JPS5865596A - Welding electrode for padding of ferritic stainless steel - Google Patents

Welding electrode for padding of ferritic stainless steel

Info

Publication number
JPS5865596A
JPS5865596A JP16348081A JP16348081A JPS5865596A JP S5865596 A JPS5865596 A JP S5865596A JP 16348081 A JP16348081 A JP 16348081A JP 16348081 A JP16348081 A JP 16348081A JP S5865596 A JPS5865596 A JP S5865596A
Authority
JP
Japan
Prior art keywords
welding
stainless steel
weight
padding
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16348081A
Other languages
Japanese (ja)
Inventor
Katsuomi Tamaoki
玉置 克臣
Shozaburo Nakano
中野 昭三郎
Noboru Nishiyama
昇 西山
Akio Kamata
鎌田 晃郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16348081A priority Critical patent/JPS5865596A/en
Publication of JPS5865596A publication Critical patent/JPS5865596A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain a welding electrode for padding which yields deposited metal consisting of perfect ferritic structure of fine crystal grains by containing specific contents of C, Si, Mn, Cr, Nb, V, Ti, Al in said electrode. CONSTITUTION:An electrode for padding of ferritic stainless steel is contained, by weight %, with <0.12 C, <1 Si, <2 Mn, 11-20 Cr, 0.4-1.1 Nb, 0.2-0.9 V, 0.2-2 Ti, 0.2-1 Al. If the welding electrode for padding added with Al, V other than Nb, Ti in this way is used, the deposited metal consisting perfect ferritic structure of fine crystal grains is easily obtained in excellent welding workability.

Description

【発明の詳細な説明】 この発明はフェライト系ステンレス鋼の肉盛用溶接電極
に関し、サブマージアーク溶接またはエソりトロスラグ
溶接による肉感溶接によって7・エライト系ステンレス
(808参G7 、030相当)クラツド鋼を製造する
際に用いて好適な肉盛用溶接電極を提案しようとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a welding electrode for overlaying ferritic stainless steel, and relates to a welding electrode for overlaying ferritic stainless steel. This paper attempts to propose a welding electrode for overlay that is suitable for use in manufacturing.

一般にステンレス鋼は広範囲の耐食性にすぐれているた
め、クラツド鋼の合せ材としても使用され、JIS G
 −360/に規定されている。
In general, stainless steel has excellent corrosion resistance over a wide range of areas, so it is also used as a cladding material for clad steel.
-360/.

なかでもオーステナイト系ステンレス鋼の合わセ材はク
ロム(Or)とニッケル(N1)の相互作用によりきわ
めて安定した耐食性が発揮され、輻広い用途に適合する
反面、応力腐食割れ感受性を持つところに致命的とも言
える短所があり、これに対する多大の努力が払われてき
たにも拘らず、いまだ実用的な解決には達していない。
Among these, austenitic stainless steel laminated materials exhibit extremely stable corrosion resistance due to the interaction of chromium (Or) and nickel (N1), and are suitable for a wide range of applications, but are fatal in areas where they are susceptible to stress corrosion cracking. Despite considerable efforts to address these drawbacks, no practical solution has yet been reached.

一方、フェライト系ステンレス鋼の合せ材については全
面腐食性こそオーステナイト系ステンレス鋼にやや劣る
ものの、その結晶構造から応力腐食割れに対する感受性
に乏しいため、石油精製、石油化学プラントなどで全面
腐食性の比較的緩やかなところに適合する。
On the other hand, although ferritic stainless steel laminated materials are slightly inferior to austenitic stainless steel in terms of overall corrosion resistance, their crystal structure makes them less susceptible to stress corrosion cracking, so comparisons of overall corrosion resistance are used in oil refining, petrochemical plants, etc. Suitable for those with a looser focus.

ところがこれまでのフェライト系ステンレスクラツド鋼
は、SUS 1101 (/XJr −0,コムl)や
SUB 400(17cj”r )の合せ材を用い、主
として圧延もしくは爆着によって製造されるを例とする
がその代りに肉盛溶接によれば、製造工程がはるかに簡
便化され得るけれども、次の問題点を伴うため実用化の
試試みは成功するに至っていない。すなわち、(1)鋼
板と同じ成分系の溶着金属では組成の一部あるいは全部
がマルテンサイト組織となること。
However, conventional ferritic stainless clad steels are mainly produced by rolling or explosion bonding using SUS 1101 (/XJr-0, Coml) and SUB 400 (17cj"r) laminates. However, if we use overlay welding instead, the manufacturing process could be much simpler, but attempts to put it into practical use have not been successful because of the following problems: (1) The same components as the steel plate Part or all of the composition of the deposited metal of the system is a martensitic structure.

(2)  サブマージアーク溶接やエレクトロスラグ溶
接その他プラズマ溶接、あるいはMIG溶接などの自動
溶接による肉感溶接では一般に大入熱であり、そのため
溶接金属結晶粒の粗大化する傾向があること。
(2) Submerged arc welding, electroslag welding, other plasma welding, or automated welding such as MIG welding generally involves a large heat input, which tends to coarsen the weld metal crystal grains.

ここにたとえばフェライト系ステンレス鋼の被覆アーク
溶接棒として、ニオビウム(Nk))を添加し7工ライ
ト組織が得られるようにしたIn/(7NbやD $J
OWbなどが市販されているが、これらと同様の成分系
でエレクトロスラグ溶接或はサブマージアーク溶接によ
る肉感溶接を行なうときは、大入熱のため上記(2)の
結晶粒の粗大化の問題に加えて、スラグはくりがきわめ
て劣化し実用され得ないのであり、かくして信頼度およ
び能率の高い肉盛溶接によるフェライト系ステンレスク
ラツド鋼に対する要求が強いにも拘らず上述のごとき問
題点があるため非能率な圧延もしくは爆着法に依存せざ
るを得なかったのである〇 以上の現状に鑑み、発明者らは種々検討した結果、従来
技術の問題点を一挙に解決できる電極組成を見出した。
For example, as a coated arc welding rod for ferritic stainless steel, In/(7Nb or D$J) is added with niobium (Nk) to obtain a heptite structure.
OWb etc. are commercially available, but when electroslag welding or submerged arc welding is carried out with the same composition system as these, due to the large heat input, the problem of coarsening of crystal grains mentioned in (2) above occurs. In addition, the slag peeling deteriorates so much that it cannot be put to practical use.Thus, despite the strong demand for ferritic stainless steel clad steel produced by overlay welding with high reliability and efficiency, the above-mentioned problems still exist. In view of the above circumstances, the inventors had no choice but to rely on inefficient rolling or explosive bonding methods, and as a result of various studies, the inventors discovered an electrode composition that could solve the problems of the prior art all at once.

すなわちこの発明は微細結晶粒の完全フェライト組織か
らなる溶着金属をすぐれた溶接作−性において容1に得
られるようにしたフェライト系ステンレス鋼の肉感用溶
接電極を提供することを目的とするものである。
That is, the object of the present invention is to provide a welding electrode for ferritic stainless steel that allows a weld metal consisting of a completely ferritic structure with fine grains to be obtained with excellent welding workability. be.

この発明の上記肉盛用溶接電極は、炭素o、lコ施m%
以F1けい素八〇重量%以下、マンガン2.0重量%以
下、クロム11−g重量幅を含みかっO,ダ〜/、/重
量外のニオビウムおよび0.2〜0.9重量%のバナジ
ウムを% Oa−〜2.0重量博のチタニウムお声びO
02〜/、0重量%のアルミニウムとともに含有する組
成になるものとすることを上記目的に対する解決手段の
骨子とする。
The above-mentioned welding electrode for overlay of this invention has a carbon content of o, l co m%.
Including F1 silicon up to 80% by weight, manganese up to 2.0% by weight, chromium 11-g in the weight range, O, da~/,/excluding niobium and 0.2-0.9% by weight vanadium. % Oa-~2.0 weight of titanium Oa
The gist of the solution to the above object is to have a composition containing aluminum in an amount of 0.02 to 0.0% by weight.

さて従来のフエ“ライト系ステンレス鋼被覆アーク溶接
棒による溶接金属は、マルテンサイト組織、の/JOr
 (SUS 4410 )系あるいはフェライト組織の
770r (SUS 4IJO)系ワイヤに強力な炭化
物生成元素でありかつ結晶粒微細化元素でもあるニオビ
ウム(Nk))やチタニウム(T1)を適量添加するこ
とにより組織が完全にフェライト化されていた。
Now, the weld metal produced by conventional ferrite-based stainless steel coated arc welding rod has a martensitic structure.
By adding appropriate amounts of niobium (Nk) and titanium (T1), which are strong carbide-forming elements and grain refining elements, to (SUS 4410) or 770r (SUS 4IJO) wires with a ferrite structure, the structure can be improved. It was completely ferrite.

しかしながらこの方法では、サブマージアーク溶接やエ
レクトロスラグ溶接などによる肉感溶接のごとく、溶接
入熱がとくに大きい場合には組織は7エライト化するも
のの結晶粒の微細化かえられず、さらにNbを含有して
いることからスラグのはくり性がきわめて劣化し実用す
るには至らない。
However, with this method, when the welding heat input is particularly large, such as in submerged arc welding or electroslag welding, the structure becomes 7-elite, but the grains cannot be refined, and the welding process also contains Nb. As a result, the slag removability is extremely degraded, making it unsuitable for practical use.

これに対し発明者らは上記のような肉盛溶接に際し、W
b 、 Ti以外にアルミニウム(ム11、バナジウム
(V)を添加した電極を用いることによって上記問題を
有利に解決しうろことを見出した。
On the other hand, the inventors believe that W
b. It has been found that the above problem can be advantageously solved by using an electrode to which aluminum (Al) and vanadium (V) are added in addition to Ti.

すなわち溶着金属の結晶粒微細化にはNb 、 Ti以
外にムlを複合添加し、そしてスラグははくり性改曽に
はNbの一部をVで代替させた点が特色である。
In other words, it is characterized by the addition of mulch in addition to Nb and Ti in order to refine the crystal grains of the weld metal, and by substituting a part of the Nb with V to improve the slag removability.

次に溶着金属の材質および作業性におよぼす各構成元素
の影響とそれぞれの限定理由について述べる。
Next, we will discuss the influence of each constituent element on the material and workability of the weld metal and the reasons for each limitation.

炭素(0)は溶層金属の強度を高めるに必要な成分であ
る。しかし多量の含有はマルテンサイト組織の生成を著
しく促進して靭性、耐食性を低下させる。したがってC
量は0./コ2重量%以下単に弧であられす)までにす
ることを要する。
Carbon (0) is a necessary component to increase the strength of the molten metal. However, if it is contained in a large amount, it will significantly promote the formation of martensitic structure and reduce toughness and corrosion resistance. Therefore C
The amount is 0. 2% by weight or less (simply an arc).

けい素<si)は溶着金属の脱酸元素として重要な成分
であるが、過剰の含有はフェライト組織を粗大化し、−
性および延性をそこなうため、その上限を/、0%とし
た。
Silicon <si) is an important component as a deoxidizing element for weld metal, but excessive inclusion coarsens the ferrite structure and -
Since this would impair the properties and ductility, the upper limit was set to /, 0%.

マンガン(Mnlは強度を向上し溶着金属中のいおう(
S)と結合してSの害を少なくする成分であるか、これ
も多量に添加すると溶着金属が硬化し脆くなる。したが
って2.0%以下とした。
Manganese (Mnl) improves strength and removes sulfur (
It is a component that combines with S) to reduce the harmful effects of S, but if it is added in large amounts, the weld metal will harden and become brittle. Therefore, it was set at 2.0% or less.

なお、以上のO、Si 、 Mnについては下限をとく
に規定していないが、強度低下を防止する意味で辿常/
30r系ステンレス鋼に含有される程度含むことが望ま
しい。すなわち、0≧0.02%、S1≧O,OS%、
Mn≧0.3%ただし、強度をとくに問題としない場合
はこの1g!シではなく、従って下限を規定していない
Note that lower limits are not particularly specified for the above O, Si, and Mn, but in order to prevent strength reduction,
It is desirable to contain it to the extent that it is contained in 30R stainless steel. That is, 0≧0.02%, S1≧O, OS%,
Mn≧0.3% However, if strength is not a particular issue, this 1g! Therefore, no lower limit is specified.

り胃ム(Or)は耐食性を確保するため、l/%〜〃−
とした。11%以下ではステンレス鋼としての耐食性を
維持できず、J7%を越えるとシグマ相(σ相)を形成
しやすくなり1.耐食性だけでなく延性をも害する。
In order to ensure corrosion resistance, the rumen (Or) is l/%~〃-
And so. If it is less than 11%, the corrosion resistance as stainless steel cannot be maintained, and if it exceeds 7%, sigma phase (σ phase) tends to form.1. It impairs not only corrosion resistance but also ductility.

さてNbおよびVは溶接作業性を劣化することなく組織
を7エライト化するために添加する成分で、とくにVは
この発明において骨子というべき成分の1つである。従
来Nbのみの添加が行われていたが肉盛溶接のごとき大
入熱で溶接するとスラグのはぐり性が極めて劣化する間
朧点があることはすでにのべたとおりであり、この点種
々検討の結果、Nbの一部をVで代替するとフェライト
化の効果を全く損うことなく、スラグのはくり性を着し
く改善しうることを見出した。NbおよびVはそれらの
合計で0.4%以下では完全な7エラ、イト化がむつか
しく、また/、3%を超えるといかにVで調節しようと
もスラグのはくり性は劣化する。Nbはo、ti%以下
ではVをOo−襲以上添加しても組織の完全なフェライ
ト化がむづかしく、/、7%を超えるとVの効果によっ
てもスラグはくりを改善できない。またVについては0
.2%以下ではスラグはくり性の改善効果は全くみられ
ず、o、5%を縮えると機械的i質とくにクリープ性が
劣化する。
Now, Nb and V are components added to make the structure 7-elite without deteriorating welding workability, and V in particular is one of the essential components in this invention. Conventionally, only Nb was added, but as mentioned above, when welding with a large heat input such as overlay welding, there is a point where the slag removability deteriorates significantly, and as a result of various studies on this point. It has been found that by substituting a part of Nb with V, the slag peelability can be significantly improved without impairing the ferritization effect at all. If the total amount of Nb and V is less than 0.4%, it is difficult to completely form a slag, and/or if it exceeds 3%, the peelability of the slag deteriorates no matter how much V is adjusted. If Nb is less than 0.0%, it is difficult to completely convert the structure to ferrite even if V is added in an amount greater than 0.0%, and if it exceeds 7%, slag exfoliation cannot be improved even by the effect of V. Also, for V it is 0
.. If it is less than 2%, no effect of improving slag peeling property is observed, and if it is reduced by 5%, the mechanical quality, especially the creep property, deteriorates.

Tiは結晶粒の微細化のために添加するが、0.2%以
ドでは次に述べるムlを添加しようとも微細化効果がな
く、逆に2.0%を超えると前記したVの効果が少なく
なり、スラグはくり性が劣化する。
Ti is added to refine the crystal grains, but if it is less than 0.2%, there is no refinement effect even if you add mulch, which will be described below.On the other hand, if it exceeds 2.0%, the effect of V mentioned above will not be obtained. , and the slag removal performance deteriorates.

Alは上記のVと共にこの発明において骨子とする成分
である。大入熱溶接された溶着金属ではT1のみで結晶
粒を微細化するの゛が困難であり、7エライト系ステン
レスクラツド鋼の肉IjjIs1接が実用化されていな
かったl因となっている。しかし、発明者らはTiと共
にム!を複合添加すれば肉盛溶接のごとき大入熱におい
ても結晶粒の微細化が可能であることを見出した。その
下限は0.2 %であり、また八〇%を超えると溶接時
のスパッタ発生が多くなるほか靭性が劣化する。
Al, together with the above-mentioned V, is a key component in this invention. It is difficult to refine the crystal grains with T1 alone in welded metal that has been welded with high heat input, and this is the reason why IjjIs1 welding of 7-elite stainless clad steel has not been put into practical use. However, the inventors along with Ti! It has been found that by adding a combination of , it is possible to refine the crystal grains even in large heat inputs such as overlay welding. The lower limit is 0.2%, and if it exceeds 80%, spatter will increase during welding and the toughness will deteriorate.

次にこの発明による効果を、実施例についてより明確に
する。
Next, the effects of this invention will be made clearer with reference to examples.

実施例1 第1表に示す各組成において何れもs0t!j輪の電極
と市販の5in2−0aO−ムj、O,−OaF、系7
ラツクスを用いて2層コパス溶接し、溶接のままでスラ
グはくり性および顕微鏡組織を調べた。また靭性は49
0℃で巖時間後熱処理したものについて調べた。
Example 1 In each composition shown in Table 1, s0t! j ring electrode and commercially available 5in2-0aO-muj,O,-OaF, system 7
Two layers of copass welding were performed using LAX, and the slag removability and microscopic structure were examined while welding. Also, the toughness is 49
The samples that had been heat treated at 0°C for a period of time were investigated.

なお、ここに溶接母材は#I2表に示すf3E3f/を
用いた◇ 第   2   表 第1表、第2表の溶接条件はJrJOA X JJ’V
 x/jell/minに揃え、試験結果、を第3表、
第4表に示すO 第3表、第4表から、大入熱溶接時の組織微細化に及ぼ
すム1およびスラグ′はくり性に及ぼすVの有効性は明
瞭である。なお組織の微細化が不十分な試料では716
2,166およびA?の例について第4表に示すごとく
きわめて衝撃値が悪いがこれに対し、(ムj+Ti)の
添加により微細化の十分であったこの発明の例では良好
な衝撃値を呈している。
In addition, the welding base material here used f3E3f/ shown in Table #I2 ◇ Table 2 The welding conditions in Tables 1 and 2 are JrJOA X JJ'V
x/jell/min, and the test results are shown in Table 3.
O shown in Table 4 From Tables 3 and 4, it is clear that the effectiveness of M1 on microstructure refinement during high heat input welding and V on slag' peelability is clear. In addition, for samples with insufficiently refined structures, 716
2,166 and A? As shown in Table 4, the example of the present invention has a very poor impact value, but on the other hand, the example of the present invention, in which the addition of (muj+Ti) has been sufficiently refined, exhibits a good impact value.

○:良  Δ:やや良  ×:不良 筒   4   表 試料層1と19についてム1が結晶粒度に及ばず影響を
比較して第1図に示した。
○: Good Δ: Slightly good ×: Defective cylinder 4 For the surface sample layers 1 and 19, Mu1 did not affect the crystal grain size, and the effects are compared and shown in FIG.

以上の実施例では、炭素鋼を母材とした場合の成績を示
したが、低合金鋼或はオーステナイト系ステンレス鋼そ
の他、非鉄などあらゆる母材に適用できる。
In the above examples, the results were shown when carbon steel was used as the base material, but the present invention can be applied to any base material such as low alloy steel, austenitic stainless steel, and non-ferrous steel.

上述のようにこの発明の溶接電極は、7エライト系ステ
ンレスクラツド鋼の肉感溶接による製造上、はじめての
実用に成功したもので、組織の微細化をスラグはくり性
の悪化を伴うことなく実現し、耐応力腐食割れの心配が
なく、石油精製、石油化学プラントなどで広<ahaさ
れるフェライト系ステンレスクラツド鋼を、信頼性、能
率の点でとくに有利に得ることができる0
As mentioned above, the welding electrode of this invention is the first to be successfully put to practical use in the production of 7-elite stainless clad steel by intuitive welding, and it achieves microstructural refinement without deteriorating slag removal properties. However, it is possible to obtain ferritic stainless clad steel, which is widely used in oil refining, petrochemical plants, etc., without worrying about stress corrosion cracking, and is especially advantageous in terms of reliability and efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図<al 、 <blは、肉盛用溶接電極による溶
着金属の組織を、結晶粒度に及ぼすムlの影響で比較し
た顕微鏡写真である。
FIG. 1 <al, <bl are micrographs comparing the structure of the weld metal deposited by the overlay welding electrode in terms of the influence of mulch on the crystal grain size.

Claims (1)

【特許請求の範囲】[Claims] L 炭素0.12重重量板下、けい素/、0重量襲以下
、マンガンJ、O重量外以下、クロム//〜〃重量慢を
含み、かつO0参〜/、/重量≦のニオビウムおよび0
.J〜0.9重量憾のバナジウムを、00JNコ、O重
量≦のチタンラムおよびO,コ〜/、0重量弧のアル識
ニウムとともに含ゝ有する組成になることを特徴とする
7エライ゛ト系ステンレス鋼の肉感用溶接電極・
L carbon 0.12 weight below, silicon /, 0 weight or less, manganese J, O weight or less, chromium //~〃including heavy weight, and O0 reference~/, /weight≦niobium and 0
.. A 7-elite system characterized by having a composition containing vanadium of J~0.9 weight, together with titanium ram of 00 JN, O weight≦, and aluminum of O, Co~/,0 weight arc. Stainless steel sensual welding electrode/
JP16348081A 1981-10-15 1981-10-15 Welding electrode for padding of ferritic stainless steel Pending JPS5865596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16348081A JPS5865596A (en) 1981-10-15 1981-10-15 Welding electrode for padding of ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16348081A JPS5865596A (en) 1981-10-15 1981-10-15 Welding electrode for padding of ferritic stainless steel

Publications (1)

Publication Number Publication Date
JPS5865596A true JPS5865596A (en) 1983-04-19

Family

ID=15774672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16348081A Pending JPS5865596A (en) 1981-10-15 1981-10-15 Welding electrode for padding of ferritic stainless steel

Country Status (1)

Country Link
JP (1) JPS5865596A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422617A (en) * 2005-01-26 2006-08-02 Nippon Welding Rod Co Ltd Ferritic stainless steel welding wire
JP2018524183A (en) * 2015-07-01 2018-08-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method of joining FeCrAl alloy and FeNiCr alloy by welding using filler metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422617A (en) * 2005-01-26 2006-08-02 Nippon Welding Rod Co Ltd Ferritic stainless steel welding wire
JP2018524183A (en) * 2015-07-01 2018-08-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method of joining FeCrAl alloy and FeNiCr alloy by welding using filler metal

Similar Documents

Publication Publication Date Title
JPS6343462B2 (en)
US4017711A (en) Welding material for low temperature steels
US3110798A (en) Submerged arc weld metal composition
WO1993024269A1 (en) Welding electrodes for producing low carbon bainitic ferrite weld deposits
US5837956A (en) Method of fabricating high strength and high toughness large-diameter welded steel pipe
US2481385A (en) Weld and weld rod
JPH07195193A (en) Solid wire for thin sheet of high tension steel
JPH0825080A (en) Solid wire for welding and welding method
US6110301A (en) Low alloy build up material
JPS5865596A (en) Welding electrode for padding of ferritic stainless steel
US4430545A (en) Method for submerged-arc welding a very low carbon steel
US2789048A (en) Welding steel for joining high strength steels
EP4036265B1 (en) Clad steel sheet and method for manufacturing same
JPS61238940A (en) Low-temperature tough hardening steel excelling in toughness in weld zone
Somers Introduction to the selection of carbon and low-alloy steels
JPS6046896A (en) Ni-base cored wire for welding steel for low temperature service
JPH02200394A (en) Welding method for stainless steel or nickel-based alloy and carbon steel
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
US3667924A (en) Stress relieved welded steel composite
US2871118A (en) Resistance to hot-cracking of chromiumnickel steel welds
JP2003231950A (en) Welded structure of ferritic stainless steel
JPH0596397A (en) Steel wire for high electric current mig welding
JPH0347695A (en) Flux cored wire electrode for ultra-high tensile steel
US2871552A (en) Weld metal deposits and arc welding electrodes for producing the same
RU2082802C1 (en) Titanium-base alloy