JPS5865407A - Zoom lens system - Google Patents

Zoom lens system

Info

Publication number
JPS5865407A
JPS5865407A JP56164565A JP16456581A JPS5865407A JP S5865407 A JPS5865407 A JP S5865407A JP 56164565 A JP56164565 A JP 56164565A JP 16456581 A JP16456581 A JP 16456581A JP S5865407 A JPS5865407 A JP S5865407A
Authority
JP
Japan
Prior art keywords
lens
aberration
positive
lenses
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56164565A
Other languages
Japanese (ja)
Other versions
JPH0139563B2 (en
Inventor
Tomotou Takahashi
友刀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP56164565A priority Critical patent/JPS5865407A/en
Priority to US06/367,981 priority patent/US4653872A/en
Priority to GB08211701A priority patent/GB2102142A/en
Priority to DE19823215052 priority patent/DE3215052A1/en
Publication of JPS5865407A publication Critical patent/JPS5865407A/en
Publication of JPH0139563B2 publication Critical patent/JPH0139563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

PURPOSE:To make the movement of a focus by a change in temp. small in a zoom lens having a variable magnification part and a master part and consisting essentially of lenses made of org. glass, by constituting at least one piece of the positive lenses forming the master part of inorg. glass. CONSTITUTION:In a zoom lens system consisting of the positive 1st group G1 as a focusing group, the negative 2nd group G2 as a variate, the positive 3rd group as a compensator, and the positive 4th group G4 as a master part successively from the object side, the 1st-3rd groups constitute the variable magnification part. The 1st-3rd groups are constituted of lenses L1, L6 consisiting of polystyrene and lenses L2-L5, L7 consisting of acrylics, and the 4th group G4 is constituted of a lens L8 consisting of inorg. glass, a lens L9 consisting of polystyrene, and lenses L10, L11 consisting of acrylics. Since the lens L8 is constituted of inorg. glass, the movement of the focus by a change in temp. is made small.

Description

【発明の詳細な説明】 本発明は有機ガラス製のいわゆるプラスチックレンズと
して知られるレン、ズからなるズームレンズ、特に変倍
部とマスタ一部とt有するズームレンズ系の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zoom lens consisting of a so-called plastic lens made of organic glass, and particularly to an improvement of a zoom lens system having a variable power section and a master section.

各種のレンズ系において、構成要素としての各レンズを
全てプラスチックレンズといわれる有機ガラス製レンズ
ー装置き換えるならば、重量は173〜1/2  にも
なり、大幅な軽量化tもたらすととも1;刺違コストを
低くすることができる。しかしながらプラスチックはガ
ラスに比較して膨張係数が大であり屈折率の@度変化4
大きいため、気温の変化C二よりレンズの焦点面が移動
してしまうという欠点があった。
In various lens systems, if all the lenses as constituent elements were replaced with organic glass lenses called plastic lenses, the weight would be 173 to 1/2, resulting in a significant weight reduction and 1; Cost can be reduced. However, plastic has a larger expansion coefficient than glass, and the refractive index changes by 4 degrees.
Since the temperature is large, there is a drawback that the focal plane of the lens moves due to a change in temperature C2.

この欠点を改良するものとして、トリブレット構成の固
定焦点レンズζ二鉢いて、正レンズの1つtガラス、他
のlっt低分散プラスチック、負レンズを高分散プラス
チックとして色収差を補正しつつ、am変化を消してし
まう技術が本願と同一出願人5:よる特開昭55−14
3518号公報5二より知られている。
To improve this drawback, two fixed focus lenses with triplet configuration are used, one of the positive lenses is made of T glass, the other is made of low dispersion plastic, and the negative lens is made of high dispersion plastic to correct chromatic aberration. The technology for erasing the am change is disclosed in Japanese Patent Application Laid-open No. 55-14 by the same applicant as the present application.
It is known from Publication No. 3518 52.

この特開昭55−143518号公報においては、プラ
スチックレンズを含むN枚のレンズよりなる固定焦点レ
ンズ系に対して、レンズ系の合成焦点距離′kfとした
とき第1番目のレンズkLiとし、温度t1ユおけるL
lの焦点距離に/i、物界側から高さfで入射した近軸
光線のレンズLiへの入射高rhj、1度tにおけるレ
ンズL1の屈折率を町(t)トし1、セレンズを構成す
る材質について温度分散′1!L+W、4:と 但し 1. (1< 1゜ と定義し t”am消しの条件”とした。そして、これによpal
!ttと1.との2点についてIL[による焦点移動量
が零となるというものであった。
In this Japanese Patent Application Laid-Open No. 55-143518, for a fixed focus lens system consisting of N lenses including a plastic lens, the first lens is kLi when the composite focal length of the lens system is 'kf', and the temperature t1 u puteru L
The focal length of l is /i, the incident height rhj of a paraxial ray incident on the lens Li at a height f from the object world side, and the refractive index of the lens L1 at 1 degree t is (t). Temperature dispersion '1 for the constituent materials! L+W, 4: and 1. (Defined as 1 < 1° and set it as t"am erasure condition". Then, from this, pal
! tt and 1. Regarding the two points, the amount of focus movement due to IL[ becomes zero.

しかしこれはあくまで固定焦点レンズtJJられた場合
であり、ズームレンズ4二ついては焦点距離の最短と最
長との状態間で焦点位置が大幅−二変化してしまう。例
えば焦点距離の最長状態でピントを合わせて最短状態1
=ズーミングした場合、常温ではピントが合っていても
、高温時又は低温時Cmはピンボケになってしまうこと
となる。
However, this is only the case when a fixed focus lens is used, and when there are four zoom lenses, the focal position changes significantly between the shortest and longest focal length states. For example, focus at the longest focal length state and then focus at the shortest state 1.
= When zooming, even if the object is in focus at room temperature, Cm will be out of focus at high or low temperatures.

本発明の目的は、有機ガラス製のいわゆるプラスチック
レンズを用いたズームレンズ系であって、プラスチック
レンズの利点tそのまま有し、また実用上十分な色収差
の補正状!ik維持しつつ、a度変化の大きな場合にも
ズーミング時−よる全変倍域で焦点位置が実用上十分補
正された比較的簡単な構成のズームレンズ系【提供する
ことにある。
The object of the present invention is to provide a zoom lens system using a so-called plastic lens made of organic glass, which has all the advantages of a plastic lens, and also has practically sufficient correction of chromatic aberration! To provide a zoom lens system having a relatively simple structure, in which the focal position is practically sufficiently corrected over the entire magnification range during zooming even when there is a large change in a degree while maintaining ik.

上記の目的を達成したズームレンズ系の基本案が先(二
本願出願人−二よって出願されている(%願昭56−5
9685号)が、それは主6:変倍時C二於ける焦点面
の変化を補正する目的で、ズームレンズの変倍系【形成
するレンズ群のうちの少なくとも1群において、該レン
ズ群中のレンズ要素のうち少なくとも1個のレンズr無
機ガラスで構成したものであった。これはズーム倍率6
程度の大きいズーム倍率のズームレンズには有効である
が、ズーム倍率3程寂の小さいズーム倍率のズームレン
ズでは変倍部で発生するa度変化−一よる焦点変化がそ
れ程大きくない場合があり、このような場合−一は変倍
系の補正【省略してマスタ一部OKR成分だけのコント
ロールでうまくθ付近に近づけたシ、正負tふ9わける
ことによシ補正することができる。この場合、使用1度
によってはズーミング時に焦点面が変動することl:な
るが、その量が焦点#I直以内付近におさえられておれ
ば裏書はない。
A basic proposal for a zoom lens system that achieved the above purpose was previously filed by the applicant (1986-5).
No. 9685), it is mainly used for the purpose of correcting changes in the focal plane during zooming C2. At least one lens among the lens elements was composed of inorganic glass. This is zoom magnification 6
This is effective for zoom lenses with large zoom magnifications, but for zoom lenses with small zoom magnifications as low as 3 zoom magnifications, the change in focus due to the change in a degree that occurs in the variable magnification section may not be as large. In such a case, correction can be made by correcting the magnification system [omittedly, controlling only the OKR component of the master part to successfully bring it close to θ, and dividing the positive and negative t's. In this case, the focal plane may fluctuate during zooming depending on the degree of use, but if the amount is kept within the vicinity of focus #I, there is no endorsement.

本発明は変倍部とマスタ一部とt有するズームレンズに
おいてマスターレンズ部する正レンズのうち、少なくと
も1個の正レンズ【無機ガラスで構成し、これによって
マスタ一部のみで温度補正を行なうものである。
The present invention provides a zoom lens having a variable power section and a master section, in which at least one positive lens in the master lens section is made of inorganic glass, thereby performing temperature correction only with the master section. It is.

焦点変動のバランスをとるために、マスターレンズ部を
変倍部で発生するIIR成分tキャンセルするよう1;
構成しなければならない。
In order to balance the focus fluctuation, the master lens section is set to 1 to cancel the IIR component t generated in the variable magnification section;
must be configured.

もちろんam収差のみならず色収差に於いても良好に補
正することが必要で、この色収差上補正しつつ@度収差
【コントロールすることが本発明の最大のポイントとな
る。さらにマスタ一部としてのパワーを保持することも
必要である。マスタ一部を構成する各レンズの焦点距離
tfl、f1.・・・・・・ft・・・・・・/be%
レンズのaW1分数数’lf wl、 92 @ ” 
”’Vll11. ?、、 yk、各レンズ櫨ニオける
近軸光線の高さt b> e hl 、・・・・・・k
l・・・・・・hjとすると、マスタ一部についての@
縦収差係数Tm 。
Of course, it is necessary to properly correct not only the AM aberration but also the chromatic aberration, and the most important point of the present invention is to control the degree aberration while correcting the chromatic aberration. Furthermore, it is also necessary to maintain power as part of the master. Focal lengths tfl, f1 .of each lens constituting part of the master.・・・・・・ft・・・・・・/be%
Lens aW1 fractional number 'lf wl, 92 @ ”
``'Vll11.?,, yk, height of paraxial ray passing through each lens t b> e hl,...k
If l...hj, @ for part of the master
Longitudinal aberration coefficient Tm.

色収差Cm、パワー(屈折力) Pmはそれぞれ、と!
I現される。
The chromatic aberration Cm and the power (refractive power) Pm are, respectively!
I appear.

マスタ一部のパワーPm kある一定の値書:保持しつ
つ、色収差Cm%@Fjt収差係数Tm k互6:バラ
ンスさせた補正を行う必要があり、しかも短焦点端から
長焦点端までのズーミング中1−あまり大きく変動しな
いよう(ニバランスさせる必要がある。変倍部の温に収
差係aTマー二ついて、例えば本願出願人による先の出
願(%願昭56−59685号)の第1実施ガとして示
した3倍ズームレンズでは基準温gILt=20Cとし
て低@t、=−10Cと、@iit、=50Cとの間で
短焦点端ではTマ(W) −0,00759゜長焦点端
ではTマ(T)−0,02413とその差0.0165
4の変動がみとめられた。マスターレンズの諸変数(曲
率、面間隔、パワー配置等)【色々と変えること感二よ
り、変動成分はなくすことはできないが、Oz:近づけ
たり正負に割りふることC:より、実質的な害を軽減さ
せることができる。このバランスは固定焦点レンズで行
なわれるバランスとは異なり、短焦点距離端ではTm値
を逆に負の方向C:ださせるような結果となることもあ
る。し力1しながらこO場合は、ズーミング全体として
晃た時(;ちょうど正負がバランスされることになるわ
けである。
Master part power Pm k A certain value: While maintaining chromatic aberration Cm% @ Fjt Aberration coefficient Tm k Mutual 6: It is necessary to perform balanced correction, and zooming from the short focal length end to the long focal length end Junior high school 1 - It is necessary to balance the temperature so that it does not change too much. There are two aberration coefficients aT in the temperature of the variable magnification section. With the 3x zoom lens shown as GA, when the reference temperature gILt = 20C, between low @t, = -10C and @iit, = 50C, Tma (W) -0,00759° at the long focal length end. Then Tma(T)-0,02413 and the difference 0.0165
4 changes were observed. Variables of the master lens (curvature, interplanar spacing, power arrangement, etc.) [Change it in various ways] From the sense 2, the fluctuation component cannot be eliminated, but Oz: bringing it closer or dividing it into positive and negative C: more substantial harm can be reduced. This balance is different from the balance performed with a fixed focal length lens, and may result in the Tm value being reversed in the negative direction C: at the short focal length end. If the power is 1 and the power is 0, then when the entire zooming is completed, the positive and negative values will be balanced.

本発明においては、低@ t、3−10 Cと^温t、
 = 50 Cとの間において、基準11[【20Cと
して、マスタ一部の1lLIiL収差係数mt −0,02≦Tm≦0.01     (4)の範門に
することが望ましく、また、このとき、全レンズ系のf
f1度収差係数T totは最短焦点距離状態にて、 I Ttol (W) l≦0.01     (5)
最長焦点距離状態にて、 o、o o s≦Ttot (T)≦o、o a   
(6)となるよう構成することが蓮ましい。
In the present invention, low @ t, 3-10 C and ^ temperature t,
= 50 C, it is desirable that the 1lLIiL aberration coefficient of the master part falls within the range mt -0,02≦Tm≦0.01 (4) as the standard 11[[20C, and in this case, f of all lens systems
The f1 degree aberration coefficient T tot is at the shortest focal length state, I Ttol (W) l≦0.01 (5)
At the longest focal length state, o, o o s≦Ttot (T)≦o, o a
It would be better to configure it so that (6) is achieved.

レンズ系の全てのレンズf素【有機ガラスで構成すると
、全系で正の屈折力を庸する以垢全系の温度収差係数は
必然的に正の籠t−Nし、ズームレンズであればある正
のfifi成分に変倍シ:よる変動成分が加わったf[
を持つ。
All lenses f elements in the lens system [When constructed with organic glass, the entire system has positive refractive power, so the temperature aberration coefficient of the entire system is necessarily a positive cage t-N, and if it is a zoom lens, f[
have.

ズームレンズのマスタ一部を構成する有機ガラス製12
1個々の11度収差係数と、全系によるa度収差係数の
[[成分と【比較し、マスタ一部中の1個又は複数のレ
ンズを組合せた係数値が全系の直流成分にほぼ等しいレ
ンズ要素を無機ガラスで置き換えれば、II直流成分補
正することができるのであるが、その結果としてのマス
タ一部のa[収差係数TmO値は(4)式の範囲とする
こと1=よって、ズームレンズ全系の嵐好なaf収差補
正が可能となる。(4)式の下限を外れるならば、[r
IL成分の補正過剰となり、上限を越えるならば、補正
不足であって変倍(=伴う温度収差の変動を実用上十分
な値に補正することが―シレ1.そして、全系12)a
f収差係数Ttotは(5)式の条件で表わされるごと
く、最短焦点距離状−では零七中心C二負又は正の値と
し、また、(6)式の条件で表わされるごとく最長焦点
距離状態では正のやや大きな値とすることが、ズームレ
ンズの@縦収差補正6二最適である。これらの条件【満
足しない場合にはllK収差のバランスがくずれ像の悪
化が避けられない。
Organic glass 12 that forms part of the zoom lens master
1. Comparing the individual 11 degree aberration coefficients and the [[ component of the a degree aberration coefficient of the entire system, the coefficient value of the combination of one or more lenses in the master part is almost equal to the DC component of the entire system. If the lens element is replaced with an inorganic glass, it is possible to correct the II DC component, but as a result, the aberration coefficient TmO value of the master part should be within the range of equation (4) 1 = Therefore, the zoom This enables efficient AF aberration correction for the entire lens system. If the lower limit of equation (4) is exceeded, [r
If the IL component is over-corrected and exceeds the upper limit, it is under-corrected, and it is necessary to correct the accompanying temperature aberration fluctuations to a practically sufficient value - Part 1. And the entire system 12) a.
As expressed by the condition of equation (5), the f aberration coefficient Ttot is a negative or positive value at the zero center C2 in the shortest focal length state, and as expressed by the condition of equation (6), it is a negative or positive value for the maximum focal length state. Therefore, it is optimal for the zoom lens to have a slightly large positive value for longitudinal aberration correction. If these conditions are not satisfied, the balance of llK aberrations will be disrupted and deterioration of the image will be unavoidable.

さらに本発明5:おいては、マスタ一部C;設けられる
無機ガラス製レンズ(一ついて、前記(2)式で示した
ごとき色収差の曳好な補正のため4=、そのアツベ数ν
dはνd>50であることが望ましい。また、屈折力が
大きい有機ガラス製レンズはど固有のam収差係数が大
きいため、全系で生ずるsI&収差係数の正の直流成分
を補正するため(;は、マスタ一部中Oより屈折力の大
無な正レンズ要素【無機ガラスで構成することが有利で
ある。
Furthermore, in the present invention 5, the master part C; provided with an inorganic glass lens (4 = 4 = its Atsube number ν in order to effectively correct the chromatic aberration as shown in equation (2) above);
It is desirable that d is νd>50. In addition, organic glass lenses with large refractive power have a large inherent AM aberration coefficient, so in order to correct the positive DC component of the sI & aberration coefficient that occurs in the entire system (; indicates the refractive power from O in the master part). The positive lens element is advantageously made of inorganic glass.

以下5:本発明の実施例について説明する。Below 5: Examples of the present invention will be described.

本発明の第1実施例は、基本的C;はいわゆる4群ズー
ムレンズであり、その構成は第1図C;示すごとく、物
体側よりJ[I”:フオー力ツシング群としての正の第
1群G1.バリエータ−としての負の第2群G、、コン
ペンセーターとしての正の第3群Gj、マスタ一部とし
ての正の第4詳GmkNするズーム比3、Fナンバー1
.8C)ズームレンズ系である。ここで第1評、第2評
、1m3許が変倍部を構成している。そして、第1群G
、はポリスチレンP−よりなる負レンズL、と、これと
貼り合わせのアクリル(PMMム)よりなる正レンズL
8.さらにアクリルよシなる正レンズL畠で構成され、
第2詳G、はアクリルよりなる負レンズL6、アクリル
よりなる負レンズLI。
The first embodiment of the present invention is basically a four-group zoom lens, and its configuration is as shown in FIG. 1st group G1. Negative 2nd group G as a variator, positive 3rd group Gj as a compensator, positive 4th group GmkN as part of the master, zoom ratio 3, F number 1
.. 8C) It is a zoom lens system. Here, the first evaluation, the second evaluation, and the 1m3 area constitute the variable magnification section. And the first group G
, is a negative lens L made of polystyrene P-, and a positive lens L made of acrylic (PMM) bonded to this.
8. Furthermore, it is composed of a positive lens L Hatake that is similar to acrylic.
The second detail G is a negative lens L6 made of acrylic, and a negative lens LI made of acrylic.

これと貼り合せのポリスチレンよりなる正レンズL、で
構成され、第3詳G、はアクリルよりなる正レンズL!
よシなる。マスタ一部のリレー系は第4詳G、は無機ガ
ラスよりなる正レンズL、 Iポリスチレンよpなる負
レンズL、、アクリルよりなる2個O正しンズIJI@
 e  1711 で構成されている。菖1図中、無機
ガラス調のレンズを斜線で示した。
This is composed of a positive lens L made of bonded polystyrene, and the third detail G is a positive lens L made of acrylic!
It's okay. The master part of the relay system has the fourth detail G, the positive lens L made of inorganic glass, the negative lens L made of polystyrene, and the two O correct lenses IJI@ made of acrylic.
It is composed of e 1711. In Diagram 1, the inorganic glass-like lenses are indicated by diagonal lines.

1II1111!jII例の諸元を下記表14;示す0
表中4−は各レンズ要素Oam分散数町も記した。
1II1111! The specifications of Example jII are shown in Table 14 below.
In the table, 4- indicates the Oam dispersion number of each lens element.

この@度分散数Wlは基準am!t=zoc。This @ degree dispersion number Wl is the standard am! t=zoc.

低at、==−1oc、 高alt、−5ocで計gさ
れた値である。
This is the value measured at low at, ==-1oc, and high alt, -5oc.

本第1実施例において、a縦収差の補正前すなわち、1
g8レンズL、【アクリルで形成し全てのレンズ要素を
有機ガラスで構成した場合には、全系の温度収差係数は
最短焦点距離状態でTtot (W) = 0.039
81 、  最長焦点距離状態でTtot (T)=0
.0565であり、共−一正に大きな値である。そこで
、本実施例では第8レンズL、 t−無機ガラスで構成
したものであり、この結果マスタ一部としての第4群の
温度収差係数は補正前の丁mm O,0Ba84から丁
m”0.00017と小さくなり、全系ではT1゜、 
(W) = 0.00684. ’r、。t(T)−0
,02353となり、変動成分【除くことはできないが
かなり小さな値とすることができた。
In the first embodiment, before correction of a longitudinal aberration, that is, 1
g8 lens L, [When formed of acrylic and all lens elements are made of organic glass, the temperature aberration coefficient of the entire system is Ttot (W) = 0.039 at the shortest focal length state.
81, Ttot (T) = 0 in the longest focal length state
.. 0565, which is a significantly large value. Therefore, in this embodiment, the 8th lens L is made of t-inorganic glass, and as a result, the temperature aberration coefficient of the 4th lens group as part of the master ranges from 1mm O, 0Ba84 before correction to 1"0 It becomes small as .00017, and T1° for the whole system.
(W) = 0.00684. 'r,. t(T)-0
, 02353, and the fluctuation component [cannot be removed, but it can be made to a fairly small value.

本第1実施例の光線収差t#12図に示す。The optical aberration t#12 of the first embodiment is shown in FIG.

第29中(−は最短焦点距離状態、(b)は中間焦点距
離状態、(C)は最長焦点距離状IIt示し、8phは
球面収差、ムlは非点収差、Dimは歪曲収差を示す、
d線(A−587,6鴎)【基準波長とし、色収差の補
正の目やすどしてtea(1−436,8fi)を用イ
テ示シタe 本511111 INの@縦収差の補正の
効果を第aS、第4因砿;示す、第3因は1Ljf収差
を補正した実施例の収差図であり、第4図は温度収差補
正前すなわち、L@ kアクリルで形成し、マスタ一部
としての第4群Ga k全て有機ガラスで構成した場合
の収差図である。各図において、(烏)は最短焦点距離
状態、(b)は中間焦点距離状態、(C)は最長焦点距
離状態を示し、sphは球面収差、Alは非点収差、D
lmは歪曲収差【示す。
No. 29 (- indicates the shortest focal length state, (b) indicates the intermediate focal length state, (C) indicates the longest focal length state IIt, 8ph indicates spherical aberration, Ml indicates astigmatism, and Dim indicates distortion aberration,
d-line (A-587, 6) [Use the reference wavelength with tea (1-436, 8fi) as a reference wavelength to correct chromatic aberration. The third factor is an aberration diagram of an example in which the 1Ljf aberration is corrected, and FIG. 4 is an aberration diagram of an example in which the 1Ljf aberration is corrected. It is an aberration diagram when the fourth group Gak is entirely composed of organic glass. In each figure, (crow) shows the shortest focal length state, (b) shows the intermediate focal length state, and (C) shows the longest focal length state, sph is spherical aberration, Al is astigmatism, and D
lm is distortion aberration.

また、基準af’t20cとL、−10CC)低龜状態
kttで、50Cの高温状態12t、でそれぞれ示した
。これらの温度収差図から本実施例のズームレンズが一
10Cから50Cまでの大きな温度変化4二対して焦点
位置の変動が少なく、しかも実用上十分な結像性mt維
持していることが明らかである。
In addition, the reference af't20c and L, -10CC) are shown in the low temperature state ktt and the high temperature state 12t of 50C, respectively. From these temperature aberration diagrams, it is clear that the zoom lens of this example exhibits little fluctuation in focal position in response to large temperature changes from 110C to 50C, and maintains a practically sufficient imaging performance mt. be.

上記の第1実施例ではマスタ一部c 1個の無機ガラス
調正レンズを用いたが、さらにもう1個の正レンズ【無
機ガラスで形成することC;よって、a縦収差tより良
好に補正することができる。このよう4:マスタ一部に
2個の無機ガラス製レンズを用いたズームレンズの例か
第2実施例である。第2実施例では第5図に示したごと
く、前記のJIIl実施例で無機ガラス製レンズであっ
た菖8レンズL、 (ニー加えて最も像側の正レンズで
ある第1ルンズL。をも無機ガラスで構成したものであ
る。
In the first embodiment described above, one inorganic glass corrective lens was used for the master part c, but another positive lens [made of inorganic glass C; can do. 4: This is an example of a zoom lens using two inorganic glass lenses in the master part, or the second embodiment. In the second embodiment, as shown in FIG. 5, the iris 8 lens L, which was an inorganic glass lens in the JIII embodiment described above, (in addition to the knee, the first lens L, which is the positive lens closest to the image side) is also used. It is made of inorganic glass.

最も像側のレンズを無機ガラスとすれば、内部の有機ガ
ラスレンズを保−することができる、第2実施ガの諸元
を下−記表2に示す。
If the lens closest to the image side is made of inorganic glass, the internal organic glass lens can be preserved.The specifications of the second embodiment are shown in Table 2 below.

本第2実施ガではマスタ一部のatom係数はTm=−
0,01333と負の値とな9、全系のIl&収差係数
tit A&短焦点距離状態で丁t。1(W)=−0,
00686,最長焦点距離状態でTtol (T) =
 0.00983となる。これら各温度収差係数の値を
前記i!l実施例の値と併せて下記表3に示す。
In this second implementation, the atom coefficient of part of the master is Tm=-
The negative value is 0,01333, and the total system Il & aberration coefficient tit A & t in the short focal length state. 1(W)=-0,
00686, Ttol (T) = at maximum focal length
It becomes 0.00983. The value of each temperature aberration coefficient is the i! The values are shown in Table 3 below together with the values of Examples.

表  3 そして、全系についての温度収差係数値の変倍に伴う変
化の様子を第6図1;示した。菖6図は縦軸1;全系の
@度収差係数Ttot *  横軸1:全系の焦点距離
tとったものであり、左端は最短焦点距離(Wide 
)、右端は最長焦点距離状1f(Tel・)vt表わす
1図中、−線1は補正前、曲線すは第1実施ガ、曲11
cは第2実施例の各状態の特性を示している。r!jA
示のごとく、第1、第2実施例では変倍C:よる変動成
分は除かれていないものの、そO絶対値はかなり小さく
なっており、%lニーーCから分るよう&:第2実施例
では変倍の途中で収差係数が零となり、全変倍域にわた
って収差係数の絶対値が極めて小さく補正されているこ
とが明らかである。
Table 3 Figure 6 1 shows how the temperature aberration coefficient value for the entire system changes as the magnification changes. Diagram 6 has the vertical axis 1: @degree aberration coefficient Ttot of the entire system * horizontal axis 1: focal length t of the entire system, and the left end is the shortest focal length (Wide).
), the right end represents the longest focal length 1f(Tel・)vt In the figure, - line 1 is before correction, the curve is the first embodiment, track 11
c shows the characteristics of each state in the second embodiment. r! jA
As shown, in the first and second embodiments, although the variation component due to the variable magnification C: is not removed, the absolute value of SOO is considerably small, and as can be seen from %lnyC In the example, the aberration coefficient becomes zero during zooming, and it is clear that the absolute value of the aberration coefficient is corrected to be extremely small over the entire zoom range.

第2実施例の光線収差を第7図(:、また温度収差を第
8図に示す。各収差の表示は前記第1実施ガI:ついて
の第2図及び第3図と同様であり、温匿収差補正前の@
度収葺は第4図のとおりである。各収差図の比較から、
光線収差は勿論のこと、−10Cから50Cという1度
変化に対してもaf収差が実用上十分良好に補正されて
いることが明らかであシ、#16図C;示したa[収差
係数の特性曲線す。
The ray aberration of the second embodiment is shown in FIG. 7 (and the temperature aberration is shown in FIG. 8. The display of each aberration is the same as in FIGS. 2 and 3 for the first embodiment, @ before thermal aberration correction
The construction of the roof is shown in Figure 4. From the comparison of each aberration diagram,
It is clear that not only the ray aberration but also the 1 degree change from -10C to 50C, the AF aberration is corrected sufficiently well for practical use. Characteristic curve.

cO有効性が裏付けられる。cO effectiveness is supported.

以上述べたごとく、本発明によれば1個又は数個のレン
ズ要素のみ【無機ガラスで構成し、他のレンズ要素を全
てプラスチック(有機ガラス)で構成することにより、
有機ガラスにlil有のaK収差が全変倍域C;わたっ
て実用上十分良好に補正されたズームレンズ【達成する
ことができる。そしてプラスチックレンズの軽量である
こと及び製造の簡晶であること、・価格の安いこと等の
多くの利点tそのまま維持しつつ、基準光線につい:′
CO収差は勿論、色状差も実用上十分良好に補正された
優れたズームレンズとなり、極めて有用である。
As described above, according to the present invention, only one or several lens elements are made of inorganic glass, and all other lens elements are made of plastic (organic glass).
It is possible to achieve a zoom lens in which the aK aberrations present in organic glass are sufficiently corrected for practical use over the entire zoom range. While maintaining the many advantages of plastic lenses, such as light weight, simple manufacturing, and low price, regarding the reference light beam:
This is an excellent zoom lens in which not only CO aberrations but also chromatic differences are corrected well enough for practical use, making it extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実m例のズームレンズの構成図、
第2図は第1実施的の光線収差図で(墨)は最短焦点距
離状態、(b)は中間焦点距離状態、(c)は最長焦点
距離状態を示し、89hは球面収差・、ムatは非点収
差、Diは歪曲収差を示す。第3図はam収差を補正し
た実施例の収差図、菖4図は@直状差補正前の収差図で
(a)は最短焦点距離状態、(b)は中間焦点距離状態
、(C)は最長焦点距離状lIt示し、89には球面収
差、ムlは非点収差、Disは歪曲収差を示す、第5図
は第2実施例のズームレンズの構成図、第6図は全系に
ついての111度収差係数値の変倍に伴う変化の様子、
第7図に第2実施例の光線収差図、第8図に第2実施ガ
の温度収差図【示す。 〔主要部分の符号の説明〕 L、  無機ガラスからなる正レンズ Lll   無機ガラスからなる正レンズ出願人工 日
本光学工業株式会社 矛3図 (11)         (灼 CG) 、5rh   A5t/ (ω 5f’h    Asv −0,500,5−〇800.5 hOt オ′5区 1 オ6図 Wade        市市 3r秩  A3t+ −0,50α5 −0.500.!
FIG. 1 is a configuration diagram of a zoom lens according to a first example of the present invention;
Figure 2 is a diagram of the ray aberration of the first embodiment, where (black) shows the shortest focal length state, (b) shows the intermediate focal length state, and (c) shows the longest focal length state, and 89h shows the spherical aberration. indicates astigmatism, and Di indicates distortion. Figure 3 is an aberration diagram of the example in which AM aberration is corrected, and Figure 4 is an aberration diagram before @ rectilinearity correction. (a) is the shortest focal length state, (b) is the intermediate focal length state, (C) indicates the longest focal length lIt, 89 indicates spherical aberration, ML indicates astigmatism, and Dis indicates distortion aberration. Fig. 5 is a diagram of the configuration of the zoom lens of the second embodiment, and Fig. 6 shows the entire system. How the 111 degree aberration coefficient value changes with magnification,
FIG. 7 shows a ray aberration diagram of the second embodiment, and FIG. 8 shows a temperature aberration diagram of the second embodiment. [Explanation of symbols of main parts] L, Positive lens made of inorganic glass Lll Positive lens made of inorganic glass Application Artificial Nippon Kogaku Kogyo Co., Ltd. -0,500,5-〇800.5 hOt O'5 Ward 1 O6 Figure Wade City City 3r Chichi A3t+ -0,50α5 -0.500.!

Claims (1)

【特許請求の範囲】[Claims] 変倍部とマスタ一部とを有し、主として有機ガラス製の
レンズからなるズームレンズにおいて、該マスタ一部を
形成する正レンズのうち少なくとも1個の正レンズを無
機ガラスで構成し、@度による焦点位置の変化を補正し
たことを特徴とするズームレンズ系。
In a zoom lens that has a variable power section and a master part and is mainly made of an organic glass lens, at least one positive lens of the positive lenses forming the master part is made of inorganic glass, and A zoom lens system characterized by correcting changes in focal position due to
JP56164565A 1981-04-22 1981-10-15 Zoom lens system Granted JPS5865407A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56164565A JPS5865407A (en) 1981-10-15 1981-10-15 Zoom lens system
US06/367,981 US4653872A (en) 1981-04-22 1982-04-13 Athermalized zoom lens system
GB08211701A GB2102142A (en) 1981-04-22 1982-04-22 Athermalised zoom lens system comprising mainly plastics lenses
DE19823215052 DE3215052A1 (en) 1981-04-22 1982-04-22 VARIO LENS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164565A JPS5865407A (en) 1981-10-15 1981-10-15 Zoom lens system

Publications (2)

Publication Number Publication Date
JPS5865407A true JPS5865407A (en) 1983-04-19
JPH0139563B2 JPH0139563B2 (en) 1989-08-22

Family

ID=15795573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164565A Granted JPS5865407A (en) 1981-04-22 1981-10-15 Zoom lens system

Country Status (1)

Country Link
JP (1) JPS5865407A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091320A (en) * 1983-10-26 1985-05-22 Hitachi Ltd Zoom lens using plastic lens
JPS60107013A (en) * 1983-11-16 1985-06-12 Hitachi Ltd Zoom lens
JPS60189722A (en) * 1984-03-12 1985-09-27 Hitachi Ltd Zoom lens
JPH01222212A (en) * 1987-12-11 1989-09-05 Eastman Kodak Co Zoom lens
US5504625A (en) * 1990-10-09 1996-04-02 Asahi Kogaku Kogyo Kabushiki Kaisha Variable power projection lens
JP2007108710A (en) * 2005-09-13 2007-04-26 Olympus Imaging Corp Imaging optical system and electronic imaging device having it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920315A (en) * 1974-10-15 1975-11-18 Bell & Howell Co Zoom projection lens
US3972592A (en) * 1974-10-18 1976-08-03 Eastman Kodak Company Zoom projection lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920315A (en) * 1974-10-15 1975-11-18 Bell & Howell Co Zoom projection lens
US3972592A (en) * 1974-10-18 1976-08-03 Eastman Kodak Company Zoom projection lens

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091320A (en) * 1983-10-26 1985-05-22 Hitachi Ltd Zoom lens using plastic lens
JPS60107013A (en) * 1983-11-16 1985-06-12 Hitachi Ltd Zoom lens
JPS60189722A (en) * 1984-03-12 1985-09-27 Hitachi Ltd Zoom lens
JPH0511283B2 (en) * 1984-03-12 1993-02-15 Hitachi Ltd
JPH01222212A (en) * 1987-12-11 1989-09-05 Eastman Kodak Co Zoom lens
US5504625A (en) * 1990-10-09 1996-04-02 Asahi Kogaku Kogyo Kabushiki Kaisha Variable power projection lens
JP2007108710A (en) * 2005-09-13 2007-04-26 Olympus Imaging Corp Imaging optical system and electronic imaging device having it

Also Published As

Publication number Publication date
JPH0139563B2 (en) 1989-08-22

Similar Documents

Publication Publication Date Title
US4214816A (en) High speed telephoto lens system
US7239455B2 (en) Telephoto lens
US5184251A (en) Vari-focal lens system
US4165916A (en) Objective lens system with close object focusing aberration correction
JPH05264902A (en) Zoom lens
JPH095624A (en) Zoom lens
JPS61148414A (en) Compact zoom lens
US2735339A (en) Yoshikazu doi
US4732459A (en) Fast telephoto lens
US4349249A (en) Compound lens
JPS59180518A (en) Telephoto zoom lens consisting of four lens groups
JPS5865407A (en) Zoom lens system
JPS60114814A (en) Zoom lens
US3030863A (en) Zoom type of variable magnification optical system for attachment to photographic objectives
JPS5834418A (en) Lens system capable of photographing at close distance
JPH0850243A (en) Zoom lens with compensation for temperature change
JPS61275809A (en) Bright wide-angle zoom lens
US4435049A (en) Telephoto lens system
US4545654A (en) Bright telephoto lens
US5080473A (en) Vari-focal lens system
US6081384A (en) Color-corrected and temperature-compensated lens having an anomalous dispersion glass lens
US5790318A (en) Two-group zoom lens
US4468096A (en) Four-group telephoto zoom lens
JPS6116963B2 (en)
JPH09311272A (en) Zoom lens