JPS587084B2 - Emhenpa antenna - Google Patents

Emhenpa antenna

Info

Publication number
JPS587084B2
JPS587084B2 JP9974775A JP9974775A JPS587084B2 JP S587084 B2 JPS587084 B2 JP S587084B2 JP 9974775 A JP9974775 A JP 9974775A JP 9974775 A JP9974775 A JP 9974775A JP S587084 B2 JPS587084 B2 JP S587084B2
Authority
JP
Japan
Prior art keywords
circularly polarized
antenna
waveguide
circular
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9974775A
Other languages
Japanese (ja)
Other versions
JPS5224058A (en
Inventor
外山昇
矢沢紀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK filed Critical Nippon Hoso Kyokai NHK
Priority to JP9974775A priority Critical patent/JPS587084B2/en
Publication of JPS5224058A publication Critical patent/JPS5224058A/en
Publication of JPS587084B2 publication Critical patent/JPS587084B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】 本発明は、ヒーハット型パラボラアンテナにおいて円偏
波のマイクロ波を送受信するようにした円偏波アンテナ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a circularly polarized antenna that transmits and receives circularly polarized microwaves using a Hehat type parabolic antenna.

静止衛星による衛星放送はヨーロッパ、アメリカ、日本
等の世界各国において近い将来にその実用化が予測され
るが、静止衛星の軌道が唯一つに限られるため、複数個
の放送衛星が用いられるとそれらの放送衛星からの放送
電波相互間に干渉を生ずるおそれがある。
Satellite broadcasting using geostationary satellites is expected to be put into practical use in Europe, America, Japan, and other countries around the world in the near future, but since geostationary satellites are limited to only one orbit, if multiple broadcasting satellites are used, There is a risk of interference between broadcast waves from broadcast satellites.

かかる放送電波の相互干渉を避けるためには、衛星放送
受信用アンテナの交差偏波識別度を利用する必要がある
In order to avoid such mutual interference of broadcast waves, it is necessary to utilize the cross-polarization discrimination of the satellite broadcast receiving antenna.

しかして、地上の放送電波を受信する場合には、電波を
水平または垂直の直線偏波にし、受信アンテナの偏波面
をこの放送電波の偏波面に合わせて交差偏波識別度を利
用することはさほど困難ではないが、放送衛星からの電
波を受信する場合には、電波伝播経路における電離層な
どによる攪乱や受信地点における電波の入射角などに基
づく偏波面のずれが生ずるので、上述のように偏波面を
合わせることは極めて困難である。
Therefore, when receiving terrestrial broadcast radio waves, it is not possible to make the radio waves horizontally or vertically linearly polarized, match the polarization plane of the receiving antenna to the polarization plane of the broadcast radio waves, and use cross-polarization discrimination. Although it is not very difficult, when receiving radio waves from broadcasting satellites, there is a shift in the plane of polarization due to disturbances such as the ionosphere in the radio wave propagation path and the angle of incidence of the radio waves at the receiving point, so the polarization as described above occurs. It is extremely difficult to match the wavefronts.

第1図は、放送衛星電波の偏波面が地表面においていか
なる方向のものになるかを示したものであり、放送衛星
の位置Tを中心とする球面を直角座標面で截った大円を
それぞれAB,BC,CAとすれば、直線TA,TB,
TCはそれぞれ互に直交している。
Figure 1 shows the direction of the polarization plane of broadcasting satellite radio waves on the earth's surface, and shows a great circle cut by a rectangular coordinate plane around a spherical surface centered at the position T of the broadcasting satellite. If AB, BC, and CA respectively, then the straight lines TA, TB,
The TCs are mutually orthogonal.

上記球面上のRを受信地点とすると、放送衛星TからT
A方向の偏波面Exをもって送出された電波の受信地点
Rにおける偏波面はR点における大円ARの接線方向の
Emとなり、偏波面Exに直交するTC方向の偏波面E
yをもって送出された電波の受信地点Rにおける偏波面
はR点における大円CRの接線方向のEcとなる。
If R on the above spherical surface is the receiving point, then from the broadcasting satellite T to T
The polarization plane at the receiving point R of a radio wave transmitted with a polarization plane Ex in the A direction is Em in the tangential direction of the great circle AR at the point R, and the polarization plane E in the TC direction perpendicular to the polarization plane Ex.
The plane of polarization at the receiving point R of the radio wave transmitted with y is Ec in the tangential direction of the great circle CR at the point R.

すなわち、放送衛星Tから互に直交する偏波面EXとE
yとをもって送出された電波も、受信地点Rに到達した
ときにはそれぞれの偏波面EmとEcとが直交しないこ
とになり、その交差角度は受信地点の位置によって異な
ってくる。
That is, polarization planes EX and E that are orthogonal to each other from the broadcasting satellite T
When the radio waves sent out with y reach the receiving point R, their respective polarization planes Em and Ec will not be orthogonal to each other, and the angle of intersection will differ depending on the position of the receiving point.

しだがって、一般の聴視者が衛星放送を受信する際にか
かる直交偏波の放送電波に対して受信アンテナの指向方
向と備波面とを同時に調整するのが極めて困難であるこ
とが判る。
Therefore, it is found that it is extremely difficult for ordinary viewers to simultaneously adjust the pointing direction of the receiving antenna and the prepared wave surface for the orthogonally polarized broadcast radio waves when receiving satellite broadcasting. .

複数個の放送衛星に対する周波数割当ては、衛星放送用
周波数帯の有効利用の点からして偏波面識別度を考慮し
て行なわれるものとみられるが、かかる周波数割当ての
衛星放送電波に対しては受信アンテナの偏波面調整の良
否がそのまま放送チャンネル間の干渉の大小となるので
、放送衛星電波を直線偏波とした場合には大きい交差偏
波識別度を得ることは期待しえない。
Frequency allocation to multiple broadcasting satellites is considered to be done taking into consideration the degree of polarization plane discrimination from the point of view of effective use of satellite broadcasting frequency bands. Since the quality of the polarization plane adjustment of the antenna directly determines the level of interference between broadcast channels, it is not expected to obtain a high degree of cross-polarization discrimination when broadcast satellite radio waves are linearly polarized waves.

しかし、放送衛星電波を円偏波とした場合には、前述し
たような偏波面のずれには拘りなく、円偏波旋回方向の
別による識別が容易であるから、一般聴視者の受信アン
テナはその指向方向を調整して所望の放送衛星を指向さ
せるだけでよく、偏波面の調整は要しないので、直線偏
波とした場合に比して受信アンテナの調整が極めて簡単
となり、受信アンテナの設計どおりの偏波識別度を得る
ことができる。
However, when broadcasting satellite radio waves are circularly polarized waves, it is easy to identify them by the direction of rotation of the circularly polarized waves, regardless of the deviation of the plane of polarization as described above, so that general viewers' receiving antennas All you have to do is adjust the pointing direction to direct it to the desired broadcasting satellite, and there is no need to adjust the plane of polarization, so it is much easier to adjust the receiving antenna than when linearly polarized waves are used. It is possible to obtain polarization discrimination as designed.

上述したところから、将来の衛星放送システムにおいて
は放送衛星電波に円偏波が用いられるものとみられる。
From the above, it is expected that future satellite broadcasting systems will use circularly polarized waves for broadcasting satellite radio waves.

これに対して、従来の円偏波アンテナとしては、円錐ホ
ーンを用いたもの、あるいは、ダイポールを直角に2個
組合わせたもの、または、これらのアンテナを一次放射
器としたパラボラアンテナ等があるが、いずれも構造が
複雑で大型となり、製造径費もかかるため、12GHz
帯のマイクロ波を用いた衛星放送電波を受信するだめの
一般聴視者用受信アンテナには適していない。
On the other hand, conventional circularly polarized antennas include those that use a conical horn, those that combine two dipoles at right angles, and parabolic antennas that use these antennas as primary radiators. However, both have complicated structures, are large, and have high manufacturing costs, so 12 GHz
It is not suitable for receiving antennas for general viewers that receive satellite broadcasting radio waves using high frequency microwaves.

一方、構造が極めて簡単で小型軽量のマイクロ波アンテ
ナとして、パラボラ型反射器の中心部から矩形導波管を
軸方向に延在させ、その先端部を彎曲させて開口端面が
パラボラの焦点位置においてパラボラ型反射器に対向す
るようにし これを一次放射器としたいわゆるビーハッ
ト型のパラボラアンテナがあり、移動中継用のマイクロ
波アンテナなどに多用されているが、従来のヒーハット
型パラボラアンテナはいずれも、上述のように矩形導波
管を用いて直線偏波を送受信するようになっており、円
偏波用には使用し得なかった。
On the other hand, as a small and lightweight microwave antenna with an extremely simple structure, a rectangular waveguide extends in the axial direction from the center of a parabolic reflector, and its tip is curved so that the opening end surface is at the focal point of the parabola. There is a so-called Bee-hut type parabolic antenna which faces a parabolic reflector and uses this as a primary radiator, and is often used in microwave antennas for mobile relays, etc. However, conventional Bee-hut type parabolic antennas are As mentioned above, a rectangular waveguide is used to transmit and receive linearly polarized waves, and cannot be used for circularly polarized waves.

本発明の目的は、従来のヒーハット型パラボラアンテナ
を改良し、構造が簡単で小型軽量の日偏波アンテナを提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the conventional Hehat-type parabolic antenna and to provide a solar polarized antenna with simple structure, small size, and light weight.

本発明の他の目的は、日偏波用パラボラアンテナの一次
放射器とするに適した簡単な構造で良好な放射特性を有
する極めて小型の円偏波放射器を提供することにある。
Another object of the present invention is to provide an extremely small circularly polarized wave radiator that has a simple structure and good radiation characteristics and is suitable for use as a primary radiator for a sun-polarized parabolic antenna.

すなわち、本発明円偏波アンテナは、パラボラ型反射器
の中心部においてその反射器の反射面を貫通してそのパ
ラボラ型反射器の軸方向に導波管を延在させ、その導波
管の少なくとも先端部を円形導波管をもって構成し、前
記パラボラ型反射器の焦点の近傍において前記円形導波
管の管壁に互に90度の間隔を有する4個のスロットの
組を前記円形導波管の軸方向に所定の間隔をおいて2組
配設するとともに、前記円形導波管の端面を短絡したこ
とを特徴とするものである。
That is, in the circularly polarized antenna of the present invention, a waveguide extends in the axial direction of the parabolic reflector by penetrating the reflecting surface of the reflector at the center of the parabolic reflector. At least the tip of the circular waveguide is configured with a circular waveguide, and a set of four slots spaced apart by 90 degrees from each other is inserted into the wall of the circular waveguide in the vicinity of the focal point of the parabolic reflector. It is characterized in that two sets of circular waveguides are arranged at a predetermined interval in the axial direction of the tube, and the end faces of the circular waveguides are short-circuited.

以下に図面を参照して本発明を詳細に説明する。The present invention will be described in detail below with reference to the drawings.

第2図には、パラボラ型反射器1の中心部において、軸
方向に延在する円偏波一次放射器2を設けた、本発明に
よるヒーハット型円偏波パラボラアンテナの概略構成を
受信機3に取付けた状態で模式的に示す。
FIG. 2 shows a schematic configuration of a Hehat type circularly polarized parabolic antenna according to the present invention, which is provided with a circularly polarized primary radiator 2 extending in the axial direction at the center of a parabolic reflector 1. The figure is shown schematically when it is installed.

第3図には、第2図示の本発明による円偏波パラボラア
ンテナにおける円偏波一次放射器2の構成例を示す。
FIG. 3 shows an example of the configuration of the circularly polarized primary radiator 2 in the circularly polarized parabolic antenna according to the present invention shown in FIG.

第3図示の構成例においては、12GHz 帯のマイク
ロ波の伝送に多用されるWRJ一120型標準矩形導波
管を用いて本発明円偏波アンテナに給電する場合の一次
放射器2の構成を示醜取付部4を備えた矩形導波管5を
、矩形一円形変換部6を介して、円形導波管の管内に適
切な形状寸法の誘電体ブロックを備えて高周波電界の方
向により管内を伝搬する電波の位相を選択的に遅らせて
日偏波を発生させるようにしだ円偏波発生部7に接続し
更に、テーパ一部8を介して、直径を縮小した円形導波
管よりなり、その管壁に、パラボラ型反射器1の焦点位
置付近に位置するように複数個のスロット9を設け、か
つ、端面を整合板10により短絡した円偏波放射部11
に接続する。
In the configuration example shown in Figure 3, the configuration of the primary radiator 2 is shown when feeding power to the circularly polarized antenna of the present invention using a WRJ-1120 standard rectangular waveguide, which is often used for the transmission of microwaves in the 12 GHz band. A rectangular waveguide 5 equipped with an unsightly mounting part 4 is connected to a rectangular waveguide 5 through a rectangular-to-circular converting part 6, and a dielectric block of an appropriate shape and size is provided inside the circular waveguide, and the inside of the pipe is changed by the direction of the high-frequency electric field. It is connected to the circularly polarized wave generator 7 so as to selectively delay the phase of the propagating radio waves to generate solar polarized waves, and is further connected to the circular waveguide via the tapered portion 8 to form a circular waveguide with a reduced diameter. A circularly polarized wave radiating section 11 is provided with a plurality of slots 9 on the tube wall so as to be located near the focal point of the parabolic reflector 1, and the end face is short-circuited by a matching plate 10.
Connect to.

上述のごとき構成の円偏波放射部11は、その内部に適
切な形状寸法に形成した誘電体ブロック13を充填臥管
内波長を短縮させて各部寸法を縮小し、複数個のスロッ
トの組合せよりなるスロット放射部をパラボラ反射器1
の焦点付近に集中的に配設しうるようにして適切な放射
パターンの形成を容易にするのが望ましい。
The circularly polarized wave radiating section 11 having the above-mentioned configuration is constructed by filling the inside with a dielectric block 13 formed in an appropriate shape and size to shorten the internal wavelength and reduce the dimensions of each part, and consisting of a combination of a plurality of slots. Parabolic reflector 1 for the slot radiation part
It is desirable to be able to arrange the radiation centrally near the focal point of the radiation beam to facilitate formation of an appropriate radiation pattern.

第4図a,bには、円偏波放射部11の構成例を各部寸
法の記号を付して示す。
FIGS. 4a and 4b show an example of the configuration of the circularly polarized wave radiating section 11, with symbols indicating the dimensions of each part.

第4図示の円偏波放射部11においては、内径dの円形
導波管の管壁に、同図bに示すように、90度の等間隔
をおいて長さmの4個のスロットA,B,C,Dを設け
、これらのスロットと中心間隔llの位置に、スロツト
A,B,C,Dとそれぞれ対応させて長さnの4個のス
ロットA’ , B’ , C’ , D’を設け、こ
れらのスロットの中心からl2の距離において円形導波
管の端面を整合板10により短絡する。
In the circularly polarized wave radiating section 11 shown in FIG. 4, four slots A each having a length m are spaced at equal intervals of 90 degrees, as shown in FIG. . D' are provided, and the end faces of the circular waveguides are short-circuited by matching plates 10 at a distance of 12 from the centers of these slots.

かかる構成の円偏波放射部11においては、上述のよう
にして管径dをなるべく縮小させ、かつ、スロット間隔
t1および各組のスロット長mおよびnを適切に設定し
て、後述するように、適切な放射パターンが得られるよ
うにするとともに、導波管の短絡距離l2を適切に設定
してスロット放射部のリアクタンス分を打消し、スロッ
ト放射部の整合をとって高い放射効率が得られるように
する。
In the circularly polarized wave radiating section 11 having such a configuration, the pipe diameter d is reduced as much as possible as described above, and the slot interval t1 and the slot lengths m and n of each set are appropriately set, and as described below. In addition to obtaining an appropriate radiation pattern, the short-circuit distance l2 of the waveguide is appropriately set to cancel out the reactance of the slot radiation part, and the slot radiation part is matched to obtain high radiation efficiency. Do it like this.

第5図には、上述の構成を有するスロット放射部の作用
を示す。
FIG. 5 shows the operation of the slot radiator having the above-described configuration.

第3図示の円偏波発生部7において、内部に設けた誘電
体ブロック12の配設位置により、矩形導波管5内を伝
搬して来た直線偏波を右旋または左旋の円偏波に変換し
た電波がテーパ一部8を介して内径dを縮小しだ円形導
波管に導かれると、その電波の管内波長λgは導波管内
径dおよび管内に充填した誘電体ブロック13の誘電率
により定まる値に短縮される。
In the circularly polarized wave generating section 7 shown in FIG. 3, depending on the arrangement position of the dielectric block 12 provided inside, the linearly polarized wave propagating within the rectangular waveguide 5 is converted into a right-handed or left-handed circularly polarized wave. When the radio wave converted into is guided into the elliptical waveguide with the inner diameter d reduced through the tapered part 8, the inner wavelength λg of the radio wave is determined by the inner diameter d of the waveguide and the dielectric of the dielectric block 13 filled in the pipe. It is shortened to a value determined by the rate.

上述した2組のスロットA,B,C,DおよびA’ ,
B’ 、C’, D’を円偏波により励振すると、これ
らのスロットには、同一時点において第5図に矢印で示
す方向の高周波電界EA, E B , Ec , E
DおよびEA’ ,EB’ , Ea’ , ED’
が印加され、更に、互に対向するスロットに印加され
る高周波電界EAとEa,EBとED1 およびEA′
とEa’、EB’とED’はそれぞれ同相となり、まだ
、互に相隣るスロットに印加される高周波電界、例えば
EAとEB,あるいはEA/とEB’は互に90度の位
相差となる。
The above two sets of slots A, B, C, D and A',
When B', C', and D' are excited by circularly polarized waves, high-frequency electric fields EA, EB, Ec, and E are generated in these slots at the same time in the directions shown by the arrows in FIG.
D and EA', EB', Ea', ED'
is applied, and furthermore, high frequency electric fields EA and Ea, EB and ED1 and EA' are applied to the mutually opposing slots.
and Ea', EB' and ED' are each in phase, and the high frequency electric fields applied to adjacent slots, for example, EA and EB, or EA/ and EB', have a phase difference of 90 degrees from each other. .

しかして、中心間隔t1を有する2組のスロット間にお
いては、それぞれのスロットに印加される高周波電界E
A,EB,Ec,EDとEA’ , EB’,位相差が
生ずる。
Therefore, between two sets of slots having a center spacing t1, the high frequency electric field E applied to each slot is
A phase difference occurs between A, EB, Ec, ED and EA', EB'.

したがって、かかる寸法配置の複数個のスロットから放
射される電波の放射パターンは、スロット群の中心間隔
t1を適切に設定することにより、第5図aに示すよう
に、パラボラ型反射器1に向うR方向で放射エネルギー
が最大となり、反対のF方向で最小になるようにするこ
とができる。
Therefore, by appropriately setting the center spacing t1 of the slot group, the radiation pattern of the radio waves emitted from the plurality of slots having such a dimension arrangement can be directed toward the parabolic reflector 1, as shown in FIG. 5a. The radiation energy can be maximized in the R direction and minimized in the opposite F direction.

以上の説明においては、便宜上、本発明日偏波アンテナ
に矩形導波管により直線偏波を給電して送信アンテナと
して日偏波の電波を放射する場合について、本発明アン
テナの作用を述べたが、上述したと全く逆の過程により
、到来した円偏波の電波を受信して、その円偏波の旋回
方向の左右を識別分離して直線偏波に変換し、受信アン
テナとして使用しうろこと勿論である。
In the above explanation, for convenience, the operation of the antenna of the present invention has been described in the case where linearly polarized waves are fed to the antenna of the present invention using a rectangular waveguide and the radio waves of the polarized wave of the present invention are radiated as a transmitting antenna. , by a process completely opposite to that described above, receives the incoming circularly polarized radio waves, distinguishes and separates the left and right sides of the circularly polarized waves, converts them into linearly polarized waves, and uses the scales as a receiving antenna. Of course.

また、本発明円偏波アンテナに接続する送信機から円偏
波が送出され、もしくは、接続する受信機に円偏波を供
給しうる場合には、第3図示の矩形導波管5、矩形一円
形変換部6、円偏波発生部7等を設けることなく、適切
な管径の円形導波管によりヒーハット型一次放射器を構
成し、その先端部にテーパ一部8を介して上掲例におけ
ると同様の日偏波放射部11を設けるだけで極めて簡単
な構成ならびに構造のヒーハット型円偏波パラボラアン
テナを得ることができる。
Further, when a circularly polarized wave is transmitted from a transmitter connected to the circularly polarized antenna of the present invention, or when a circularly polarized wave can be supplied to a connected receiver, a rectangular waveguide 5 shown in the third figure, a rectangular A Hehat-type primary radiator is constructed by a circular waveguide with an appropriate pipe diameter without providing a circular converter 6, a circularly polarized wave generator 7, etc. By simply providing the diurnal polarization radiation section 11 similar to that in the example, a Hehat type circularly polarized parabolic antenna having an extremely simple configuration and structure can be obtained.

以上の説明から明らかなとおり、本発明によれば、12
GHz等のSHFマイクロ波帯用の構成並びに構造が簡
単な円偏波アンテナが得られ、一般視聴者用に適した受
信アンテナとすることができるので、衛星放送電波を円
偏波とすることができ、その効果は大きい。
As is clear from the above description, according to the present invention, 12
A circularly polarized antenna with a simple configuration and structure for SHF microwave bands such as GHz can be obtained, and it can be used as a receiving antenna suitable for general viewers, so satellite broadcast radio waves can be circularly polarized. It can be done, and the effects are great.

すなわち、衛星放送電波を円偏波とすれば、これを受信
する際にアンテナの方向調整のみを行なえばよいので、
直線偏波とした場合に必要となる困難な受信アンテナ偏
波面の調整機構を省くことができる。
In other words, if the satellite broadcast radio waves are circularly polarized waves, all that is needed is to adjust the direction of the antenna when receiving them.
It is possible to omit a difficult mechanism for adjusting the plane of polarization of the receiving antenna, which would be required in the case of linearly polarized waves.

まだ、衛星放送電波に右旋と左旋との2チャンネルの円
偏波を同一周波数で割当てることができるので、地上の
受信地点における衛星放送電波相互の干渉を軽減するこ
とができる。
However, since it is possible to allocate two channels of circularly polarized waves, right-handed and left-handed, to the satellite broadcast radio waves at the same frequency, mutual interference between the satellite broadcast radio waves at the receiving point on the ground can be reduced.

本発明によれば、一次放射器をヒーハット型に構成した
簡単な構成で製造容易な小型円偏波パラボラアンテナを
得ることができ、反射器および一次放射器をプラスチッ
ク材に導電層被覆を施したものにより形成するなどして
極めて軽量かつ安価な一般視聴者の衛星放送受信に適し
た円偏波アンテナを得ることができる。
According to the present invention, it is possible to obtain a small circularly polarized parabolic antenna that is easy to manufacture with a simple configuration in which the primary radiator is configured in a Hehat shape, and the reflector and the primary radiator are made of a plastic material coated with a conductive layer. It is possible to obtain an extremely lightweight and inexpensive circularly polarized antenna suitable for receiving satellite broadcasts by general viewers.

殊に、本発明円偏波アンテナに円形導波管を用いて円偏
波の電波を給電する場合には、本発明アンテナにおける
ヒーハット型一次放射器を先端部に所要のスロット放射
部を設け、かつ端面を短絡した円形導波管のみによって
極めて簡単な構造に構成することができる。
In particular, when feeding circularly polarized radio waves to the circularly polarized antenna of the present invention using a circular waveguide, the Hehat type primary radiator in the antenna of the present invention is provided with a required slot radiating portion at the tip; Moreover, it can be configured with an extremely simple structure using only a circular waveguide with short-circuited end faces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放送衛星から送出した電波の地上受信点におけ
る偏波面のずれを説明するためのべクトル線図、第2図
は本発明によるヒーハット型円偏波パラボラアンテナの
概略構成を模式的に示す側面図、第3図は第2図示の本
発明アンテナにおける一次放射器の構成例を示す斜視図
、第4図aおよびbは第3図示の一次放射器における円
偏波放射部の構成例をそれぞれ示す側面図および断面図
、第5図aおよびbは第4図示の円偏波放射部の作用を
説明するだめの側面図および断面図である。 1・・・パラボラ型反射器、2・・・一次放射器、3・
・・受信機、4・・・導波管取付部、5・・・矩形導波
管、6・・・矩形一円形変換部、7・・・円偏波発生部
、8・・・導波管テーバ一部、9・・・スロット、10
・・・整合板、11・・・円偏波放射部、12.13・
・・誘電体ブロック。
Fig. 1 is a vector diagram for explaining the shift in the plane of polarization at the ground receiving point of radio waves transmitted from a broadcasting satellite, and Fig. 2 schematically shows the schematic configuration of the Hehat type circularly polarized parabolic antenna according to the present invention. FIG. 3 is a perspective view showing an example of the configuration of the primary radiator in the antenna of the present invention shown in FIG. 2, and FIGS. FIGS. 5a and 5b are a side view and a sectional view showing the operation of the circularly polarized wave radiating section shown in FIG. 4, respectively. 1... Parabolic reflector, 2... Primary radiator, 3...
... Receiver, 4... Waveguide mounting section, 5... Rectangular waveguide, 6... Rectangular-to-circular conversion section, 7... Circularly polarized wave generating section, 8... Waveguide Part of pipe taber, 9...Slot, 10
... Matching plate, 11... Circularly polarized wave radiation section, 12.13.
...Dielectric block.

Claims (1)

【特許請求の範囲】[Claims] 1 パラボラ型反射器の中心部においてその反射器の反
射面を貫通してそのパラボラ型反射器の軸方向に導波管
を延在させ、その導波管の少なくとも先端部を円形導波
管をもって構成し、前記パラボラ型反射器の焦点の近傍
において前記円形導波管の管壁に互に90度の間隔を有
する4個のスロットの組を前記円形導波管の軸方向に所
定の間隔をおいて2組配設するとともに、前記円形導波
管の端面を短絡したことを特徴とする円偏波アンテナ。
1 A waveguide is extended in the axial direction of the parabolic reflector through the reflective surface of the reflector in the center of the parabolic reflector, and at least the tip of the waveguide is provided with a circular waveguide. a set of four slots spaced apart at 90 degrees from each other in the tube wall of the circular waveguide near the focal point of the parabolic reflector at a predetermined interval in the axial direction of the circular waveguide; 1. A circularly polarized wave antenna, characterized in that two sets of the circular waveguides are arranged at the same time, and the end faces of the circular waveguides are short-circuited.
JP9974775A 1975-08-19 1975-08-19 Emhenpa antenna Expired JPS587084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9974775A JPS587084B2 (en) 1975-08-19 1975-08-19 Emhenpa antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9974775A JPS587084B2 (en) 1975-08-19 1975-08-19 Emhenpa antenna

Publications (2)

Publication Number Publication Date
JPS5224058A JPS5224058A (en) 1977-02-23
JPS587084B2 true JPS587084B2 (en) 1983-02-08

Family

ID=14255583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9974775A Expired JPS587084B2 (en) 1975-08-19 1975-08-19 Emhenpa antenna

Country Status (1)

Country Link
JP (1) JPS587084B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759923A (en) * 1980-09-29 1982-04-10 Sumitomo Naugatuck Co Ltd Production of copolymer latex

Also Published As

Publication number Publication date
JPS5224058A (en) 1977-02-23

Similar Documents

Publication Publication Date Title
US9768508B2 (en) Antenna system for simultaneous triple-band satellite communication
EP2020053B1 (en) Integrated waveguide antenna and array
EP0456034B1 (en) Bicone antenna with hemispherical beam
US3623114A (en) Conical reflector antenna
US4343005A (en) Microwave antenna system having enhanced band width and reduced cross-polarization
US9246234B2 (en) Antenna for multiple frequency bands
US4168504A (en) Multimode dual frequency antenna feed horn
CN106450738B (en) High-gain double-circle polarization plate aerial
US6124833A (en) Radial line slot antenna
US4972199A (en) Low cross-polarization radiator of circularly polarized radiation
US3305870A (en) Dual mode horn antenna
US3500419A (en) Dual frequency,dual polarized cassegrain antenna
EP0005487A1 (en) Parabolic reflector antenna with optimal radiative characteristics
JPH07154136A (en) Slot array antenna of double circularly polarized wave tem mode
JP2003143051A (en) Reflector antenna and system for satellite
US5990836A (en) Multi-layered patch antenna
US20150288068A1 (en) Primary radiator
JPS5821847B2 (en) Emhenpa antenna
US4958162A (en) Near isotropic circularly polarized antenna
JP2004088185A (en) Shared antenna for circularly polarized wave
JPS587084B2 (en) Emhenpa antenna
JP2641944B2 (en) Traveling wave fed coaxial slot antenna
Lee A compact QK-band dual frequency feed horn
CN111293422B (en) Antenna for generating OAM mode group based on curved waveguide part slotting
Koli et al. A low-profile and efficient front-end antenna for point-to-point wireless communication links