JPS5866120A - Attitude controller for flying object - Google Patents

Attitude controller for flying object

Info

Publication number
JPS5866120A
JPS5866120A JP56165919A JP16591981A JPS5866120A JP S5866120 A JPS5866120 A JP S5866120A JP 56165919 A JP56165919 A JP 56165919A JP 16591981 A JP16591981 A JP 16591981A JP S5866120 A JPS5866120 A JP S5866120A
Authority
JP
Japan
Prior art keywords
attitude
angle
flying object
rocket
attitude angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56165919A
Other languages
Japanese (ja)
Inventor
Yoshimi Wada
和田 好美
Tadashi Adachi
忠司 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP56165919A priority Critical patent/JPS5866120A/en
Publication of JPS5866120A publication Critical patent/JPS5866120A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/12Target-seeking control

Abstract

PURPOSE:To lead a flying material to its destination accurately, by calculating the attitude angle of the flying object in an acceleration time on a basis of the angular velocity detected by a rate gyro and controlling the flying object so that this attitude angle becomes a set reference attitude angle. CONSTITUTION:Detection signals of angular velocities (p), (q), and (r) around (x), (y), and (z) axes of the machine body coordinate system which are detected by rate gyros 1, 2, and 3 are selected successively by a multiplexer 5 and are converted to digital quantities by an A/D converter 6. A microcomputer 7 performs the coordinate conversion from angular velocities (p), (q), and (r) to angular velocities of the inertia coordinate system and performs the time integration for an acceleration time (motor combustion time) of a rocket to obtain a roll angle, a pitch angle, and a yaw angle of the rocket in the inertia coordinate system. The microcomputer 7 compares this attitude angle of the rocket with a set reference attitude angle to issue a control signal to an attitude controller 9.

Description

【発明の詳細な説明】 この発明は、飛翔中特に加速期間中の飛翔体の姿勢角を
、レートジャイロにょシ検出される角速度に基づいて算
出し:そして、この姿勢角をあらかじめ設定された基準
姿勢角になるように制御1することにより、飛翔体を目
的地へ正確に誘導するようにした姿勢制御装置に関する
[Detailed Description of the Invention] This invention calculates the attitude angle of a flying object during flight, particularly during the acceleration period, based on the angular velocity detected by the rate gyro; The present invention relates to an attitude control device that accurately guides a flying object to a destination by controlling the attitude angle so that the attitude angle is the same.

従来、飛翔体1例えばロケット、を目的地に到達′させ
る手段として、軌道計算によシ最初の姿勢角、すなわち
、発射角のみを設定し、飛翔中は無誘導で行うフリーの
もの、あるいは、はぼ全飛翔期間にわたってホーミング
等の高精匿の誘導を行うものが知られている。前者は、
安価で軒桁小型にすることができるが、地上風等の外乱
やノズルのミスアライメントにより予定軌道からの狂い
が生じやすく、目的地に正確に到達させるのは困難であ
る。後者は、目的地への正確な誘導は可能であるが、レ
ート積分ジャイロを用いるため装置が高価、複雑、大型
となり、小型の飛翔体に安価に装備することが困難であ
る。
Conventionally, as a means for making a flying object (such as a rocket) reach its destination, there have been two methods: a free method in which only the initial attitude angle, that is, the launch angle, is set based on trajectory calculation, and no guidance is required during flight; There are known systems that perform highly precise guidance such as homing over the entire flight period. The former is
Although it is possible to reduce the cost and reduce the size of the eaves, it is difficult to accurately reach the destination because disturbances such as surface winds and nozzle misalignment easily cause deviations from the planned trajectory. The latter allows accurate guidance to a destination, but because it uses a rate-integrating gyro, the device is expensive, complicated, and large, making it difficult to equip a small flying object at a low cost.

この発明は以上の点に着目してなされたもので、安価、
軽量、小型な構成でもって、飛翔体を目的地に精度よく
到達させることができる飛翔体の姿勢制御装置を提供す
ることを目的としている。
This invention was made with attention to the above points, and it is inexpensive,
It is an object of the present invention to provide an attitude control device for a flying object, which has a lightweight and compact configuration and can make the flying object reach its destination with high precision.

このように本発明の目的は、飛翔体の発射後加速される
期間すなわち、モータ燃焼中において、飛翔体の姿勢制
御を行うことにより達成される。これは、飛翔体が予定
軌道を外れる主な原因はランチャ上での飛翔体の取付は
姿勢またはノズルミスアライメント等の要因による影響
が飛翔初期、殊に加速期間において顕著に影響するため
であシ、したがって、モータ燃焼中に姿勢角を正しく制
御すれば、軌道からの逸脱を極小に抑えられて、飛翔体
の到達精度を大幅に向上することができる事実に基づい
ている。この目的を達成するため本発明の姿勢制御装置
れ、飛翔体に設定した機体座標系における角速度を検出
する小型軽菫なレートジャイロと、このレートジャイロ
で検出された角速度に基づいて飛翔体の姿勢角を算出し
てこれをあらかじめ設定される基準姿勢角と比較して制
御信号を出力する演算器と、演算器の制御(C8号を受
けて姿勢制御力を発生するアクチュエータと、を備え、
飛翔体の姿勢角をあらかじめ設定された基準姿勢角にし
たがって制御するようになっている。
As described above, the object of the present invention is achieved by controlling the attitude of the flying object during the period when the flying object is accelerated after being launched, that is, during motor combustion. This is because the main reason why a flying object deviates from its planned trajectory is that the mounting of the flying object on the launcher is affected by factors such as attitude and nozzle misalignment, which have a significant effect during the initial period of flight, especially during the acceleration period. , Therefore, this is based on the fact that if the attitude angle is properly controlled during motor combustion, deviation from the orbit can be minimized and the accuracy of the flying object's arrival can be greatly improved. In order to achieve this object, the attitude control device of the present invention includes a small and lightweight rate gyro that detects the angular velocity in the aircraft coordinate system set for the flying object, and an attitude control system that detects the attitude of the flying object based on the angular velocity detected by the rate gyro. It includes a computing unit that calculates the angle and compares it with a preset reference attitude angle and outputs a control signal, and an actuator that generates an attitude control force in response to control of the computing unit (C8),
The attitude angle of the flying object is controlled according to a preset reference attitude angle.

以下、この発明を図面に基づいて説明する。The present invention will be explained below based on the drawings.

第1.2,3.4図はこの発明の一実施例を示す図であ
り、第1図はこの実施例の姿勢制御装置のブロック図を
示し、第2図は機体座標系と慣性座標系の関係を示し、
第3図はロケットの計算軌道全示し、第4図は基準ピッ
チ角θCのプログラムを示すものである。第1図中、(
1)(21(3)は3個のレートジャイロを示す。これ
らのレートジャイロ+11(2+(31は、ロケットに
搭載されて、ロケットの重心を原点Oとして機体に設定
された機体座標系の3つの直交座標軸(第2図に示すx
、y、z軸、なお、Z軸はロケットの軸方向である。)
回りの角速度p(ロールレイト)、q(ピッチレート)
、r(ヨーレート)を、それぞれ検出する。(4)は演
算器を示す。演ngi(4)は入力部、演算部および出
力部からなる。
Figures 1.2 and 3.4 are diagrams showing an embodiment of the present invention, Figure 1 is a block diagram of the attitude control device of this embodiment, and Figure 2 is a body coordinate system and an inertial coordinate system. shows the relationship between
Fig. 3 shows the entire calculated trajectory of the rocket, and Fig. 4 shows the program for the reference pitch angle θC. In Figure 1, (
1) (21 (3) indicates three rate gyros. These rate gyros + 11 (2 + (31) are 3 of the aircraft coordinate system installed on the rocket and set on the aircraft with the rocket's center of gravity as the origin O. two orthogonal coordinate axes (x shown in Figure 2)
, y, and z axes, where the Z axis is the axial direction of the rocket. )
Angular velocity of rotation p (roll rate), q (pitch rate)
, r (yaw rate), respectively. (4) indicates an arithmetic unit. The processor ngi(4) consists of an input section, an arithmetic section, and an output section.

入力部は、レートジャイロ(11(21(31が検出し
た機体座標系X、y、z軸回りの角速度p、qlrの検
出信号を順次選択するマルチプレクサ(5)と、マルチ
プレクサ(5)から出力された信号をアナログ量からデ
ジタル量に変換するA/Dコンノ(−タ(6)とを有す
る。演算部は、マイクロコンピュータ(7)よりなり、
色違Up、ci、rを慣性座標糸(第2図に示すx、y
、z軸、ここでZ軸。
The input section includes a multiplexer (5) that sequentially selects detection signals of angular velocities p and qlr around the aircraft coordinate system X, y, and z axes detected by the rate gyro (11 (21 (31)), and It has an A/D converter (6) that converts the signal from an analog quantity to a digital quantity.The arithmetic unit is composed of a microcomputer (7),
The color difference Up, ci, r is the inertial coordinate thread (x, y shown in Figure 2)
, z-axis, here the z-axis.

Y軸は水平方向であり、Z軸は鉛直下向きである。なお
、第3図に示す発射点(S)と目的点■)とはX軸上に
あり、大きさは数十kmを想定している。)の角速度;
t、、b、小に座標変換する。この実施例においては、
慣性座標系(x、y、z軸)を機体座標系(X、)’、
Z軸)に移す順序として、第2図に示すように、X、Y
、Z軸の内、最初にZ@をψ回転してX及びY軸をそれ
ぞれY′およびY′へ移し次にY′軸をθ回転して。
The Y axis is horizontal, and the Z axis is vertically downward. Note that the launch point (S) and the destination point (■) shown in FIG. 3 are on the X axis, and are assumed to be several tens of kilometers in size. ) angular velocity;
Coordinates are transformed to t,,b,small. In this example,
The inertial coordinate system (x, y, z axes) is transformed into the aircraft coordinate system (X, )',
As shown in Figure 2, the order of transfer to
, among the Z axes, first rotate Z@ by ψ, move the X and Y axes to Y' and Y', respectively, and then rotate the Y' axis by θ.

Y′およびZ軸をそれぞれX’ (x @ )および2
“へ移し、さらに、X“←)軸をφ回転してzl軸をZ
siquに移すという順序を採っているため、角速度p
、q、rは角速度;t=、a、小に以下の式でもって座
標変換(オイラー変換)される。
Let the Y' and Z axes be X' (x @ ) and 2, respectively.
", then rotate the X"←) axis by φ and change the zl axis to Z.
Since the order of transfer to siqu is adopted, the angular velocity p
, q, r are angular velocities; t=, a, coordinates are transformed (Euler transformation) using the following formula.

i=p+(qルnφ+r曲φ)−〇 み−q圓φ−r&nφ テ=(q訓φ+r面φ)誦θ そして、マイクロコンピュータ(7)は、a、δ。i=p+(qle nφ+r songφ) −〇 Mi-qenφ-r&nφ Te = (q lesson φ + r plane φ) recitation θ And the microcomputer (7) has a, δ.

小をロケットの加速期間(モータ燃焼時間)につき時間
積分して、 φ=fφdt θ=fθdt ψ=fψdt 慣性WrJ系におけるロケットの姿勢角φ(ロール角)
、θ(ピッチθ)およびψ(ヨー角)を求める。次にマ
イクロコンピュータ(7)は、このロケットの姿勢角θ
、ψをあらかじめ設定されている基準姿勢角θ。、ψ。
φ=fφdt θ=fθdt ψ=fψdt Attitude angle φ (roll angle) of the rocket in the inertial WrJ frame
, θ (pitch θ) and ψ (yaw angle) are determined. Next, the microcomputer (7) calculates the attitude angle θ of this rocket.
, ψ is the preset reference attitude angle θ. ,ψ.

と比較して、これらの誤差△0=θ−θ。Compared to these errors Δ0=θ−θ.

△ψ二ψ−ψ。△ψtwoψ−ψ.

が一定値以上であるならば制御信号を出力する。If is above a certain value, a control signal is output.

この実施例では、ロール角φについては制御せずフリー
とし、ピッチ角θについては、第4図にボすように、制
御時間(T)(モータ燃焼時間に等しい)中に経時的に
大きさがθC1からθc2に変化するピッチ角プログラ
ムに従って制御することとし、ヨー角ψについては制御
時間(T)にわたって一定のψ。二〇に制御している。
In this embodiment, the roll angle φ is not controlled and is left free, and the pitch angle θ changes in size over time during the control time (T) (equal to the motor combustion time), as shown in FIG. The yaw angle ψ is controlled according to a pitch angle program in which the angle changes from θC1 to θc2, and the yaw angle ψ is constant over the control time (T). It is controlled to 20.

出力部は、ドライバー(8)ヲltL、マイクロコンピ
ュータ(7)の制御信号を受けて、後述の姿勢制御器を
制御する。姿勢制御器(9)は、ドライバー(8)から
の制御イぎ号を受けて姿勢制御力を発生するものである
The output section receives control signals from the driver (8) and the microcomputer (7) to control an attitude controller, which will be described later. The attitude controller (9) receives a control signal from the driver (8) and generates an attitude control force.

この姿勢制御装置(9)としては、ノズルの後端に、互
いに所定間隔離間して円周方向に配された複数のタブを
ノズル内へ出没可能に設け、そして、任意のタブをノズ
ル内を通流する燃焼ガス流中に突出させ、これによシガ
ス流をさえぎって姿勢制御力を発生するジェットタブ方
式のもの、あるいは、ノズルに、互いに所定角度離間し
て円周方向に配された複数の流体噴射機構を設け、任意
の流体噴射機構からノズル内に制御流体を噴射すること
により、ノズル内を通流する燃焼ガス流の流通方向を変
化させて姿勢制御力を発生する、いわゆる2次噴射方式
のもの、あるいは、翼により空力学的に姿勢制御装置を
発生するフィンコントロール方式のものなどである。姿
勢制御器(9)による機体(10)の変化はレートジャ
イロ(1)(2)(3)で検知される。
This posture control device (9) is provided with a plurality of tabs arranged in the circumferential direction at a predetermined distance from each other at the rear end of the nozzle so as to be able to enter and retract into the nozzle, and any tab can be inserted into the nozzle. A jet tab type that protrudes into the flowing combustion gas flow and thereby blocks the combustion gas flow to generate attitude control force, or a plurality of jet tabs arranged circumferentially at a predetermined angle from each other on the nozzle. A so-called secondary control force is provided, and by injecting control fluid into the nozzle from any fluid injection mechanism, the flow direction of the combustion gas flow flowing through the nozzle is changed to generate an attitude control force. These include injection type, and fin control type, which uses the wings to aerodynamically generate an attitude control device. Changes in the aircraft (10) caused by the attitude controller (9) are detected by rate gyros (1), (2), and (3).

このように構成された姿勢制御装置は、次のようにロケ
ットの姿勢角を制御してロケットを目的点に誘導する。
The attitude control device configured as described above controls the attitude angle of the rocket as follows and guides the rocket to the destination point.

ロケットには機軸安定性を与えるため、飛翔中に数H2
程度のスピンが与えられる。この実施例の姿勢制御装置
は、前述したように、スピン、すなわちロール角φにつ
いては制御せずフリーとし、レートジャイロmでロール
レートpを検知してピッチ角θおよびヨー角ψの計算の
安素として使用している。基準ピッチ角θCは、第3図
に示す軌道を決定する際の計算に基づき、第4図に示す
ようなθc1からθc2に変化する基準ピッチ角プロク
ラムとして与えられる。このため、姿勢制御装置はピッ
チ角θをこのプロゲラl、に従って制御し、ロケットが
ノズルミスアライメント等により基準ピッチ角θCから
狂うと姿勢制動器(9)により補正する。基準ヨー角ψ
Cは前述したように零に設定され、ロケットが発射点(
Slと目的点■とを含むX−Z平面からノズルミスアラ
イメント等により逸脱しないように制御している。ロケ
ットは、そのモータ燃焼時間(制御時間Tと同じ)中姿
勢制御される。このため、ロケットはモータ燃焼中、第
3図に示す設定した軌道に沿うように誘導される。モー
タ燃焼後以降、すなわち、制御時間FT)以降はロケッ
トの姿勢は制御されず。
In order to give the rocket axis stability, several H2 during flight.
A degree of spin is given. As described above, the attitude control device of this embodiment does not control the spin, that is, the roll angle φ, and leaves it free, and detects the roll rate p with the rate gyro m to safely calculate the pitch angle θ and yaw angle ψ. It is used as a raw material. The reference pitch angle θC is given as a reference pitch angle program that changes from θc1 to θc2 as shown in FIG. 4, based on calculations for determining the trajectory shown in FIG. Therefore, the attitude control device controls the pitch angle θ according to this progera l, and when the rocket deviates from the reference pitch angle θC due to nozzle misalignment or the like, the attitude brake (9) corrects it. Reference yaw angle ψ
C is set to zero as mentioned above, and the rocket is at the launch point (
Control is performed so as not to deviate from the X-Z plane including Sl and the target point (2) due to nozzle misalignment or the like. The rocket is attitude controlled during its motor burn time (same as control time T). Therefore, the rocket is guided along the set trajectory shown in FIG. 3 during motor combustion. After the motor burns, that is, after the control time FT), the attitude of the rocket is not controlled.

無誘導となるが、このときは減速域であるとともに軌道
逸脱の前記要因が補正されているので軌道から大きく逸
脱することは無く、ロケットの目的点■)への到達摺度
にはさIまど影響をおよげさない。
There will be no guidance, but at this time it is in the deceleration region and the above-mentioned causes of orbit deviation have been corrected, so there will be no major deviation from the orbit, and there will be no difference in the sliding degree to the rocket's destination point (■). It has no effect on

なお、上述の実施例ではヨー角ψは零になるようにした
がヨー角ψを制御することもできる。
Note that in the above embodiment, the yaw angle ψ is set to zero, but the yaw angle ψ can also be controlled.

以上説明し−Cきたように、この発明によれrJ、飛翔
体に設定した機体座標系における角速度を検出するレー
トジャイロと、このレートジャイロで検出された角速度
を慣性座標糸へ座標変換し、かつ、ロケットの加速期間
中時間積分して飛翔体の姿勢角を求め、この姿勢角をあ
らかじめ設定された基準姿勢角と比較してこれらの間の
誤差が所定値を越えるとき制御信号を出力する演算器と
、この演算器の制御信号を受けてロケットの姿勢を制御
する姿勢制御器と、を備え、飛翔体の飛翔初期における
姿勢角を前記基準姿勢角に制御するとしたため、安価、
簡易な構成でもって飛翔体を目的地に高い精度でもって
誘導することができる。しかも、センサーとして他のセ
ンサー、例えばレート積分ジャイロに較べて小型軽量化
が可能なレートジャイロを使用するとしたため、姿勢制
御装置全体の小型軽量化を図ることができる。このため
、小型の飛翔体に安価に装備することが可能である。
As explained above, the present invention includes a rate gyro that detects the angular velocity in the body coordinate system set for the flying object, coordinate conversion of the angular velocity detected by the rate gyro to an inertial coordinate system, and , a calculation that calculates the attitude angle of the flying object by time-integrating it during the acceleration period of the rocket, compares this attitude angle with a preset reference attitude angle, and outputs a control signal when the error between them exceeds a predetermined value. and an attitude controller for controlling the attitude of the rocket in response to control signals from the arithmetic unit, and the attitude angle of the projectile at the initial stage of flight is controlled to the reference attitude angle.
A flying object can be guided to a destination with high precision using a simple configuration. Furthermore, since a rate gyro, which is smaller and lighter in weight than other sensors such as a rate integral gyro, is used as a sensor, the entire attitude control device can be made smaller and lighter. Therefore, it is possible to equip a small flying object at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例にかかる飛翔体の姿勢制御
装置を示すブロック図、第2図は機体座標糸と慣性座標
糸の関係を示す図、第3図はロケットの弾道計算に基づ
く弾道軌道を示す図、第4図は第3図の弾道軌道に基づ
く基準ピッチ角θCのプログラムを横軸に時間t5 縦
軸に基準ピッチ角θCをとって示す図である。 (1)(2)(3)・・・レートジャイロ(4)・・・
演算器(5)・・・マルチフレフサ (6)・・・A/
Dコンバータ(7)・・マイクロコンピュータ (8)・・・ドライバー   (9)・・・アクチュエ
ータaα・・・機、体 特許出願人  日産自動車株式会社 代理人 弁理士  有 我 軍 −部
Fig. 1 is a block diagram showing a flying object attitude control device according to an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the body coordinate thread and the inertial coordinate thread, and Fig. 3 is based on rocket trajectory calculation. FIG. 4 is a diagram showing a ballistic trajectory, and shows a program for a reference pitch angle θC based on the ballistic trajectory of FIG. 3, with time t5 plotted on the horizontal axis and reference pitch angle θC plotted on the vertical axis. (1) (2) (3)...Rate gyro (4)...
Arithmetic unit (5)...Multiflexa (6)...A/
D converter (7)...Microcomputer (8)...Driver (9)...Actuator aα...Machine, body Patent applicant Nissan Motor Co., Ltd. Agent Patent attorney Yuga Military - Department

Claims (1)

【特許請求の範囲】[Claims] 飛翔体に設定した機体座標系における角速度を検出する
レートジャイロと、このレートジャイロで検出された角
速度を慣性座標系へ座標変換し、かつ、ロケットの加速
期hJ中時間積分して飛翔体の姿勢角を求め、この姿勢
角をあらかじめ設定された基準姿勢角と比較してこれら
の間の誤差が所定値を越えるとき制悄1信号を出力する
演算器と、この演算器の制御信号を受けてロケットの姿
勢を制御する姿勢制御器と、を儂え、飛翔体の飛翔初期
における姿勢角を前記基準姿勢角に制御することを特徴
とする飛翔体の姿勢制御装置。
There is a rate gyro that detects the angular velocity in the aircraft coordinate system set for the flying object, and the angular velocity detected by this rate gyro is converted into the inertial coordinate system, and the attitude of the flying object is determined by integrating over time during the acceleration period hJ of the rocket. an arithmetic unit that calculates the attitude angle, compares this attitude angle with a preset reference attitude angle, and outputs a control signal 1 when the error between these angles exceeds a predetermined value; An attitude control device for a flying object, comprising: an attitude controller for controlling the attitude of a rocket; and controlling an attitude angle of the flying object at the initial stage of flight to the reference attitude angle.
JP56165919A 1981-10-16 1981-10-16 Attitude controller for flying object Pending JPS5866120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165919A JPS5866120A (en) 1981-10-16 1981-10-16 Attitude controller for flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165919A JPS5866120A (en) 1981-10-16 1981-10-16 Attitude controller for flying object

Publications (1)

Publication Number Publication Date
JPS5866120A true JPS5866120A (en) 1983-04-20

Family

ID=15821500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165919A Pending JPS5866120A (en) 1981-10-16 1981-10-16 Attitude controller for flying object

Country Status (1)

Country Link
JP (1) JPS5866120A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140300A (en) * 1986-11-29 1988-06-11 三菱重工業株式会社 Deflection control system of missile
JPH0375500A (en) * 1989-07-21 1991-03-29 Hughes Aircraft Co Retrofit digital electronic apparatus for tube firing missile
JPH03137500A (en) * 1989-07-21 1991-06-12 Hughes Aircraft Co Digital electron device for launching tube missile
CN114252067A (en) * 2021-12-25 2022-03-29 江苏九天航空航天科技有限公司 Air attitude prediction method for guided projectile
CN114442647A (en) * 2021-12-08 2022-05-06 航天科工火箭技术有限公司 Rocket final stage attitude time-sharing control method and device based on fuzzy membership function
CN114442647B (en) * 2021-12-08 2024-04-26 航天科工火箭技术有限公司 Rocket final stage posture time-sharing control method and device based on fuzzy membership function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140300A (en) * 1986-11-29 1988-06-11 三菱重工業株式会社 Deflection control system of missile
JPH0375500A (en) * 1989-07-21 1991-03-29 Hughes Aircraft Co Retrofit digital electronic apparatus for tube firing missile
JPH03137500A (en) * 1989-07-21 1991-06-12 Hughes Aircraft Co Digital electron device for launching tube missile
CN114442647A (en) * 2021-12-08 2022-05-06 航天科工火箭技术有限公司 Rocket final stage attitude time-sharing control method and device based on fuzzy membership function
CN114442647B (en) * 2021-12-08 2024-04-26 航天科工火箭技术有限公司 Rocket final stage posture time-sharing control method and device based on fuzzy membership function
CN114252067A (en) * 2021-12-25 2022-03-29 江苏九天航空航天科技有限公司 Air attitude prediction method for guided projectile

Similar Documents

Publication Publication Date Title
US4092716A (en) Control means and method for controlling an object
US4020324A (en) Weapon delivery system
US9656593B2 (en) Flight vehicle autopilot
US6574532B2 (en) Path controller for vehicles whose path is influenced by cross currents and a path control system and associated methods
US5442560A (en) Integrated guidance system and method for providing guidance to a projectile on a trajectory
US2992423A (en) Rocket launch control systems
US3188019A (en) Simplified inertial guidance system
US3362658A (en) Vehicle trajectory control apparatus
JPS5866120A (en) Attitude controller for flying object
US4530270A (en) Method of directing a close attack missile to a target
US4662580A (en) Simple diver reentry method
US3995144A (en) Banked bombing system
Martin et al. Computer-controlled steering of the Apollo spacecraft.
Brissenden et al. Analog simulation of a pilot-controlled rendezvous
US3206143A (en) Controller for guiding a missile carrier on the location curve of ballistic firing positions
CN115993769A (en) Integrated guidance control method for high-dynamic aircraft
CN114153226A (en) Unmanned aerial vehicle view field keeping and guiding method and system assisted by dynamic sight line information
STEFFAN Satellite rendezvous terminal guidance system
US3010676A (en) Missile guidance system
US3411736A (en) Missile guidance system
JP3248645B2 (en) Flight object attitude control device
JP2671310B2 (en) Method for detecting roll attitude angle of guided vehicle
US20230242281A1 (en) Rocket control system and method of controlling landing operation of rocket
JP3363914B2 (en) Flying object guidance control device
RU2275671C1 (en) Pilot-free flying vehicle control system