI
−12會lO口]O1%含有した5il−T4 ガス
に対しM−13ガスを6〜95mo1%の範囲で含有し
たケミカルペー パー’?r反応室中に一定の流量で導
入しつつ、周波数13.56 MHz 1電力20Wの
放電条件でグロー放電を行ない前記基板上に窒素ヶ含有
した水素化非晶質シリコン全作製した。基板温度は25
0〜300℃、典型的にば300’Cを用いた。Quartz substrate or S+ installed in glow discharge reaction chamber
A vertical magnetic field of VC0.8K and G is applied to the substrate, and then I
-12 meeting lO mouth] Chemical paper containing M-13 gas in the range of 6 to 95 mo1% with respect to 5il-T4 gas containing O1%? While being introduced into the reaction chamber at a constant flow rate, glow discharge was performed under the discharge conditions of a frequency of 13.56 MHz and 1 power of 20 W, thereby completely fabricating hydrogenated amorphous silicon containing nitrogen on the substrate. The substrate temperature is 25
A temperature of 0-300°C was used, typically 300'C.
次に上述の様にして得られた窒素を含有した水素化非晶
質シリコンの光学的・電気的特性ケ示1−0
第1図は吸光係数のフォトンエネルギー依存性盆表示す
るものである。5il(4ガスに対しNH3ガス226
mo1%含有L y N#+ +Silイ4十I(2
ガスにより析出された非晶質シリコンは窒素全含有して
いない非晶質7リコンと比較すると高エネルギー側ヘン
フトしているのがわかる、
第2図は吸光係数とフォトンエネルギーの関係からJa
h、−hリ (αは吸光係数)の式乞用いることによシ
求めた光学ギャップのN[]3ガスのS1■I4 カ
スに対するmol濃度依存性を示したものである7、こ
の図から明らかなように窒素含有量が増大するとともに
光学ギャップが広がることかわかる。例えばNH3のm
ol濃度が26%時には2.Oev になる。従つて短
波長、青感度盆増大きせることか可能であることが理解
される2、
第3図は光電導度(A h/11の光照射時)、室温電
導塵及び活性化エネルギーS+l−L+ ガスに対す
るN1−13ガスのモル比依存性を示す。光電導度及び
室温電導塵は窒素含有量が増加するとともに増大し、N
’l−f :+が26 mo1%で最大値ヶとって、の
ち減少する傾向がある。Next, the optical and electrical properties of the nitrogen-containing hydrogenated amorphous silicon obtained as described above are shown. 1-0 FIG. 1 shows the photon energy dependence of the extinction coefficient. 5il (NH3 gas 226 for 4 gases
Mo1% content L y N#+ +Sil I 40I (2
It can be seen that the amorphous silicon deposited by gas is on the high energy side when compared with amorphous silicon which does not contain any nitrogen. Figure 2 shows the relationship between the extinction coefficient and the photon energy.
This figure shows the dependence of the optical gap on the mol concentration of N[]3 gas on S1■I4 dregs, which was determined by using the formula h, -h (α is the extinction coefficient).7 From this figure, As is clear, the optical gap widens as the nitrogen content increases. For example, m of NH3
When the ol concentration is 26%, 2. It becomes Oev. Therefore, it is understood that it is possible to increase the blue sensitivity range for short wavelengths2. Figure 3 shows the photoconductivity (when irradiated with light of A h/11), room temperature conductive dust, and activation energy S+l-L+ The dependence on the molar ratio of N1-13 gas to gas is shown. Photoconductivity and room temperature conductive dust increase with increasing nitrogen content;
'l-f:+ has a maximum value at 26 mo1% and tends to decrease later.
特に光電導度はN1−13の1月018度か26%の場
合1.6 X I F” (Ω−Cm)−1で6す、ノ
ンドープの場合と比較して2桁以上の改善である。In particular, the photoconductivity is 1.6 x I F" (Ω-Cm)-1 for N1-13 at 26%, which is an improvement of more than two orders of magnitude compared to the non-doped case. .
なお、活性化エネルギーはNl」3の1ηol濃度が2
6%まで増大してもさほどの変化はみとめられなかった
。In addition, the activation energy is 1ηol concentration of Nl'3 is 2
Even when it increased to 6%, no significant change was observed.
第4図は、光電導度のフォトンエネルギー依存性會示し
たものであり、NHaガス盆26mo1%含有した非晶
質シリコンはノンドープのものと比較してフォトンエネ
ルギーが22ev 以下では約2桁、ノンドープの場合
感度が低下するフオI・ノエネルギー2,2eV 以
上の高エネルギー側ではそれ以上の大幅な改善かなされ
ていることがわかる。Figure 4 shows the dependence of photoconductivity on photon energy. Compared to non-doped amorphous silicon containing 26 mo1% of NHa gas basin, when the photon energy is 22ev or less, it is about two orders of magnitude higher than that of non-doped silicon. It can be seen that an even greater improvement has been made on the high energy side of 2.2 eV or more, where the sensitivity decreases in the case of phoI-no energy.
第1衣は、木発明者等が行なった実験結果を表にしたも
のであり、オー /工分析により求めた窒素含有水素化
非晶質シリコンの窒素原子の含有率kErわせでHaし
た。、さらに参考のためにN’l−13の濃度か230
m01%である場合のプラズマCV1.)SiNのチ
ー り奮記した。The first item is a table of the experimental results conducted by the inventors, and shows the nitrogen atom content kEr of nitrogen-containing hydrogenated amorphous silicon determined by oxidation/engineering analysis. , For further reference, the concentration of N'l-13 is 230
Plasma CV1 when m01%. ) I was very impressed with the quality of SiN.
衣 1
以−L述べた実験結果から光電導度がト分1nられ、か
つ又yc:学ギiツブがqJ睨)r、領域K im合し
うるものとしてN[13ガスのS i t−14Jjス
に対する11[)0.1φが6〜60係であるウミカノ
12〜く−バーから析出した窒素含有水素化非晶質/リ
コ/、即ち組成比で窒素ケ6〜37原了楚含有した水素
化非晶質シリコンが感−元層奮形成イーる判別として好
74なものであることかわかる。From the experimental results described above, the photoconductivity was determined by 1n, and also yc: Gakujitsubu qJ)r, and the area Kim could be combined with N[13 gas Si t- Nitrogen-containing hydrogenated amorphous /lico/precipitated from Umikano 12-kuber with 11[)0.1φ of 6-60 for 14Jj, that is, containing 6-37 nitrogen atoms in composition ratio. It can be seen that hydrogenated amorphous silicon is a good choice for determining the ability to form a sensitive layer.
また木発明者等は微結晶シリコンと非晶質シリコンとが
均一に分布したものであり更にこれら微結晶シリコンと
非晶質シリコンとはその結晶構造が連続1〜で変化する
構造k イ]’ fるシリコンは赤感度が非晶質シリコ
ンよりも同上することヶ以下に記載σれる人験忙行なう
ことにより見い出した。In addition, the inventors of the present invention believe that microcrystalline silicon and amorphous silicon are uniformly distributed, and that microcrystalline silicon and amorphous silicon have a structure in which the crystal structure changes continuously from 1 to 1. It was discovered through extensive human experimentation as described below that the red sensitivity of amorphous silicon is higher than that of amorphous silicon.
実験に用いられた試料は次の様にして作製された。The sample used in the experiment was prepared as follows.
クロー放電反応室中に設置された石英基板又はシリコン
基板に垂直fc O〜O,B +< aの脩J易葡印加
し、1又は10 m01%のH2ガス全含有1〜た5i
t−14カスケ流@、27 SCCMで導入し−Z11
ツ、周波数13.56 NYI−Iz 、電力5〜50
Wの放電条件でクロー放電ケ行ない微結晶シリコンから
非晶質シリコンとが均一に分布し更に結晶構造が連続的
に変化゛「るようにしたンリコ/(以下微結晶化・シリ
コンという)孕作製し7た1、試料作製時の反応室内の
圧力は約02’l”、o r r Tあった。基板、
゛照度は250℃〜300℃、典型的に(は300°C
盆用いた。A vertical fc of O~O,B+<a was applied to a quartz or silicon substrate placed in a claw discharge reaction chamber, and a total H2 gas content of 1 or 10 m01% was applied.
t-14 Kasuke style @, introduced in 27 SCCM-Z11
TS, Frequency 13.56 NYI-Iz, Power 5-50
A claw discharge was performed under W discharge conditions to uniformly distribute microcrystalline silicon to amorphous silicon, and furthermore, the crystal structure was continuously changed. The pressure inside the reaction chamber at the time of sample preparation was approximately 0.02'l'', or r rT. substrate,
゛Illuminance is 250℃~300℃, typically (300℃
I used a tray.
次に上述の様にして得られた微結晶化シリコンの光学的
・電気的特性を示す。Next, the optical and electrical properties of the microcrystalline silicon obtained as described above will be shown.
第5図は作製した微結晶「ヒンリコンのXi回折の結果
を示すものである。この図から微結晶fしされることに
より非晶質シリコンの場合には出現しなかった(111
)格子面に対応する回折のピークが20−28゛′伺近
に出現し、さらに微結晶化の度付いが尚するVこつれて
ピークの高さが増大することがわかる。なたこのピーク
の半値幅1はピークの高さが変化しても約15′′の一
定の値をとりつづけることから結晶粒径の大きさく約5
OA)は不変であり、結晶粒の数が増反してい4)こと
がわかった、、また各微結晶化シリコンに対−4−る室
l晶t 導ti aR,r−e第5図に合わせて記し八
:が、これから室温型導度σRTが・−10”” (員
・C711)’以上二で微結晶化が行なわれていること
が分った。Figure 5 shows the results of Xi diffraction of the prepared microcrystal "Hinlicon". This figure shows that microcrystals did not appear in the case of amorphous silicon (111
) It can be seen that a diffraction peak corresponding to the lattice plane appears near the 20-28' range, and that the height of the peak increases as the microcrystalization continues to increase. The half-width 1 of the Natako peak continues to take a constant value of about 15'' even if the peak height changes, so it depends on the grain size of about 5''.
It was found that OA) remained unchanged and the number of crystal grains increased 4), and that for each microcrystalline silicon, the In addition, it was found that microcrystallization was performed when the room temperature conductivity σRT was .-10""(member.C711)' or more.
第6図と第7図は各々1(・1・゛パワー50Wと25
Wで作成した」場合の微結晶fヒ/リコンの吸光係数の
ノオトンエネルキ−依存性ケ示すものである。これらの
図から明らかなように、水素化非晶質シリコンは竿結晶
ソリ=17と比較し1赤色元の吸収が著しく劣化してい
ることがわかる。これは非晶質シリコンの光学ギャップ
が約i、7ev と単結晶シリコンの約11QV
よりも広いことに起因している3、第6図及び第7図に
Uそれぞれ作製条件の異なる微結晶化711コンの4つ
の例(H,P・ζソー1SiI(4に対する[−12の
w)1%が各々50 ’W、1%150W、 10%/
25W、1 %/25W110%)が示されている3、
これら4つの例いずれに於いても長波昆側Vこおける吸
光係数は単結晶の場合に近づき、20e■以上の短波長
側では非晶質ソリコンの性質が残っており、単結晶シリ
コンよりも高い吸光係数を有している。捷たI(I”パ
ワーが犬であるほど微結晶化が進んでいることがわかる
。Figures 6 and 7 are 1(・1・゛Power 50W and 25W, respectively)
This figure shows the dependence of the extinction coefficient on the optical energy of microcrystalline FH/licon when prepared from W. As is clear from these figures, it can be seen that hydrogenated amorphous silicon has significantly degraded absorption of 1 red element compared to crystal warp=17. This means that the optical gap of amorphous silicon is about i,7ev and that of single crystal silicon is about 11QV.
3, Figures 6 and 7 show four examples of microcrystallized 711 cones with different manufacturing conditions (H, P. )1% is 50'W, 1%150W, 10%/
25W, 1%/25W110%) is shown3,
In all of these four examples, the extinction coefficient at long wavelength V is close to that of single crystal, but at short wavelengths of 20e or more, the properties of an amorphous solicon remain and are higher than that of single crystal silicon. It has an extinction coefficient. It can be seen that the higher the I (I) power is, the more microcrystallization progresses.
第8図は光電導度(フォトン数〜10 確・Sl、フォ
トンエネルギー2e■ の光照射時)、光学ギャップ及
び活性化エネルギーの室温電導度依存性葡示す。光電導
度は微結晶化とともに増大する傾向がみられる。光学ギ
ャップは微結晶化とともに減少し室温電導度がlo−4
(Ω・(7))=ft%−にでは約1.、5 ev
になることがわかったーまたl、 5 eV のフォ
トンエネルギーにおける吸光係数は〜l Q” cyn
−’ である。FIG. 8 shows the dependence of photoconductivity (photon number ~ 10 sl, photon energy 2e), optical gap, and activation energy on room temperature conductivity. The photoconductivity tends to increase with microcrystalization. The optical gap decreases with microcrystalization, and the room temperature conductivity decreases to lo-4.
(Ω・(7))=ft%- is about 1. , 5 ev
We also found that the extinction coefficient at a photon energy of l, 5 eV is ~l Q” cyn
-'.
従って微結晶化シリコンは非晶質シリコンより赤色に対
しより高感tWであることが理解される。、なお活性化
エネルギーは微結晶化とともに減少することがわかった
。Therefore, it is understood that microcrystalline silicon has a higher tW sensitivity to red than amorphous silicon. However, it was found that the activation energy decreases with microcrystallization.
以上説明したような窒素ケ含んだ水素化非晶質シリコン
全青感受光部として、微結晶化シリコンを赤感受光部と
して有する感光層を基板上に設けてなる元導電感光体は
可視た領域全完全にカバーし、又太陽光の、波長領域の
かなりの範囲をカバーしうる広い波長領域VCわたって
感光特性を有することができる。As explained above, the original conductive photoreceptor is formed by providing a photosensitive layer on a substrate with hydrogenated amorphous silicon containing nitrogen as an all-blue light-sensitive light-receiving region and microcrystalline silicon as a red-sensing light-receiving region. It can have photosensitive properties over a wide wavelength range VC, which can completely cover the whole range and also cover a considerable range of wavelength ranges of sunlight.
第9図は本発明の元導電感光体葡撮像索子の元検出部と
して使用した場合の好ましい実施例を示す。FIG. 9 shows a preferred embodiment of the present invention when the conductive photoreceptor is used as the original detection section of the imaging probe.
n型半導体基板10に拡散によりp+’!11k11が
設けられている。このp 領域11の上層にはp型\微
結晶化7リコン層12が電子阻止層として、この上部に
Iii型微細微結晶化7977層13型 窒素含有非晶
質シリコン層14、n型窒素含有非晶質シリコ7層15
が正孔阻止層として順に積層爆れp−1−n型のフォト
ダイオードが構成され、光検出音tlなしている。この
元検出部の上部には透明電極16が設けられており、こ
の透明電極16に(4電源17vcより正電圧が印加さ
れている。p+'! by diffusion into the n-type semiconductor substrate 10! 11k11 is provided. Above this p region 11, a p-type microcrystalline 7977 layer 13 nitrogen-containing amorphous silicon layer 14 and an n-type nitrogen-containing amorphous silicon layer 12 are provided as electron blocking layers. Amorphous silicon 7 layers 15
A p-1-n type photodiode is constructed by sequentially stacking layers as a hole blocking layer, and a photodetection sound tl is generated. A transparent electrode 16 is provided above the original detection section, and a positive voltage is applied to the transparent electrode 16 from the four power sources 17vc.
ここでp型機結晶化ノリコン層12の膜厚は0.02〜
02μ、I型機結晶化ノリコン層13の膜厚ば300A
〜3μ好1しくは5000A〜3μ、東型窒索含有非晶
質ンリコ/層14の膜厚は50A〜l th好捷しくは
300A〜5000ASn型窒素@有シリコン層は00
2〜02μであることが望ましい。Here, the film thickness of the p-type crystallized silicone layer 12 is 0.02~
02μ, I-type machine crystallized noricon layer 13 thickness: 300A
~3μ, preferably 5000A~3μ, the film thickness of the East type nitrogen-containing amorphous silicon layer 14 is 50A~l, preferably 300A~5000ASn type nitrogen @000A
It is desirable that it is 2 to 02μ.
また、元検出部蛍p−11型)第1・ダイオード型と(
〜たものであってもよいOこの場合前記実施例における
1型層ip型あるいはn型としたものになる。In addition, the original detection part fluorescent p-11 type) first diode type and (
In this case, the type 1 layer in the above embodiment will be IP type or n type.
な訃、微結晶化シリコン及び非晶質/リコンは5ir−
L+ 、)Iz 等からなるケミカルベ−バーにn型
の場合p113をp型の場合1321(6ヶ混入させる
ことによりpn制御ができることはよく知られているこ
とである。窒素含有ノリコ′ ンの場合も同様にpn制
御可能であることが確かめられている。However, microcrystalline silicon and amorphous/licon are 5ir-
It is well known that pn control can be achieved by mixing p113 (for n-type) and 1321 (6 for p-type) into a chemical vapor consisting of L+, )Iz, etc. In the case of nitrogen-containing Noricon It has been confirmed that pn control is also possible in the same way.
また、微結晶化シリコン層J3と窒素よ慣シリコン層1
4の境界は明確なものである必要はなく除々に変化しう
るものであってもよい。In addition, the microcrystalline silicon layer J3 and the nitrogen-containing silicon layer 1
The boundary of 4 does not need to be clear and may change gradually.
さらに、微結晶化7937層13と窒素含有シリコン層
14の間((窒素を含有しない非晶質シリコンの層を設
けてもよい。Furthermore, a layer of amorphous silicon that does not contain nitrogen may be provided between the microcrystalline 7937 layer 13 and the nitrogen-containing silicon layer 14.
なお、本実施例に於いてばI]型半導体基板が用いられ
たがp型半導体基板音用いても元検出部等の導電型缶す
べて変換することにより同等の撮像素子葡得ることがで
きる。In this embodiment, an I-type semiconductor substrate was used, but even if a P-type semiconductor substrate is used, an equivalent image pickup element can be obtained by converting all the conductive type cans such as the original detection section.
このように構成された本発明の元検出部に入射光18f
fi照射すると青色光は1型窒素含有非晶質シリコン層
14、赤色光は星型微結晶化ンリコン層13により吸収
され、電子−正孔対全生成し、それぞれ電極16、p
領域11に到達してp+領域11の電位ケ」二昇名せる
0、この電位上昇は入射光量に比例し、■フィールド期
間蓄積される。このようにしテI)十領域11に蓄積さ
れた正孔ばCC,1−) 。The incident light 18f enters the original detection unit of the present invention configured in this way.
When irradiated with fi, the blue light is absorbed by the type 1 nitrogen-containing amorphous silicon layer 14 and the red light is absorbed by the star-shaped microcrystalline silicon layer 13, and all electron-hole pairs are generated, and the electrodes 16 and p
When reaching the region 11, the potential of the p+ region 11 increases to 0. This potential increase is proportional to the amount of incident light and is accumulated during the field period. In this way, the holes accumulated in the region 11 are CC,1-).
B 131) 専の電荷転送型の走査回路あるいはX−
)′マl−IJソクス型の走査回路により読み取られる
。、
本実施例の撮像素子においては色・・ランスの良好な撮
像が行なわれる0、捷た本実施例においては半導体基板
と微結晶化7リコンとのオーミック接触か(7やすい利
点ケ有する。B 131) Dedicated charge transfer type scanning circuit or X-
)' is read by a multi-IJ type scanning circuit. In the image pickup device of this embodiment, good color and contrast imaging is performed.In this embodiment, the ohmic contact between the semiconductor substrate and the microcrystalline silicon (7) has the advantage of being easy.
第10図は不発明の光専電感光体ケ太陽電池の光電変換
セルに使用した場合の好捷しい実施例ケ示す。FIG. 10 shows a preferred embodiment in which the photoconductor of the invention is used in a photoelectric conversion cell of a solar cell.
ステンレススチール基板21の−L層はp型機結晶化ン
リコン層22が電子用II層と1〜で、この上部にはl
型微結晶化7917層23.1型外晶質/リコン層24
、l型窒索′8有非晶實/リコン層25、l]型窒累含
有非晶質/リコン層26が正孔阻市層として順に積層1
れp−i −n 2!Il、l(1”+ 7.t h
fイオ−トカ@jrXすれ光電変換セルをなしている。The -L layer of the stainless steel substrate 21 is composed of a p-type crystallized silicon layer 22 and an electronic II layer, and on top of this is a l layer.
Type microcrystalline 7917 layer 23.1 Type exocrystalline/recon layer 24
, an l-type nitrogen-containing amorphous/licon layer 25, and an amorphous/licon layer 26 containing l]-type nitrogen are laminated in order as a hole blocking layer 1.
Re p-i-n 2! Il, l(1”+ 7.t h
The f-iontocar@jrX constitutes a photoelectric conversion cell.
ここで1)型機結晶化/リコン層22の膜厚ば300〜
500人、1型機結晶化/リコン層23、皿型非晶質7
177層24.1型窒索含自非晶質ンリコン層25の膜
厚+d合わせて05〜1ノ+、n型窒素含有J1晶質/
リコン層26の膜厚は300〜5000Aであることが
好壕し7い。この光電変換セルの上部にIt、J−透明
電極27が設けられている。、
光電変換セルの他の実施例としてはAiJ記した撮像索
子の元検山部と同)ボの変杉が用熊であり、さらに/ヨ
ソトキタイグのものであつ一〇もよい。Here, 1) Mold machine crystallization/film thickness of recon layer 22 is 300~
500 people, type 1 crystallized/recon layer 23, dish-shaped amorphous 7
177 layer 24. Thickness of 1-type nitrogen-containing amorphous phosphor layer 25 + d total 05~1+, n-type nitrogen-containing J1 crystalline/
Preferably, the thickness of the recon layer 26 is 300 to 5000 Å. An It, J-transparent electrode 27 is provided on the top of this photoelectric conversion cell. Other examples of the photoelectric conversion cell include the same type of cedar as the one made by the original inspection section of the imaging device mentioned in AiJ), and the one made by Yosotokitaigu is also good.
−L述のように構成され1ζ本発明の光電変換セルに太
陽光29が入射−すると、青色元より短かい光ばl型窒
素含翁非晶質/リコン層25、緑色′LばI型非晶貿/
リコン層24、赤色光より長い光はl型微結晶7937
層23、により吸収され、電子−正孔対蛍生成し、それ
ぞれ電極27、基板2]に到達し起電カケ発生する。- When sunlight 29 is incident on the photoelectric conversion cell of the present invention, which is configured as described above, the light beam shorter than the blue source is the I-type nitrogen-containing amorphous/recon layer 25, and the green 'L is the I-type. Amorphous trade/
Recon layer 24, light longer than red light is l-type microcrystal 7937
The electrons are absorbed by the layer 23, generate electron-hole pairs, and reach the electrode 27 and the substrate 2, respectively, to generate electromotive chips.
本実施例の太陽電池は商い開放電圧と置い知絡光電先葡
得ることかできる。The solar cell of this embodiment can be used to obtain a photovoltaic device with a short circuit voltage.
第11図は本発明の元導電感尤体を電子写真感光体とし
て使用した場合の好捷しい実施例を示す5、
導電体或いは衣面が導電処理爆れた絶縁体の支持屑板3
1の上層に微結晶化ンリコン:32、非晶質/リコン3
3、窒素含有非晶質/リコン34、が順に積層された感
光層ケ有した電子写真感yt=体からなっている。FIG. 11 shows a preferred embodiment in which the original conductive photoreceptor of the present invention is used as an electrophotographic photoreceptor 5. A support scrap board of an insulator whose conductor or coated surface has been subjected to conductive treatment 3
Microcrystalline Licon in the upper layer of 1: 32, Amorphous/Licon 3
3. It consists of an electrophotographic body having a photosensitive layer in which nitrogen-containing amorphous/recon 34 is laminated in order.
前記感光層はp −n型或いはp−1−n型のダイオー
ド型金とることができ、こうすることによりさらに高解
像度、高鮮明な両@孕得ることかできる。The photosensitive layer can be made of p-n type or p-1-n type diode type metal, and by doing so, it is possible to obtain both higher resolution and higher definition.
本実施例におい又は、色彩4山した原稿をも階調再現性
のよい鮮明な画像か侍られる。In this embodiment, a clear image with good gradation reproducibility can be obtained even from an original document with four colors.
寸た感光層に一度窒素ケ含んだ水素化非晶質シリコン勿
形成(〜、その後電子ヒームアニ−IV1 レーザーア
ニール等孕行なうことにより微結晶化し、赤感受光部を
設けるようにしてもよい9、
以−L詳細に説明したように不発明のyC1碑市。Hydrogenated amorphous silicon containing nitrogen may be formed once on a small photosensitive layer (~, then subjected to electron beam annealing, laser annealing, etc. to microcrystallize it and provide a red-sensitive light-receiving area9. As explained in detail below, the uninvented yC1 monument city.
感光体(は基板−「に窒素を含んだ水素化非晶質/リコ
ンからなる青感受光部と、微結晶化ンリコンからなる赤
感受光部ケ有した感光層ケ備えているので、広い彼長領
戦にわた7iて感尤%性ケ有する利1版がある3、The photoreceptor (substrate) has a photosensitive layer that has a blue-sensitive photosensitive area made of hydrogenated amorphous/licon containing nitrogen and a red-sensitive photosensitive area made of microcrystalline silicon, so it has a wide surface area. There is a 1st version that has a 7i impact on the Choryo war, 3.
第1図は窒素葡含んだ水素化非晶質/リコンの吸W1係
数の〕第1・ンエイ・ルキ−41< 存’A−に示すク
ラ7、
第2図は窒素を含んだ水素化非晶質/リコンの光学ギャ
ップのN1−13 no l濃度1べ存性ケ示すクラ7
、
第3図は窒素を含んだ水素化非晶質ンリコンの光電導度
、室(席電導度及び活性化エネルギーのN1−13m(
,1l濃度依存性ケ示−すダシノ、第4図は光電導度の
〕第1・ンエ不ルギー依存性ケ示すクラ7、
第5図は微結晶化ンリコンのX Iff回折の結果のダ
ラノ、
第6図及び第7図は微結晶化シリコンのンオトンエネル
ギー依存性紮示すグラフ、第8図は微結晶化/リコンの
光電導度、光学ギヤング及び活性化エネルギーの室温型
導度依存性を示すグラフ、
第9図は本発明の光導電感光体ケ元検出部として有した
撮像素子の一単位の断面図、第1O図は本発明の元導電
感光体r元電変換セルに使用した太陽電池の断面図、
第11図は不発明の元導電感光体全電子写真感光体とし
て使用した場合の断面図3.10 ・・n型半導体基
板 ll p+ 領域12.22・・ p型機結
晶化シリコン層13、23 ・・I型機結晶化ンリコ
/層14、25 ・・1型窒素含有非晶質ンリコン層
15.26 ・ n型窒素含有非晶質7937層16
.27・・・・・透明電極 17・・電 諒21
・・ステンレススチール基板
24 l型非晶質シリコン層
31・・・支 持 基 板 32 微結晶化シリ
コン33 非晶質/リコン
34 −窒素含有非晶質ンリコン
第 7 図
1針−/f−和パ゛−又乞)
第 8 図
第9図
第 10 ダ
第11図Figure 1 shows the absorption W1 coefficient of hydrogenated amorphous/recon containing nitrogen. N1-13 no l concentration of crystalline/licon optical gap 7
, Figure 3 shows the photoconductivity of hydrogenated amorphous phosphor containing nitrogen, the cell conductivity and the activation energy N1-13m (
, 1L concentration dependence is shown in Dashino, Figure 4 shows the 1st and 1L concentration dependence of photoconductivity in Cla 7, and Figure 5 is Dalano showing the results of X Iff diffraction of microcrystallized phosphoric acid. Figures 6 and 7 are graphs showing the optical energy dependence of microcrystalline silicon, and Figure 8 is the graph showing the room temperature conductivity dependence of photoconductivity, optical gigang, and activation energy of microcrystallized silicon. 9 is a sectional view of one unit of an image sensor having the photoconductive photoreceptor of the present invention as a source detection unit, and FIG. A cross-sectional view of the battery. Figure 11 is a cross-sectional view of the uninvented original conductive photoreceptor when used as an all-electrophotographic photoreceptor. 3.10...N-type semiconductor substrate ll p+ region 12.22... Silicon layers 13, 23...I-type machine crystallized silicon layer 14, 25...1-type nitrogen-containing amorphous silicon layer 15.26 - N-type nitrogen-containing amorphous 7937 layer 16
.. 27...Transparent electrode 17...Denryo 21
... Stainless steel substrate 24 L-type amorphous silicon layer 31 ... Support substrate 32 Microcrystalline silicon 33 Amorphous/recon 34 - Nitrogen-containing amorphous silicon No. 7 Fig. 1 needle - / f - sum Figure 8 Figure 9 Figure 10 Figure 11
Claims (1)
なる青感受蓋都と、微結晶シリコンと非晶質シリコンと
が均一に分布したものであり更にこれら微結晶シリコン
と非晶質シリコンとはその結晶構造か連続して変化する
構造ケ有するシリコンからなる赤感受光部とを有する感
光層と金基板11 V(設けてなる元導電感光体。It is made of hydrogenated amorphous silicon containing 6 to 3 atomic percent of total nitrogen, and microcrystalline silicon and amorphous silicon are uniformly distributed, and these microcrystalline silicon and amorphous silicon are evenly distributed. Silicon is a conductive photoreceptor comprising a photosensitive layer having a red-sensitive light-receiving portion made of silicon and a gold substrate 11V (having a structure in which silicon has a continuously changing crystal structure).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10488881A JPS587149A (en) | 1981-07-03 | 1981-07-03 | Photoconductive receptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10488881A JPS587149A (en) | 1981-07-03 | 1981-07-03 | Photoconductive receptor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS587149A true JPS587149A (en) | 1983-01-14 |
Family
ID=14392708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10488881A Pending JPS587149A (en) | 1981-07-03 | 1981-07-03 | Photoconductive receptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS587149A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6022382A (en) * | 1983-07-19 | 1985-02-04 | Toshiba Corp | Photoconductive member |
JPS60201675A (en) * | 1984-03-26 | 1985-10-12 | Matsushita Electric Ind Co Ltd | Photoconductive element |
JPS61295568A (en) * | 1985-06-25 | 1986-12-26 | Toshiba Corp | Photoconductive member |
WO1993025940A1 (en) * | 1992-06-18 | 1993-12-23 | Canon Kabushiki Kaisha | Electrophotographic photoreceptor provided with light-receiving layer made of non-single crystal silicon and having columnar structure regions, and manufacturing method therefor |
-
1981
- 1981-07-03 JP JP10488881A patent/JPS587149A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6022382A (en) * | 1983-07-19 | 1985-02-04 | Toshiba Corp | Photoconductive member |
JPS60201675A (en) * | 1984-03-26 | 1985-10-12 | Matsushita Electric Ind Co Ltd | Photoconductive element |
JPS61295568A (en) * | 1985-06-25 | 1986-12-26 | Toshiba Corp | Photoconductive member |
WO1993025940A1 (en) * | 1992-06-18 | 1993-12-23 | Canon Kabushiki Kaisha | Electrophotographic photoreceptor provided with light-receiving layer made of non-single crystal silicon and having columnar structure regions, and manufacturing method therefor |
US5624776A (en) * | 1992-06-18 | 1997-04-29 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member provided with a light receiving layer composed of a non-single crystal silicon material containing columnar structure regions and process for the production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7436038B2 (en) | Visible/near infrared image sensor array | |
US7276749B2 (en) | Image sensor with microcrystalline germanium photodiode layer | |
US20030160172A1 (en) | Multispectral monolithic infrared focal plane array detectors | |
JP2717583B2 (en) | Stacked photovoltaic element | |
US6281561B1 (en) | Multicolor-color sensor | |
JPS55108780A (en) | Thin film solar cell | |
US4523214A (en) | Solid state image pickup device utilizing microcrystalline and amorphous silicon | |
US5923049A (en) | Trichromatic sensor | |
CA2204124C (en) | Trichromatic sensor | |
JPS628781B2 (en) | ||
JPS587149A (en) | Photoconductive receptor | |
US4704624A (en) | Semiconductor photoelectric conversion device with partly crystallized intrinsic layer | |
JPH0595126A (en) | Thin film solar battery and manufacturing method thereof | |
JPS6258552B2 (en) | ||
EP0035146B1 (en) | Semiconductor photoelectric device | |
JPS61278133A (en) | Amorphous silicon film | |
EP0070682B1 (en) | Method of producing a semiconductor layer of amorphous silicon and a device including such a layer | |
JPS6322074B2 (en) | ||
JPH0221664B2 (en) | ||
JPS6341227B2 (en) | ||
Chen et al. | Excellent Responsivity and Low Dark Current Obtained with Metal-Assisted Chemical Etched Si Photodiode | |
JPS586164A (en) | Solid-state image pickup device | |
JPS586165A (en) | Solid-state image pickup device | |
JPS6220380A (en) | Photoelectric conversion device using amorphous silicon | |
Shimizu et al. | Vidicon target of ap‐i‐n structure using a‐Si: H |