JPS586709B2 - Slag-based inorganic hardened material - Google Patents

Slag-based inorganic hardened material

Info

Publication number
JPS586709B2
JPS586709B2 JP4809478A JP4809478A JPS586709B2 JP S586709 B2 JPS586709 B2 JP S586709B2 JP 4809478 A JP4809478 A JP 4809478A JP 4809478 A JP4809478 A JP 4809478A JP S586709 B2 JPS586709 B2 JP S586709B2
Authority
JP
Japan
Prior art keywords
slag
based inorganic
gypsum
tsh
alkaline compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4809478A
Other languages
Japanese (ja)
Other versions
JPS54139632A (en
Inventor
久保雅昭
今津強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4809478A priority Critical patent/JPS586709B2/en
Publication of JPS54139632A publication Critical patent/JPS54139632A/en
Publication of JPS586709B2 publication Critical patent/JPS586709B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 この発明は建築用材料等に用いられるスラグ系無機硬化
体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a slag-based inorganic hardened body used for building materials and the like.

一般に、高炉スラグのような水硬性スラグを単独で用い
てスラグ系無機硬化体を製造する場合、高炉スラグの水
和硬化が遅いため、スラグ系無機硬化体の製造に長時間
を要し量産が困難であった,また、得られた無機硬化体
が高密度化し、かつその強度も小さかった。
Generally, when a hydraulic slag such as blast furnace slag is used alone to produce a slag-based inorganic hardened body, since the hydration hardening of the blast furnace slag is slow, it takes a long time to manufacture the slag-based inorganic hardened body, making mass production difficult. In addition, the obtained inorganic cured product had high density and low strength.

一方、高炉スラグと石こうを併用してスラグ系無機硬化
体を製造する場合にも、やはり高炉スラグの水和硬化が
遅いために無機硬化体の製造に長時間を要していた。
On the other hand, even when blast furnace slag and gypsum are used in combination to produce a slag-based inorganic hardened body, it still takes a long time to produce the inorganic hardened body because the hydration hardening of the blast furnace slag is slow.

ところが、この場合には、高炉スラグ単独の場合と異な
り、低密度のスラグ糸無機硬化体が得られ、かつ強度も
スラグ単独で製造したものよりも大きかった。
However, in this case, unlike the case of using blast furnace slag alone, a low-density inorganic cured slag yarn was obtained, and the strength was also greater than that produced using slag alone.

しかしながら、このようにして製造されたスラグ系無機
硬化体中には、水に可溶な石こうが含有されているため
、耐水性が著しく低いという問題があった。
However, since the slag-based inorganic hardened body produced in this manner contains gypsum that is soluble in water, there is a problem in that the water resistance is extremely low.

そこで、この発明の目的は、量産性に富み、低密度で、
強度が大きく、しかも耐水性に富むスラグ系無機硬化体
を提供することにある。
Therefore, the purpose of this invention is to achieve high mass productivity, low density,
It is an object of the present invention to provide a slag-based inorganic cured body having high strength and excellent water resistance.

つぎに、この発明を詳しく説明する。Next, this invention will be explained in detail.

この発明者等は、高炉スラグのような水硬性スラグと石
こうを併用したスラグ系無機硬化体の耐水性の向上につ
いて研究を重ねた結果、水硬性スラグと石こうを併用し
た硬化体用組成物に、さらにカルシウムアルミネートモ
ノサルフエートハイドレート(3CaO−AI。
As a result of repeated research on improving the water resistance of slag-based inorganic hardened bodies that use a combination of hydraulic slag and gypsum such as blast furnace slag, the inventors have developed a composition for hardened bodies that uses a combination of hydraulic slag and gypsum. , and further calcium aluminate monosulfate hydrate (3CaO-AI.

03・CaS04・nH20,nはおおむね12の値を
とる、以下これをMSHと略す)とアルカリ性化合物を
配合すると、水硬性スラグの水和硬化が促進されて硬化
体の製造速度が速くなり、かつスラグ系無機硬化体の耐
水性が向上することを見い出した。
03・CaS04・nH20, n takes a value of approximately 12 (hereinafter abbreviated as MSH) and an alkaline compound accelerates the hydration hardening of hydraulic slag and increases the production speed of the hardened product. It has been found that the water resistance of slag-based inorganic cured products is improved.

すなわち、水硬性スラグと石こうを併用した硬化体用組
成物に、MSHとアルカリ性化合物を配合することによ
り、石こうとMSHが水の存在下において反応してカル
シウムアルミネートトリサルフエートハイドレート(3
CaCIAl203・3CaSO4。
That is, by blending MSH and an alkaline compound into a composition for a cured body containing hydraulic slag and gypsum, the gypsum and MSH react in the presence of water to form calcium aluminate trisulfate hydrate (3
CaCIAI203・3CaSO4.

nH20,nはおおむね31〜32の値をさる、以下こ
れをTSHと略す)の針状結晶になって水に不溶となり
、さらにアルカリ性化合物が水硬性スラグの水和硬化を
促進する。
nH20,n has a value of approximately 31 to 32 (hereinafter abbreviated as TSH)) becomes insoluble in water, and furthermore, the alkaline compound promotes hydration hardening of the hydraulic slag.

その結果、耐水性に富むスラグ系無機硬化体が短時間で
得られる。
As a result, a slag-based inorganic cured body with high water resistance can be obtained in a short time.

そして、このスラグ系無機硬化体は、図面に示すように
、大きな塊状のスラグ水和硬化体1にTSHの針状結晶
2が付着し、このような形状のものが他のものと相互に
TSH針状結晶2のからみ合いで連結して構成されてい
る。
As shown in the drawing, this slag-based inorganic hardened body has TSH needle-like crystals 2 attached to a large block of slag hydrated hardened body 1, and crystals of this shape mutually form TSH. It is composed of needle-like crystals 2 connected by intertwining.

したがって、rSH針状結晶2のからみ合いによる補強
効果によって高強度になるとともに、その結晶によって
空隙が大きくなり低密度になっている。
Therefore, the reinforcing effect due to the entanglement of the rSH needle crystals 2 provides high strength, and the crystals increase the voids, resulting in a low density.

この発明で用いる水硬性スラグとしては、例えば高炉ス
ラグがあげられる。
Examples of the hydraulic slag used in this invention include blast furnace slag.

しかしながら、これに限定されるものではなく、水硬性
を有するスラグであればどのようなものを用いてもよい
However, the slag is not limited to this, and any hydraulic slag may be used.

MSHとしては、通常の方法、例えばCaO成分原料と
、Al203成分原料と、CaS04成分原料とをほぼ
3:1:1のモル比で配合し、湿熱合成して得られたも
のが用いられる。
MSH is obtained by a conventional method, for example, by blending a CaO component raw material, an Al203 component raw material, and a CaS04 component raw material in a molar ratio of approximately 3:1:1, and performing wet heat synthesis.

石こうとしては、主に2水石こうが用いられるが半水石
こうでも無水石こうでも用いることができる。
As the gypsum, dihydrate gypsum is mainly used, but hemihydrate gypsum or anhydrous gypsum can also be used.

これらの3成分は、その使用量を、スラグ系無機硬化体
中において水硬性スラグ(S)とTSH(T)が重量比
でS/T=0.1/1〜4/1になるように選んで硬化
体用組成物中に含有させることが好ましい。
These three components are used in amounts such that the weight ratio of hydraulic slag (S) and TSH (T) in the slag-based inorganic hardened body is S/T = 0.1/1 to 4/1. It is preferable to select one and include it in the composition for a cured product.

TSHに対する水硬性スラグの割合が、前述の範囲を下
まわるとスラグによる耐水性の付与が不十分となり、T
SHのみからなる無機硬化体に比較して強度が小さくな
る。
If the ratio of hydraulic slag to TSH is below the above-mentioned range, the water resistance provided by the slag will be insufficient, and T
The strength is lower than that of an inorganic cured body consisting only of SH.

この場合には、スラグが単なる充填剤として作用するも
のと考えられる。
In this case, it is thought that the slag acts simply as a filler.

逆に、TSHに対する水硬性スラグの割合が4/1より
も小さくても、1.2/1以上になると、TSHによる
強度補強効果が不十分となるため、スラグ系無機硬化体
の強度が低下するとともに、低密度のものが得られにく
くなる。
On the other hand, even if the ratio of hydraulic slag to TSH is smaller than 4/1, if it becomes 1.2/1 or more, the strength reinforcing effect of TSH becomes insufficient, and the strength of the slag-based inorganic cured product decreases. At the same time, it becomes difficult to obtain a low-density product.

また、MSHと石こうの配合割合等が不適正であってT
SH化が完全に行われないで、いずれかが残存すると無
機硬化体の強度発現が不十分になる。
In addition, the mixing ratio of MSH and gypsum is inappropriate and T
If SH conversion is not completed and any of them remains, the strength of the inorganic cured product will be insufficient.

特に石こうが残存すると強度が著しく低下する。In particular, if gypsum remains, the strength will drop significantly.

したがってそれらを完全に反応させることが好ましい。Therefore, it is preferable to allow them to react completely.

また、スラグの水利硬化が不十分な場合には、無機硬化
体の耐水性がやや悪くなる。
Furthermore, if the water-based hardening of the slag is insufficient, the water resistance of the inorganic hardened product will be somewhat poor.

これはスラグが耐水性に寄与することを示す。This indicates that slag contributes to water resistance.

アルカリ性化合物としては、例えばNaOH,Ca−(
OH)2,Na2CO3があげられる。
Examples of alkaline compounds include NaOH, Ca-(
OH)2, Na2CO3.

このようなアルカリ性化合物は、硬化体用組成物中に0
.1〜5.0重量%(以下係と略す)含有されるように
その使用量を選ぶことが好ましい。
Such an alkaline compound is contained in the composition for the cured product.
.. It is preferable to select the amount used so that it is contained in an amount of 1 to 5.0% by weight (hereinafter abbreviated as ``kaku'').

アルカリ性化合物の含有量がその範囲を下まわると効果
が小さくスラグの硬化促進作用が小さくなり、逆にその
範囲を上まわると、MSHのTSH化反応を著しく遅延
するとともにスラグの水利硬化の促進作用が小さくなる
If the content of alkaline compounds is below this range, the effect will be small and the effect of promoting hardening of slag will be small.On the other hand, if the content of alkaline compounds is above this range, the TSH conversion reaction of MSH will be significantly delayed and the effect of promoting water hardening of slag will be reduced. becomes smaller.

最も好ましい範囲は0.5〜2.0係である。The most preferable range is 0.5 to 2.0.

つぎに、スラグ系無機硬化体の製法の一例について説明
すると、水硬性スラグ、MSH1石REおよびアルカリ
性化合物を所定の割合で配合し、これに水を加えて混練
してスラリ状にし、これを型枠中に流し込む。
Next, to explain an example of a method for manufacturing a slag-based inorganic hardened body, hydraulic slag, MSH1 stone RE, and an alkaline compound are mixed in a predetermined ratio, water is added and kneaded to form a slurry, and this is molded into a slurry. Pour into the frame.

ついで、それを養生する。この場合、水硬性スラグの水
和硬化はアルカリ性化合物の添加により促進され、常温
では硬化速度がやや遅いが、60゜〜80℃における加
熱により2〜5時間で硬化する。
Then, cultivate it. In this case, the hydration hardening of the hydraulic slag is promoted by the addition of an alkaline compound, and although the curing speed is rather slow at room temperature, it hardens in 2 to 5 hours by heating at 60° to 80°C.

一方、TSH化反応の反応速度は、アルカリ性化合物の
添加により、無添加系に比べて遅延する。
On the other hand, the reaction rate of the TSH conversion reaction is delayed by the addition of an alkaline compound compared to a system without the addition.

その結果、TSHの生成結晶が微細な針状結晶となり、
結晶相互のからみ合いの程度が強くなり強度発現に有効
に作用する。
As a result, the generated crystals of TSH become fine needle-like crystals,
The degree of intertwining between the crystals becomes stronger, which effectively affects the development of strength.

しかしながら、TSH化反応がこのように遅延しても、
60〜80℃で1〜5時間加熱することによりTSH化
反応は完結する。
However, even if the TSH reaction is delayed in this way,
The TSH conversion reaction is completed by heating at 60 to 80°C for 1 to 5 hours.

したがって、このような水硬性スラグの硬化状態および
TSHの生成状態を考慮すると、養生は、温度60〜8
0℃の湿空中で数時間行うことが好ましい。
Therefore, considering the hardening state of hydraulic slag and the production state of TSH, curing should be carried out at a temperature of 60 to 8
It is preferable to carry out the reaction in a humid atmosphere at 0° C. for several hours.

温度が60℃未満ではスラグの硬化が不充分となり、8
0℃を超えるとTSH化反応が起りにくくなる傾向が見
られる。
If the temperature is less than 60°C, the slag will not be sufficiently hardened, and 8
When the temperature exceeds 0°C, there is a tendency that the TSH conversion reaction becomes difficult to occur.

このようにして、低密度で、強度が大きく、耐水性に富
むスラグ系無機硬化体を短時間で得るこさができる。
In this way, a slag-based inorganic cured body having low density, high strength, and excellent water resistance can be obtained in a short time.

つぎに、実施例について比較例と合わせて説明する。Next, examples will be described together with comparative examples.

実施例1〜21,比較例1〜3 原料として下記のものを用いた。Examples 1 to 21, Comparative Examples 1 to 3 The following materials were used as raw materials.

水硬性スラグ:高炉スラグ粉砕品(商品名:エスメント
,新日本製鉄化学社製,ブ レーン値3500cr!/g〜4000 crt/g) MSH:オートクレープ中においてスラリ法で合成した
もの 石こう:2水石こう(試薬1級) アルカリ性化合物:NaOH,KOH,Ca−(OH)
2,(添加剤)NaC03(いずれも試薬1級)上記の
原料をつぎのように配合した。
Hydraulic slag: pulverized blast furnace slag (product name: Esment, manufactured by Nippon Steel Chemical Co., Ltd., Blaine value 3500 cr!/g - 4000 crt/g) MSH: Synthesized by slurry method in an autoclave Gypsum: Dihydrate gypsum (1st grade reagent) Alkaline compounds: NaOH, KOH, Ca-(OH)
2. (Additive) NaC03 (both are first grade reagents) The above raw materials were blended as follows.

すなわち、水硬性スラグをその配合量が配合固形分全量
に対して後記の第1表に示す割合になるように選んで配
合するとともに、アルカリ性化合物を、その配合量が配
合固形分全量に対して後記の第1表に示す割合になるよ
うに配合した。
That is, the hydraulic slag is selected and blended in such a way that its blending amount is in proportion to the total blended solid content as shown in Table 1 below, and the alkaline compound is blended in such a way that its blending amount is based on the total blended solid content. The ingredients were blended in proportions shown in Table 1 below.

そして、MSHと石こうを、TSH合成の理論比率(M
SH)/(石こう)=0.6470.36になるように
選んで配合した。
Then, the theoretical ratio of MSH and gypsum for TSH synthesis (M
It was selected and blended so that SH)/(gypsum)=0.6470.36.

つぎに、この配合物に、水を第1表の混水比(配合固形
分に対する配合水量=水重量/全固形分重量)になるよ
うに加えて攪拌混合してスラリをつくり、これを型枠中
に流し込んで同表に示す温度で同表に示す時間湿空養生
した。
Next, water is added to this mixture at the water mixing ratio shown in Table 1 (amount of water to blended solids = water weight/total solids weight), stirred and mixed to create a slurry, and this is molded into a mold. It was poured into a frame and cured in a humid air at the temperature shown in the table for the time shown in the table.

つぎに、それを型から外して40℃で乾燥し、スラグ系
無機硬化体を得た。
Next, it was removed from the mold and dried at 40°C to obtain a slag-based inorganic cured product.

比較例 4 MSHの使用を中止した。Comparative example 4 Use of MSH was discontinued.

それ以外は実施例1〜21と同様にしてスラグ系無機硬
化体を得た。
Other than that, a slag-based inorganic cured body was obtained in the same manner as in Examples 1 to 21.

以上の実施例および比較例におけるスラリの状態および
得られたスラグ系無機硬化体の性能試験の結果を第1表
に示す。
Table 1 shows the conditions of the slurry in the above Examples and Comparative Examples and the results of the performance tests of the obtained slag-based inorganic cured bodies.

第1表から明らかなように、実施例のスラグ達無機硬化
体は、MSHおよびアルカリ性化合物の添加により、吸
水低下率が小さく、低密度で、しかも短期間に高強度が
発現することがわかる。
As is clear from Table 1, it can be seen that the inorganic cured slags of Examples have a small rate of decrease in water absorption, a low density, and high strength in a short period of time due to the addition of MSH and an alkaline compound.

そして、スラグ量が多くなるに従ってその強度が向上し
ている。
As the amount of slag increases, its strength improves.

しかしながら、アルカリ性化合物の添加量が多くなった
り、養生が不充分でTSH化が不完全であると、硬化体
の強度発現が不充分になっている。
However, if the amount of alkaline compound added is too large or the TSH conversion is incomplete due to insufficient curing, the strength of the cured product is insufficient.

参考例 1,2 実施例1〜21の原料を用い、実施例1〜21と同様に
してそれらの原料を第2表のように配合し、さらにパル
プを配合固形分全量に対して5係になるように配合し実
施例1〜21と同様にしてスラリをつくった。
Reference Examples 1 and 2 Using the raw materials of Examples 1 to 21, these raw materials were blended as shown in Table 2 in the same manner as in Examples 1 to 21, and pulp was added to 5 parts of the total solid content of the blend. A slurry was prepared in the same manner as in Examples 1 to 21.

つぎに、これを抄造してスラグ系無機硬化体を得た。Next, this was made into paper to obtain a slag-based inorganic hardened body.

このようにして得られたスラグ系無機硬化体の性能試験
の結果を第2表に示した。
The results of the performance test of the slag-based inorganic cured product thus obtained are shown in Table 2.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明のスラグ系無機硬化体の硬化組織を説明
する説明図である。 1・・・・・・スラグ水和硬化体、2・・・・・・TS
Hの針状結晶。
The drawings are explanatory views for explaining the hardened structure of the slag-based inorganic hardened body of the present invention. 1...Slag hydrated hardened body, 2...TS
Needle crystals of H.

Claims (1)

【特許請求の範囲】 1 水硬性スラグさカルシウムアルミネートモノサルフ
エートハイドレートと石こうとアルカリ性化合物を主要
成分とする硬化体用組成物を硬化してなるスラグ系無機
硬化体。 2 前記アルカリ性化合物が、NaOH,KOH,Ca
(OH)2,NaCOsからなる群から選ばれた少なく
とも1つのアルカリ性化合物である特許請求の範囲第1
項記載のスラグ系無機硬化体。
[Scope of Claims] 1. A slag-based inorganic cured product obtained by curing a composition for a cured product whose main components are hydraulic slag, calcium aluminate monosulfate hydrate, gypsum, and an alkaline compound. 2 The alkaline compound is NaOH, KOH, Ca
Claim 1 is at least one alkaline compound selected from the group consisting of (OH)2, NaCOs.
The slag-based inorganic hardened body described in .
JP4809478A 1978-04-21 1978-04-21 Slag-based inorganic hardened material Expired JPS586709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4809478A JPS586709B2 (en) 1978-04-21 1978-04-21 Slag-based inorganic hardened material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4809478A JPS586709B2 (en) 1978-04-21 1978-04-21 Slag-based inorganic hardened material

Publications (2)

Publication Number Publication Date
JPS54139632A JPS54139632A (en) 1979-10-30
JPS586709B2 true JPS586709B2 (en) 1983-02-05

Family

ID=12793722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4809478A Expired JPS586709B2 (en) 1978-04-21 1978-04-21 Slag-based inorganic hardened material

Country Status (1)

Country Link
JP (1) JPS586709B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051650A (en) * 1983-08-29 1985-03-23 松下電工株式会社 Manufacture of inorganic hardened body
JP2710327B2 (en) * 1988-02-13 1998-02-10 電気化学工業株式会社 Low alkali cement composition

Also Published As

Publication number Publication date
JPS54139632A (en) 1979-10-30

Similar Documents

Publication Publication Date Title
GB2051031A (en) Process for producing a binder for slurry mortar and concrete
US4336069A (en) High strength aggregate for concrete
KR20010034109A (en) Process for producing dispersant for powdery hydraulic composition
US10968108B2 (en) Method for the manufacture of calcium silicate hydrate used as hardening accelerator in concrete and cement-based materials, calcium silicate hydrate manufactured with said method
CN115626805B (en) Slag gypsum-based cementing material and preparation method thereof
JPS5957934A (en) Manufacture of glass fiber reinforced concrete and low alka-line cement composition
JPH0520376B2 (en)
JPS586709B2 (en) Slag-based inorganic hardened material
GB2040906A (en) Composition for forming inorganic hardened products and process for producing inorganic hardened products therefrom
JP3813374B2 (en) Construction method of sprayed cement concrete using setting modifier slurry
JP4336793B2 (en) Method for producing hydraulic material and hydraulic building material
JPS586708B2 (en) Inorganic hardened body
CN111247112A (en) Binder based on aluminum-rich slag
JP2641102B2 (en) Method for producing porous material using fly ash as main raw material
JP3536931B2 (en) Soft soil strength improving additive and method for improving soft soil strength
JPS581064B2 (en) Manufacturing method of inorganic cured body
JPS581066B2 (en) Method for producing inorganic cured body
JPS5817138B2 (en) Manufacturing method of inorganic cured body
JPS5825058B2 (en) Materials for inorganic hardened bodies
JP4948724B2 (en) Non-fired cement cured body and method for producing the same
JP2934347B2 (en) Inorganic hard material
JPS581071B2 (en) Manufacturing method of slag/magnesium carbonate plate material
JPS5825055B2 (en) Inorganic cured material
JPS5846463B2 (en) Inorganic building materials
JPS58145654A (en) Hardenable composition