JPS5869786A - Porous electroconductive sintered body and manufacture - Google Patents

Porous electroconductive sintered body and manufacture

Info

Publication number
JPS5869786A
JPS5869786A JP56166694A JP16669481A JPS5869786A JP S5869786 A JPS5869786 A JP S5869786A JP 56166694 A JP56166694 A JP 56166694A JP 16669481 A JP16669481 A JP 16669481A JP S5869786 A JPS5869786 A JP S5869786A
Authority
JP
Japan
Prior art keywords
sintered body
porous
metal
carbon
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56166694A
Other languages
Japanese (ja)
Other versions
JPS621355B2 (en
Inventor
和泉 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP56166694A priority Critical patent/JPS5869786A/en
Publication of JPS5869786A publication Critical patent/JPS5869786A/en
Publication of JPS621355B2 publication Critical patent/JPS621355B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は多孔性導電性焼結体およびその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a porous conductive sintered body and a method for manufacturing the same.

ガラス、石英、アルミナ等の多孔性焼結体に貴金属を焼
付けて得られる多孔性電極社公知(4$開昭49−1!
108711号公報) ”t”&、!#、この公知例に
おいては、所定の導電性を得るために金属膜を厚くする
必要があり、このためには金属塩溶液の含浸と加熱焼付
処理をくり返す必要があり工業的生産性を低下させる欠
点があった。1+化学反応における触媒や、電気化学反
応における電極として、前記公知例は、反応させるべき
物質を通過させ得ることが大きな特徴であったが、通過
性をよくするためには孔径の大きな焼結体を使用せねば
ならず、反応効率や導電性を良くするためには、内部表
面積が大で孔径の小さな焼結体を使用せねばならないと
いう矛盾が生じ九。
Known by Porous Electrode Co., Ltd., which is obtained by baking a noble metal onto a porous sintered body such as glass, quartz, alumina, etc.
Publication No. 108711) "t"&,!# In this known example, it is necessary to thicken the metal film in order to obtain a predetermined conductivity, and for this purpose, it is necessary to repeat impregnation with a metal salt solution and heat baking treatment, which reduces industrial productivity. There was a drawback. As a catalyst in a 1+ chemical reaction or an electrode in an electrochemical reaction, the major feature of the known examples is that they allow the substance to be reacted to pass through, but in order to improve the permeability, a sintered body with a large pore size is This creates a contradiction in that in order to improve reaction efficiency and conductivity, a sintered body with a large internal surface area and small pore diameter must be used.

本発明者はこのような欠点を改善するために種々の検討
を重ねた結果、基材となる焼結体にあらかじめ炭素を充
填しておき、この上に金属を焼付ければ、通過性のよい
孔径の大きな焼結体を使用しても、金属膜の有効面積を
増大させることができ、導電性や反応触媒としての性質
を改善することができることを見い出し本発明に到達り
、た。
As a result of various studies in order to improve these drawbacks, the inventors of the present invention have found that by filling the sintered body as a base material with carbon in advance and baking metal on top of it, it is possible to achieve good permeability. The present invention was achieved based on the discovery that even if a sintered body with a large pore diameter is used, the effective area of the metal film can be increased and the conductivity and properties as a reaction catalyst can be improved.

即ち、本発明は多孔性焼結体に炭素を充填し、この上に
金属を焼付けてなる多孔性導電性焼結体を提供するもの
である。
That is, the present invention provides a porous conductive sintered body which is obtained by filling a porous sintered body with carbon and baking metal onto the porous sintered body.

多孔性焼結体に炭素を充填する方法としては、カーボン
ブラックを顔料として含有する塗料を含浸させたり、炭
素微粉末を燈油、有機溶剤。
Porous sintered bodies can be filled with carbon by impregnating them with paint containing carbon black as a pigment, or by applying fine carbon powder to kerosene or organic solvents.

水等に分散させたものを含浸させ、しかる後に加熱、乾
燥、炭化処理によって焼結体中に炭素を析出させること
ができる。しかしながら炭素微粉末に粒径分布があると
、大きな粒子が孔の閉塞をおこしたり、小さな粒子が焼
結体から流失したりして、空隙中の炭素の分布状態が不
均一になる恐れがある。従って本発明者等はかかる欠点
のない製造方法を更に検討した結果、多孔性焼結体に有
機物を含浸させ、しかる後に有機物を加熱膨化させるこ
とにより炭素を均一に焼結体中に析出させることができ
ることを見い出した。従って、更に本発明は多孔性焼結
体に有機物を含浸させ、しかる後に有機物を加熱炭化さ
せることにより炭素を充填し、この上に金属を焼付ける
ことを特徴とする多孔性導電性焼結体の製造方法を提供
する本のである。
Carbon can be precipitated into the sintered body by impregnating it with a dispersion in water or the like, followed by heating, drying, and carbonization treatment. However, if the fine carbon powder has a particle size distribution, there is a risk that large particles may clog the pores or small particles may be washed away from the sintered body, resulting in uneven distribution of carbon in the pores. . Therefore, the present inventors further investigated a manufacturing method that does not have such drawbacks, and found that by impregnating a porous sintered body with an organic substance and then heating and expanding the organic substance, carbon can be uniformly precipitated in the sintered body. I discovered that it can be done. Therefore, the present invention further provides a porous conductive sintered body characterized by impregnating the porous sintered body with an organic substance, then heating and carbonizing the organic substance to fill it with carbon, and baking a metal thereon. This is a book that provides a method for manufacturing.

本発明において用いられる基材の多孔性焼結体としては
ガラス、石英、アルミナ、炭化けい素、陶器、a器等が
挙げられる。焼結体に対する気体や液体の通過性は、通
過する物質の粘性。
Examples of the porous sintered body of the base material used in the present invention include glass, quartz, alumina, silicon carbide, earthenware, and A-ware. The permeability of gas and liquid through a sintered body depends on the viscosity of the substance passing through it.

圧力差、および焼結体中の孔の大きさに依存するから、
孔径のみにより通過性を特定することはできないが、炭
素を充填したり、金属膜を形成させた時に孔の閉塞がお
こるようでは、多孔性であることの利点が失なわれるの
で、基材の焼結体は、粒径40ミクロン以上2000ミ
クロン以下の粒子を焼結したもので、空隙率が101以
上6011以下であることが望ましい。
Because it depends on the pressure difference and the size of the pores in the sintered body,
Although it is not possible to determine permeability based on the pore diameter alone, if the pores become clogged when filled with carbon or formed with a metal film, the advantage of being porous will be lost, so The sintered body is obtained by sintering particles having a particle size of 40 microns or more and 2000 microns or less, and preferably has a porosity of 101 or more and 6011 or less.

また炭素を充填した後の空隙率が少くとも5−以上であ
ることが望ましい。このような焼結体においては、最小
孔径は約6ミクロンとなり、気体や液体を支障なく通過
させることができる。
Further, it is desirable that the porosity after filling with carbon is at least 5- or more. In such a sintered body, the minimum pore diameter is about 6 microns, allowing gas and liquid to pass through it without any problem.

多孔性焼結体に含浸させる有機物としてはグルコース、
i*m、フルフリルアルコール、アルキルフェノール、
アルキルベンゼン等の51環または6員環を有する化合
物が好ましい。グルコース、JIII軸等は水溶液の形
で含浸させることもできる。
The organic substances impregnated into the porous sintered body include glucose,
i*m, furfuryl alcohol, alkylphenol,
Compounds having 51 rings or 6-membered rings such as alkylbenzene are preferred. Glucose, JIII axis, etc. can also be impregnated in the form of an aqueous solution.

本発明において用いられる金属としては銅。The metal used in the present invention is copper.

鉄、ニッケル、クロム、錫、貴金属(Ag、ムu、Pt
Iron, nickel, chromium, tin, precious metals (Ag, Mu, Pt
.

工r、Os、Pa、Ru) jたはこれらの合金が挙げ
られる。
(R, Os, Pa, Ru) or alloys thereof.

又、金属を焼付ける方法としては、金属の塩の水溶液ま
たは有機溶剤溶液をあらかじめ炭素を充填した多孔性焼
結体に含浸させ、しかる後に金属を析出させる方法、金
属酸化物或いは水酸化物の懸濁液をあらかじめ炭素を充
填した多孔性焼結体に含浸させ、炭素により酸化物を九
は水酸化物を加熱還元して金属を析出させる方法等があ
る。
In addition, methods for baking metals include impregnating a porous sintered body filled with carbon in advance with an aqueous solution or organic solvent solution of a metal salt, and then precipitating the metal, or baking a metal oxide or hydroxide. There is a method of impregnating a porous sintered body filled with carbon in advance with a suspension, and heating and reducing oxides or hydroxides with carbon to precipitate metals.

以下実施例により本発明を更に詳述する。The present invention will be explained in more detail with reference to Examples below.

実施例 1 粒径100ないし200ミクロンの炭化けい素から製造
された空隙率的40qIIの市販ビトリファイド砥石に
、空隙率が約38−になるよう炭素を充填し、この上に
塩化白金酸S液を含浸させて、白金量が150 MW/
an’になるように白金を焼付けた。
Example 1 A commercially available vitrified grindstone with a porosity of 40qII made from silicon carbide with a particle size of 100 to 200 microns was filled with carbon so that the porosity was about 38-, and a chloroplatinic acid S solution was poured on top of it. Impregnated with platinum amount of 150 MW/
Platinum was baked so that it became an'.

同じビトリファイド砥石に炭素を充填せずに白金を15
0 Q/cm’  になるよう焼付けたものと、粒径1
00ないし200ζクロンのガラス粉の焼結体(空隙本
釣42−)に同量の白金を焼付けたものを用意し、0.
I N KOtを電解質とし、ステンレス板を陰極とし
、導電性多孔性焼結体を陽極として、水の電解実験を行
ない、第1図に示す結果を得た。
15% platinum without filling the same vitrified grinding wheel with carbon.
0 Q/cm' and one with a particle size of 1
A sintered body of glass powder of 0.00 to 200 ζ chrome (gap hole 42-) is prepared by baking the same amount of platinum.
A water electrolysis experiment was conducted using I N KOt as an electrolyte, a stainless steel plate as a cathode, and a conductive porous sintered body as an anode, and the results shown in FIG. 1 were obtained.

第1図において1は炭素充填したビ) IJファイド砥
石、2i1を炭素充填していないビトリファイド砥石、
SU焼結ガラスにそれぞれ白金を焼付けたものを陽極と
せる実験の結果であり、4Fi白金平板を陽極とした場
合の実験結果である。
In Figure 1, 1 is a vitrified whetstone filled with carbon, and 2i1 is a vitrified whetstone that is not filled with carbon.
These are the results of an experiment using SU sintered glass with platinum baked on each as an anode, and the results of an experiment using a 4Fi platinum flat plate as an anode.

曲線が低電位側にあるほど、一定電流密度を得るための
電圧が低くてよいので、電極内部における損失が少く、
電極としての性能がすぐれていることを示している。
The lower the potential of the curve, the lower the voltage needed to obtain a constant current density, and the less loss inside the electrode.
This shows that the performance as an electrode is excellent.

5と4の比較から、多孔性にすることによる49−1!
50878号公報および文献「潤滑旦、 208. (
1974) Jから公知である。
From the comparison of 5 and 4, 49-1 by making it porous!
Publication No. 50878 and the document "Lubrication Dan, 208. (
1974) is known from J.

2と3の比較から、導電性(炭化けい素)焼結体と絶縁
性(ガラス)焼結体とでは導電性焼結体のほうがややす
ぐれていることがわかる。
From the comparison of 2 and 3, it can be seen that the conductive sintered body is slightly superior to the conductive (silicon carbide) sintered body and the insulated (glass) sintered body.

[7かし本発明の目的は電極に限定されるものではない
から、使用目的によっては2と3ti同等と考えられる
[7 However, since the purpose of the present invention is not limited to electrodes, 2 and 3ti may be considered equivalent depending on the purpose of use.

1と2は基材の材質9粒度、空隙率がほぼ同等で、炭素
充填の有無のみが差であるから、性能の差は炭素光*に
ょる効果を示すものであゐ。
No. 1 and No. 2 have almost the same grain size and porosity of the base material, and the only difference is the presence or absence of carbon filling, so the difference in performance is due to the effect of carbon light*.

3と4および1と2の比較は、いずれも白金の実効表面
積の増加による性能の向上を示しているから、本発明の
焼結体は化学反応触媒としてもすぐれていると結論でき
る。
Comparisons between No. 3 and No. 4 and No. 1 and No. 2 show improved performance due to an increase in the effective surface area of platinum, so it can be concluded that the sintered body of the present invention is also excellent as a chemical reaction catalyst.

以上の結果から、基材の焼結体の材質や空隙率が等しく
、焼付ける金属の種類と焼付量が同等でも、縦索を充填
することにょシ多孔性導電性焼結体の性質(金属の有効
表面積)が改善されることか明らかであるが0、炭素を
充填する時に孔の閉塵や空隙率の著しい低下がおこると
、本発明の目的である通気性または通液性の良い焼結体
を得ることが困離となる。
From the above results, even if the material and porosity of the base sintered body are the same, and the type and amount of baked metal are the same, the properties of the porous conductive sintered body (metallic It is clear that the effective surface area of It becomes difficult to obtain a body.

以下の実施例によれば、上に述べたような欠点がなく、
良好な多孔性導電性焼結体を得ることができる。
According to the following examples, there are no drawbacks as mentioned above,
A good porous conductive sintered body can be obtained.

実施例 2 粒径100ないし200ミクロンのアルミナから製造さ
れた市販ビトリファイド砥石にフルフリルアルコールを
含浸し、鋼製容器に入れて点火してから、排気管付のふ
たをし、排気管から炎が出なくなってから徐々に加熱し
、約500℃に15分間保持してフルフリルアルコール
を炭化させた。フルフリルアルコール含浸前の空隙率に
約40チであったが、炭素充填後には約151sになっ
た。炭素充填後に特開昭49−130878号公報に記
載された方法により白金量が25 q/aRゝになるよ
う白金を焼付けた・以上の方法により、空隙率が約15
優で導電性のよい焼結体(ビトリファイド砥石)が得ら
れた。
Example 2 A commercially available vitrified grinding wheel made from alumina with a grain size of 100 to 200 microns was impregnated with furfuryl alcohol, placed in a steel container, ignited, and then covered with a lid with an exhaust pipe so that flames were emitted from the exhaust pipe. After it stopped coming out, it was gradually heated and kept at about 500°C for 15 minutes to carbonize the furfuryl alcohol. The porosity before impregnation with furfuryl alcohol was about 40s, but after carbon filling it became about 151s. After filling with carbon, platinum was baked so that the amount of platinum was 25 q/aR by the method described in JP-A-49-130878. By the above method, the porosity was reduced to about 15 q/aR.
A sintered body (vitrified grindstone) with excellent conductivity was obtained.

実施例 5 粒@40ないし150建クロンのガラス粉末より製造さ
れた焼結ガラス(空隙本釣12−)を鋼製容器に入れて
、この上に、空隙を温良すに十分な量のグルコースを含
むゲルコール50嗟水溶液を注ぎ、水分が蒸発して、グ
ルコースがカラメル状になり、はとんど発泡しなくなる
まで100〜150℃に加熱した。次に容器に排気管を
有するふたを取りつけ、15〜sO分間かけて500℃
まで昇温し炭化させた。炭化終了後ガラス焼結体の空隙
率は約8−となり、含浸に要したグルコースの重量の約
sonの炭素がガラス焼結体に充填された。
Example 5 A sintered glass made from glass powder with grains of 40 to 150 square meters (Kogap Honzuri 12-) was placed in a steel container, and an amount of glucose sufficient to warm the void was poured on top of it. A 50-ounce aqueous solution containing gelcol was poured into the flask and heated to 100-150° C. until the water evaporated, the glucose became caramelized, and hardly foamed. Next, attach a lid with an exhaust pipe to the container and heat to 500°C for 15 to sO minutes.
The temperature was raised to 100% and carbonized. After the carbonization was completed, the porosity of the glass sintered body was approximately 8 -, and the glass sintered body was filled with carbon in an amount of approximately 1 son, which is the weight of glucose required for impregnation.

次いで、炭素の充填されたガラス焼結体をガラス皿に移
し、公知の銀鏡反応試薬(硝酸銀アンモニア溶液)を含
浸させてから50〜80℃に加熱して銀を析出させた。
Next, the glass sintered body filled with carbon was transferred to a glass dish, impregnated with a known silver mirror reaction reagent (silver nitrate ammonia solution), and heated to 50 to 80°C to precipitate silver.

銀が十分に析出してから、焼結体を水でゆすぎ再び鋼製
容器にもどして、最高温度500℃になるまでゆっくり
加熱して、水、硝酸、アンモニアを除去した。
After sufficient silver had precipitated, the sintered body was rinsed with water, returned to the steel container, and slowly heated to a maximum temperature of 500° C. to remove water, nitric acid, and ammonia.

以上の操作で約715の銀が充填され、空隙率が約8−
で導電性が良好な焼結体が得られた。
With the above operations, approximately 715 silver particles are filled, and the porosity is approximately 8-8.
A sintered body with good conductivity was obtained.

実施例 4 粒径が150ないし250ミクロンの石英砂を原料とせ
る焼結体(空隙率約45饅)に、0.1慢の硫酸を含む
フルフリルアルコール100重量部と水35重量部の混
合物を含浸し、80〜110℃に加熱して硬化させた後
350〜son℃に加熱して炭化させる。炭化終了後焼
結体が冷却してから、目皿F斗の上に敷いた1紙の上に
移し、酸化銅微粉末を水に分散させた液を注ぎ、酸化鋼
を焼結体中に沈積させる。次いで焼結体を電気炉に移し
最高温度950〜1000℃に加熱して酸化鋼を還元し
、銅を析出させた。以上の方法により、孔径15〜35
0ミクロンの孔を有し、空隙率約24チの多孔性導電性
焼結体が得られた。
Example 4 A mixture of 100 parts by weight of furfuryl alcohol containing 0.1% sulfuric acid and 35 parts by weight of water was added to a sintered body made from quartz sand with a grain size of 150 to 250 microns (porosity of about 45). is impregnated, heated to 80 to 110°C to harden, and then heated to 350 to 350°C to carbonize. After the sintered body has cooled down after carbonization, it is transferred to a sheet of paper placed on a perforated plate, and a liquid containing fine copper oxide powder dispersed in water is poured into the sintered body. deposit. Next, the sintered body was transferred to an electric furnace and heated to a maximum temperature of 950 to 1000°C to reduce the oxidized steel and precipitate copper. By the above method, the pore size is 15 to 35.
A porous conductive sintered body having 0 micron pores and a porosity of about 24 cm was obtained.

実施例 5 炭素と酸化鋼の充填を実施例4と同方法にて行ない、次
いで焼結体を石英管状炉の中に入れ、COガスを通しな
がら250〜550℃に加熱E7て酸化鋼管還元した。
Example 5 Filling with carbon and oxidized steel was performed in the same manner as in Example 4, and then the sintered body was placed in a quartz tubular furnace and heated to 250 to 550°C while CO gas was passed through E7 to reduce the oxidized steel tube. .

この結果孔径15〜50ミクロン、空隙率的12−の導
電性の良い焼結体が得られた。銅の充填量は約450 
Wll/eraであった。
As a result, a highly conductive sintered body with a pore diameter of 15 to 50 microns and a porosity of 12- was obtained. The amount of copper filling is approximately 450
It was Wll/era.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で行なった水の電解実験の結果を示す
グラフである。 出願人代理人  古 谷    馨
FIG. 1 is a graph showing the results of the water electrolysis experiment conducted in Example 1. Applicant's agent Kaoru Furuya

Claims (1)

【特許請求の範囲】 1、 多孔性焼結体に炭素を充填し、この上に金属を焼
付けてなる多孔性導電性焼結体。 2、 多孔性焼結体がガラス、石英、アルミナ。 炭化けい素、陶器又は磁器である特許請求の範囲第1)
J記載の多孔性導電性焼結体。 5、金属が銅、鉄、ニッケル、クロム、錫、貴金属また
はこれらの合金である特許請求の範囲第1項記載の多孔
性導電性焼結体。 4、 多孔性焼結体に有機物を含浸させ、しかる後に有
機物管加熱炭化させることにより炭素を充填し、この上
に金属を焼付けることを特徴とする多孔性導電性焼結体
の製造方法。 5、  有機物がグルコース、am、フルフリルアルコ
ール、アルキルフェノール、アルキルベンゼンから選ば
れる5員環またff16員環を有する化合物である特許
請求の範S第4項記載の多孔性導電性焼結体の製造方法
。 6、金属の焼付を、金属の塩の水溶液または有機溶剤溶
液をあらかじめ炭素を充填した多孔性焼結体に含浸させ
、しかる後に金属を析出させることにより行う特許請求
の範囲第4項記載の多孔性導電性焼結体の製造方法。 乙 金属の焼付を、金属酸化物或いは水酸化物の懸濁液
を、あらかじめ炭素を充填した多孔性焼結体に含浸させ
、炭素によシ駿化物または水酸化物を加熱還元して金属
を析出させることによ如行う特許請求の範囲第4項記載
の多孔性導電性焼結体の製造方法。
[Scope of Claims] 1. A porous conductive sintered body obtained by filling a porous sintered body with carbon and baking metal onto the porous sintered body. 2. Porous sintered bodies are glass, quartz, and alumina. Claim 1) which is silicon carbide, ceramic or porcelain
The porous conductive sintered body described in J. 5. The porous conductive sintered body according to claim 1, wherein the metal is copper, iron, nickel, chromium, tin, a noble metal, or an alloy thereof. 4. A method for producing a porous conductive sintered body, which comprises impregnating the porous sintered body with an organic substance, then heating and carbonizing the organic substance tube to fill it with carbon, and baking a metal thereon. 5. The method for producing a porous conductive sintered body according to claim S, item 4, wherein the organic substance is a compound having a 5-membered ring or a 16-membered ring selected from glucose, am, furfuryl alcohol, alkylphenol, and alkylbenzene. . 6. The porous structure according to claim 4, in which the metal is baked by impregnating a porous sintered body filled with carbon in advance with an aqueous solution or an organic solvent solution of a metal salt, and then precipitating the metal. A method for manufacturing a conductive sintered body. B. Baking of metal is done by impregnating a porous sintered body filled with carbon in advance with a suspension of metal oxide or hydroxide, and reducing the sulfide or hydroxide with carbon by heating. A method for producing a porous conductive sintered body according to claim 4, which is carried out by precipitation.
JP56166694A 1981-10-19 1981-10-19 Porous electroconductive sintered body and manufacture Granted JPS5869786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56166694A JPS5869786A (en) 1981-10-19 1981-10-19 Porous electroconductive sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56166694A JPS5869786A (en) 1981-10-19 1981-10-19 Porous electroconductive sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS5869786A true JPS5869786A (en) 1983-04-26
JPS621355B2 JPS621355B2 (en) 1987-01-13

Family

ID=15836003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56166694A Granted JPS5869786A (en) 1981-10-19 1981-10-19 Porous electroconductive sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS5869786A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286983A (en) * 1988-05-12 1989-11-17 Toshiba Ceramics Co Ltd Carbonaceous composite material
JPH11310893A (en) * 1998-03-03 1999-11-09 Elf Atochem Sa Bimetal-carrying catalyst using platinum or silver as base, its production and use in electrochemical cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286983A (en) * 1988-05-12 1989-11-17 Toshiba Ceramics Co Ltd Carbonaceous composite material
JPH11310893A (en) * 1998-03-03 1999-11-09 Elf Atochem Sa Bimetal-carrying catalyst using platinum or silver as base, its production and use in electrochemical cell

Also Published As

Publication number Publication date
JPS621355B2 (en) 1987-01-13

Similar Documents

Publication Publication Date Title
US5242882A (en) Catalyst for the production of nitric acid by oxidation of ammonia
KR100300805B1 (en) Manufacturing method of catalyst carrier
US3964933A (en) Carbon article including electrodes and methods of making the same
JPS63252908A (en) Immobilized oxide of metallic fine particle, production thereof, oxidation catalyst, reduction catalyst, combustible gas sensor element and catalyst for electrode
US5217939A (en) Catalyst for the prduction of nitric acid by oxidation of ammonia
JP2017524634A (en) Method for producing porous graphitized carbon material covered with supported catalyst and metal nanoparticles
JPS609858B2 (en) Method for producing carrier material for noble metal catalyst
Ko et al. Ordered mesoporous tungsten carbide nanoplates as non-Pt catalysts for oxygen reduction reaction
JPH0857317A (en) Platinum alloy catalyst and its manufacturing process
RU2456056C2 (en) Ceramic filter with carbon coat, and method of its production
JPH0642945B2 (en) Catalyst carrier and catalyst for treating exhaust gas of internal combustion engine and method for producing the same
US5256387A (en) Catalyst for the production of nitric acid by oxidation of ammonia
JP5655723B2 (en) Method for producing metal cluster supported catalyst
JP2011236070A (en) Filter for warming fluid and method for manufacturing the same
CN111054329A (en) Aluminum-supported noble metal monolithic catalyst and preparation method and application thereof
JP5515635B2 (en) Noble metal-supported silicon carbide particles, production method thereof, catalyst containing the same, and production method thereof
JPH05193943A (en) Method for preparing reduced titanium oxide
JPS5869786A (en) Porous electroconductive sintered body and manufacture
JPS6011428B2 (en) Manufacturing method of oxygen concentration battery
JPH0753577B2 (en) Method for producing titanium-based oxide with ultrafine gold particles immobilized
KR100418737B1 (en) Metal oxide coated SiC foaming catalyst carrier and its catalytic system
CN1063411C (en) Method of preparing (ALxOx+Tibx) foamed ceramic filter by self-overgrowth high-temp. synthesis control
JPS59160536A (en) Combustion-catalyst and its manufacture
CN113546662A (en) Graphite phase carbon nitride/porous ceramic composite material and preparation method and application thereof
JP2597570B2 (en) High temperature combustion catalyst and method for producing the same