JPS5865341A - Shock absorber - Google Patents

Shock absorber

Info

Publication number
JPS5865341A
JPS5865341A JP16443081A JP16443081A JPS5865341A JP S5865341 A JPS5865341 A JP S5865341A JP 16443081 A JP16443081 A JP 16443081A JP 16443081 A JP16443081 A JP 16443081A JP S5865341 A JPS5865341 A JP S5865341A
Authority
JP
Japan
Prior art keywords
disc
pin
rod
output shaft
rotated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16443081A
Other languages
Japanese (ja)
Inventor
Tatsuya Masamura
辰也 政村
Ken Mimukai
水向 建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP16443081A priority Critical patent/JPS5865341A/en
Publication of JPS5865341A publication Critical patent/JPS5865341A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/461Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall characterised by actuation means
    • F16F9/462Rotary actuation means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To adjust damping force in a multiple stage further save excitation power, by fixedly providing specific two discs to an output shaft end of a rotary solenoid and end of an adjusting rod and engaging a pin and the like to grooves in the both discs. CONSTITUTION:In a shock absorber where an adjusting rod 16, for changing damping force, is rotated by a rotary solenoid 19, the first disc 24 is fixedly provided to the end of an output shaft 3 of the solenoid 19, while the second disc 25, located at a face-to-face position to the first disc 24, is fixedly provided to the end of the rod 16, and a single of pin (ball) 13 is engaged to a loop- shaped groove 12 of the disc 24, having at least four turn-back branch parts A-D, and a radially long groove 11 of the disc 25. In this way, a pulse current is conducted, if the disc 24 is rotated to an angle alpha in a direction R, the pin 13 is moved along a passageIfrom the branch part A to B, while the disc 25 is rotated to an angle beta and fixed, to cut off conduction of an electric current.

Description

【発明の詳細な説明】 本発明はロータリンレノイドによp減衰力を変化させる
ように上穴ショックアブソー79に−する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an upper hole shock absorber 79 so as to change the p-damping force using a rotary lenoid.

車両のショックアブソーi4には第1図に示すLうに、
ピストンロッド15の中に回転自由に調整ロッド16を
収装し、その先端に複数の口径の異るオリフィス17會
形成したロータリパルプlBt 城付&7. このvr
4贅ロッド16會ピストンロッド15に固設されたロー
タリンレノイド19で(ロ)転してオリフィス17’に
変えることにより、ピストン20変位に伴い一方の油M
21から他方の油量22へ移動する倉?!ニー節して、
&波力全変化させるようにしたものがある−1 すなわち、オリフィス有効径が大きくなれは減試力に剥
まり、迎に有効径が小さくなれば減衰力が強lるのであ
り、車両の運転状鵬に応じてロータリンレノイド19′
に1動して減挾力會最適に制御するのでおる。
The shock absorber i4 of the vehicle has L as shown in Figure 1.
Rotary pulp lBt with castle and 7. An adjustment rod 16 is rotatably housed in a piston rod 15, and a plurality of orifices 17 of different diameters are formed at the tip of the adjustment rod 16. This vr
By rotating the rotary linenoid 19 fixed to the piston rod 15 and changing it into the orifice 17', one oil M is removed as the piston 20 is displaced.
The warehouse moving from 21 to the other oil amount 22? ! Knee knot,
& There are some that are designed to change the total wave force - 1 In other words, as the effective diameter of the orifice becomes larger, the damping force becomes stronger, and as the effective diameter becomes smaller, the damping force becomes stronger. Rotary lenoid 19' according to the condition
This is done to optimally control the reducing force.

このようなショック7ノンーバに使用される従来のロー
タリンレノイドを第2図について説8Aする(実公昭5
3−5167号にて翔示)。図において、1はケース2
に収装されたコイル、3はコ・イルlのペース4にニー
ドルベアリング5t−介して回動と摺動が自在に支持さ
れる出力軸、6は出刃軸3に非磁性体のハ27i介して
固定されるアーマチュアであって、そのアーマチュア6
とケース 。
The conventional rotary linoid used in such a shock 7 non-nover will be explained with reference to Fig. 8A.
3-5167). In the figure, 1 is case 2
3 is an output shaft which is supported for free rotation and sliding through a needle bearing 5t on the pace 4 of the coil I, 6 is a non-magnetic material 27i on the blade shaft 3. an armature that is fixed in place, the armature 6
and case.

2との間には慎数個(図の一合は31−)のボール8が
挾持される。これらのボール8は、ケース2上面とアー
マチュア6下面に形成されアーマチュア6の回転面方向
AK#斜したボールレース9a。
A reasonable number of balls 8 (31- in the figure) are held between the balls 8 and 2. These balls 8 are formed on the upper surface of the case 2 and the lower surface of the armature 6, and form a ball race 9a that is inclined in the direction of the rotating surface of the armature 6 AK#.

9bに収装される。なお、出力軸3とペース(との間に
は畷巻コイルスゲリングSが彊設され、出力軸3會臘位
置に保持する工うに付勢している。
It will be stored in 9b. Note that a winding coil S is installed between the output shaft 3 and the pace, and is biased to hold the output shaft 3 in the fixed position.

したがって、コイル1に通電しないと!!汀、アーマチ
ュア6は出力軸3に作用するスプリングSO付勢力で原
位置にあ夕、ボール8は第1図(C)に示す工うに、ボ
ールレース9a、9bの回転方向LO前端部に挾持され
た状態にあって、それにょ9クース2と7−マチ二ア6
0間に灯、軸方向のクリアランスHが形成される。
Therefore, coil 1 must be energized! ! At this point, the armature 6 is held in its original position by the biasing force of the spring SO acting on the output shaft 3, and the balls 8 are clamped at the front ends of the ball races 9a and 9b in the rotational direction LO, as shown in FIG. 1(C). 9 coos 2 and 7 machinia 6.
An axial clearance H is formed between the two.

コイル1に通電す−ると、ケース1が磁化されてアーマ
チュア6を奴引するため、ボールレース9bはl−ル8
を押圧し回転させなからL方向に移動する。これにより
アーマチュア6が回転し、ボール8がgla?(d)に
示すように、ポールレース9a?前端部とボールレース
9bの後端部で挾持された位置、で停止し、その−転が
出力軸6勿介して出力される6 コイル1への通電を断つと、ケース2のfi力、tE消
戚するので、アーマチュア6は田カ@3に作用Tる錫巻
スプリングSの付勢力によりR方向に同動し原位置に復
#Tる。
When the coil 1 is energized, the case 1 is magnetized and pulls the armature 6, so the ball race 9b
Press and rotate, then move in the L direction. This causes the armature 6 to rotate and the ball 8 to gla? As shown in (d), pole race 9a? It stops at the position where it is held between the front end and the rear end of the ball race 9b, and its rotation is output through the output shaft 6. When the current to the coil 1 is cut off, the fi force of the case 2, tE As a result, the armature 6 simultaneously moves in the R direction due to the biasing force of the tin-wound spring S acting on the field 3 and returns to the original position.

ところが、このようなロータリンレノイド19を相いて
2橿のオリフィス1711−形成したロータリパルプ’
i[g1転し減衰力′Ik強弱の2段に調整Tる場合に
は、そのいずれか一方v減皺カにロータリンレノイド七
通電状線に保持して得ることになる。
However, the rotary pulp' formed by two orifices 1711 with such a rotary pulp lenoid 19
When the damping force 'Ik is adjusted in two stages, i[g1 and damping force 'Ik is strong and weak, either one of them is obtained by holding the rotorinoid in the 7 energized wire in the v wrinkle reduction force.

これは、コイルに励磁電流を継続して流すこと倉賛し、
仁のた−めコイルか発熱するとともに、励磁電力が増大
Tるという間軸がるる。これ全解決するため、前述のコ
イルスプリングを除いてロータy7し)イ)”’12個
使朗して、口−タ リパルプ18’tE逆双方に一転す
る方式がt!東されているが。
This means that the excitation current is continuously passed through the coil.
Because of this, the coil generates heat and the excitation power increases. In order to solve all this, a method has been proposed in which the aforementioned coil spring is removed and the rotor is changed to y7).

補遺が複雑になるとともに、崖飯、コストの増加を招く
Addendums become complicated, leading to increased costs and complications.

一方、前記#CC方力194節は強−2段に限られるも
のではなく、3段るるいは4段の調節が麹求されること
がめるが、従来のロータリソレノイドでこの要求に応す
ることは不可能でめった。
On the other hand, the above-mentioned #CC direction force 194 is not limited to strong - 2 steps, but may require adjustment in 3 or 4 steps, but conventional rotary solenoids cannot meet this requirement. is impossible and rare.

本発明は上記した間軸を解決するためになされたもので
、ロータリンレノイドに切換躯動時のみパルス励磁電流
印加すると、その後はその切換位置に機械的に係合して
減衰力を多段に−節し得るとともに、コイルの発熱を防
止し励磁電力の節減を図ったショックアブソーバを提供
丁ゐことを目的とする。
The present invention has been made to solve the above-mentioned problem, and when a pulse excitation current is applied to the rotary linenoid only during the switching motion, the damping force is then mechanically engaged at the switching position and the damping force is multi-staged. - It is an object of the present invention to provide a shock absorber which can reduce excitation power by preventing coil heat generation and reducing excitation power.

以下、本発明の実施例金融面にした紗iうて説明する。Hereinafter, a financial example of the present invention will be explained.

第3図において、―堅ロッド16と同一軸−上に配皺さ
れショックアブソーバに相対的に1建されたロータリソ
レノイド1912)出力軸3の一部に框、jl14Dr
(、*り24がす、、*され、それと対向して第2のr
イスク25が―整pツド160端部に固峡され、^ディ
スク間にに@ 2 kIJ(c)に示すクリアランスH
より若干大きいクリアランスH′が形成dれ、アーマチ
ュアが作動時に降下しても両ディスクが接触しないLう
になっている。
In FIG. 3, a rotary solenoid 1912) arranged on the same axis as the hard rod 16 and mounted relative to the shock absorber 1912) has a frame on a part of the output shaft 3, jl14Dr.
(, *re24 is, , *is, and opposite it is the second r
The disk 25 is fixed to the end of the adjusted plate 160, and there is a clearance H between the disks as shown in 2 kIJ (c).
A slightly larger clearance H' is formed so that the two disks do not come into contact even if the armature descends during operation.

このII!Iのディスク24にI/′X第4図に示アシ
うなルーツ状帥12が、第2のディスク25には第5図
に示すような半径方向の長孔11がそれぞれ形成される
This II! A root-like groove 12 as shown in FIG. 4 is formed in the disk 24 of I/'X, and a long hole 11 in the radial direction as shown in FIG. 5 is formed in the second disk 25.

前記ルーグ状碑12には、44tlA所のターンバック
分#fc@A−Dが形成される。
A turnback portion #fc@A-D of 44 tlA is formed on the loop-shaped monument 12.

これら分肢@A−Dt−分岐sBt例として第6Nにつ
いて脱9jする。通路■は通路Hの始点への若干手前の
個所AIで、通IIMに#iI斜して接続される◇これ
により、通路■内の図示しない円形物体が矢#JJ1方
拘に付勢される乏、その物体は通路Bに入り始点Beで
係止される。ついで、物体を矢印す方向に付勢すると、
物体扛始点H,からターンパックして餉PJrAIで通
路■に戻ることなく、iai路U′に轡って過、む。
These limbs @A-Dt-Branch sBt For example, remove 9j for the 6th N. Passage ■ is connected to passage IIM diagonally #iI at a point AI slightly before the starting point of passage H. ◇As a result, a circular object (not shown) in passage ■ is urged toward arrow #JJ1 direction. Otherwise, the object enters the path B and is stopped at the starting point Be. Then, if you force the object in the direction of the arrow,
After turning and packing from the starting point H, the object does not return to the path (2) at the end PJrAI, but instead stumbles over the path U'.

ルーフ”状@12に社、この様な44伽のターレバツク
分岐部が設耽られているので、分岐@Aにおかれた円形
物体を円周方向り、Rに交互起付勢すると、物体は分岐
部B、C−D−A〜とループ軟線12’に一万同に循環
を繰返すO 上述した第1のディスク24のλ−プ状溝12と第2の
ディスク25の長@11には% 1本のピン(またはが
−ル)13が保合し、双方の碑に沿って移動が可能なよ
うになっている。
44 such turreback branch parts are installed in the "roof" shape @12, so when a circular object placed at the branch @A is biased alternately in the circumferential direction and in the direction R, the object becomes The circulation is repeated 10,000 times through the branch portions B, C-D-A~ and the loop soft wire 12'. % One pin (or gurl) 13 is held together, allowing movement along both monuments.

次に作用について説明する。ロータリンレノイド19の
アーマチュアが原位置にあるとき、ピン13はループ状
溝12の分岐部Aの短点にめる一万、長#1111内で
第2のディスク25の中心から最遠の位置A′に位置し
ている。
Next, the effect will be explained. When the armature of the rotary linenoid 19 is in the original position, the pin 13 is inserted into the short point of the branch part A of the loop-shaped groove 12 at the farthest position from the center of the second disk 25 within the length #1111. It is located at A'.

コイル1lC1/fルス通電して第1のディスク24が
方向Rに角度α回転すると、ピン13に置溝11により
円周方向に係止されているので、ループ状##120通
路lに沿って移動し、分肢部Bの始点B、で係止される
。こ\で通電を断つと、叱1のディスク24は出力軸3
に作用する一巻スグリ、ングSの付勢力により方向りに
回転するか、ピン13線通路夏に戻ることなく通路国に
沿って移動し、分岐部Cの始点で係止され、Cのため第
2のディスク25はビン13ケ介し一巻スプリングに付
勢されIJA位麹から角度βの餉鞄で示T位宵まで回転
してその位置に保持される。次いで、コイル1に1パル
ス通電すると、ピン13は上述と1町様にして、通路凹
〜分岐部り一通路■に沿って移動し、分岐5AcD原位
置に復帰する。
When the coil 1lC1/f is energized and the first disk 24 rotates by an angle α in the direction R, the pin 13 is locked in the circumferential direction by the groove 11, so it rotates along the loop-shaped ##120 passage l. It moves and is stopped at the starting point B of the limb B. When the power is cut off at this point, the disc 24 of the scolding 1 is connected to the output shaft 3.
One roll of gooseberry acting on the pin 13 rotates in the direction due to the biasing force of S, or moves along the passage country without returning to the pin 13 line passage summer, and is stopped at the starting point of branching part C, and because of C The second disk 25 is biased by a one-turn spring through the bottle 13 and is rotated from the IJA position to the T position at an angle β and held at that position. Next, when the coil 1 is energized with one pulse, the pin 13 moves along the path (1) from the concave path to the branch part in the same manner as described above, and returns to the original position at the branch 5AcD.

このよう1こ、コイル1に1ノ平ルスa′#ILするこ
とにより、第2のディスク25はピン6葡介して、角度
β回動位llc、原位置、と回動し、その2位置に保持
され、その回転にエフロータリパルプ18c/)オリフ
ィス17が変えられ−るのでめる。
In this way, by applying one nodal angle a'#IL to the coil 1, the second disk 25 is rotated through the pin 6 from the angle β rotation position llc to the original position, and the second disk 25 is rotated to the original position. The rotary pulp 18c/) orifice 17 is changed by the rotation thereof.

第7図は本発明の別の実施例のループ状隣12を示すも
ので、ターンパンク分岐部iA〜Hと81(ロ)、’F
fr設けて、第2のディスク25を原位置、角度β1〜
β3 回動位置の4位置に保持して、かつこれに対応し
て41Mのオリフィス勿ロータリパルプ18に設けるこ
とに=9、ショックアブソーバの減挺力會4段に−節し
9る工うにしたものでめる〇このため、分岐部C,E、
GO位置を所定の回転角となるようKJk次ずらせて設
定し、これらの間にいったん角度αとなるまで戻す分岐
部り、F。
FIG. 7 shows a loop-shaped neighbor 12 according to another embodiment of the present invention, with turn-puncture branches iA to H and 81 (b), 'F
fr, and the second disk 25 is in the original position at an angle β1~
β3 It was held at the rotational position 4, and correspondingly a 41M orifice was provided in the rotary pulp 18, and the shock absorber's tension reduction force was set in 4 stages. 〇For this reason, branch parts C, E,
The GO position is set to be shifted by KJk degrees so that it becomes a predetermined rotation angle, and the branch part F is set to shift the GO position until it reaches the angle α.

H音形成し、これにより順に分M部e、h、Gで 。H sound is formed, which causes minute M parts e, h, and G in order.

ピン13を係止し、回転角を段階的に制動するのである
The pin 13 is locked and the rotation angle is braked in stages.

以上8!it明したように本発明によれは、ロータリン
レノイドの出力軸に固設した141のディスクお孟びシ
ョックアブソーバのw4贅ロンドに固設したI!2のデ
ィスクの互に対向する面に、それぞれループ状隣および
半径方向長s’t−形成し、これら両隣にピンまたはメ
ール會係合させたので、切換時にのみパルス励磁電流を
印加することにエフ、ロータリンレノイドt2位置で切
換保持でき、ショックアブソーバomg力を少くとも2
段に変化させられるとともに、ンレノイドコイルの発熱
が防止され、かつ励磁電力が節減される効果がある。
That’s 8! As explained above, according to the present invention, the 141 disk is fixed to the output shaft of the rotary linenoid, and the I! On the mutually opposing surfaces of the two disks, adjacent loops and radial lengths are formed, and these adjacent sides are engaged with pins or mails, so that a pulse excitation current can be applied only at the time of switching. F, the rotary linenoid can be switched and held at the t2 position, and the shock absorber OMG force is at least 2
This has the effect of preventing heat generation in the lenoid coil and saving excitation power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のこの種のショックアブソーバ4に示すl
l11面IN、m2図は従来のp−タリンレノイドを示
すもので、同図(a)は断面図を言む斜視図、−」図(
b)に上面図、 1KrJ図(CJは非作動時のゴール
レースの挙wJ貌明図、同図(d)は作動時のボールレ
ースの挙動説明図、第3図は本発明の装部を示す側面図
、第4図は第3図の1−1紛失視断囲図、第5図は・ 
第3図のn−n縁矢視断面図、第6図はターンバック分
岐部の拡大説明図、第7図は本発明の別の実施例のルー
プ状St示す平面図である。 1・・・コイル、3・・・出力軸、6・・・アーマチュ
ア、11・・・長溝、12・・・ループ状溝、13・・
・ピンまたはボール、16・・・=Xロッド、17・・
・オリフィス、18・・・ロータリパルプ、24・・・
ml(7)y’イスク、25・・・第2のディスク。 特許出願人 宣場工業株式会社 第1図 第7図 第3図 第4図 第5図 第6図
FIG. 1 shows a conventional shock absorber 4 of this type.
l11 plane IN, m2 figure shows a conventional p-talinlenoid, figure (a) is a perspective view which is a cross-sectional view, -'' figure (
b) is a top view, Figure 1KrJ (CJ is a diagram showing the behavior of the goal race when it is not activated, Figure (d) is an explanatory diagram of the behavior of the ball race when it is activated, and Figure 3 is a diagram showing the behavior of the ball race when it is activated. The side view shown in Fig. 4 is the 1-1 missing section view in Fig. 3, and Fig. 5 is the
FIG. 3 is a sectional view taken along the line nn in FIG. 3, FIG. 6 is an enlarged explanatory view of a turnback branch, and FIG. 7 is a plan view showing a loop-shaped St of another embodiment of the present invention. 1... Coil, 3... Output shaft, 6... Armature, 11... Long groove, 12... Loop groove, 13...
・Pin or ball, 16...=X rod, 17...
・Orifice, 18...Rotary pulp, 24...
ml(7)y'isk, 25...second disk. Patent applicant Senba Kogyo Co., Ltd. Figure 1 Figure 7 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] ピストンロッドを貫通するロッドと、このロッドの回転
に↓り面積の可変となるオリフィスとt儒え、ロッドの
(ロ)転により減衰力を変化させるようにしたショック
アブソーノ々において、コイルへの通電に伴い出力軸が
所定角回動するロータリンレノイドの出力軸端部に、少
くとも4個所のターンパック分岐s′t−有するルーゾ
状m1に″形成した第1のディスクを固設し、これと対
向して前記ロッドの端部に半径方向の長線を形成した第
2のディスクを固設し、これら両者の隣に1本のピンま
たはぎ一ル’is合させたことを特徴とするショックア
ブソーバ。
A rod that passes through the piston rod and an orifice whose area changes as the rod rotates. In shock absorbers that change the damping force by rotating the rod, the coil A first disk formed in a Luzo-like shape having at least four turn-pack branches s't- is fixed to the output shaft end of a rotary linenoid whose output shaft rotates by a predetermined angle when energized. , a second disk formed with a long line in the radial direction is fixed to the end of the rod opposite to the second disk, and a pin or a nail is fitted next to both disks. shock absorber.
JP16443081A 1981-10-15 1981-10-15 Shock absorber Pending JPS5865341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16443081A JPS5865341A (en) 1981-10-15 1981-10-15 Shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16443081A JPS5865341A (en) 1981-10-15 1981-10-15 Shock absorber

Publications (1)

Publication Number Publication Date
JPS5865341A true JPS5865341A (en) 1983-04-19

Family

ID=15793000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16443081A Pending JPS5865341A (en) 1981-10-15 1981-10-15 Shock absorber

Country Status (1)

Country Link
JP (1) JPS5865341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102537U (en) * 1983-12-20 1985-07-12 トキコ株式会社 hydraulic shock absorber
JPH02214665A (en) * 1989-02-14 1990-08-27 Canon Inc Liquid supplying device for liquid jet recorder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102537U (en) * 1983-12-20 1985-07-12 トキコ株式会社 hydraulic shock absorber
JPH0313639Y2 (en) * 1983-12-20 1991-03-28
JPH02214665A (en) * 1989-02-14 1990-08-27 Canon Inc Liquid supplying device for liquid jet recorder

Similar Documents

Publication Publication Date Title
JP2755485B2 (en) Solenoid operated valve and electromagnetic actuator
US4829947A (en) Variable lift operation of bistable electromechanical poppet valve actuator
US4881139A (en) Latch mechanism for rotary actuator and the like
CN100507222C (en) Electromagnetic valve actuator
US4779582A (en) Bistable electromechanical valve actuator
CN101351769B (en) Non-contact shutter activation system and method
US7252114B2 (en) Electromagnetic fluid flow control valve
FI955461A0 (en) Actuator with a shape memory alloy actuator
JP4902535B2 (en) Electromagnetic control device that operates by switching
JPS5865341A (en) Shock absorber
JP2004014660A (en) Actuator
Grolig et al. Light‐Dependent Chloroplast Reorientation in Mougeotia and Mesotaenium: Riased by Pigment‐Regulated Plasmalemma Anchorage Sites to Actin Filaments?
US2872627A (en) Rotary magnetic actuators
JPH02308403A (en) Magneto-optical disk device
DE3730969A1 (en) Magneto-optical store with a magnetic head integrated into the scanning unit
WO2004104462A1 (en) Pivoting electromagnetic actuator and integrated actuator and fluid flow control valve
JPH04507327A (en) Electromagnetic rotation regulator
JPH0431166B2 (en)
US5818657A (en) Disk drive with impulse torque generating element
EP0816275B1 (en) Yarn brake
JP2001261234A (en) Traversing device and traversing method
JPH0740549Y2 (en) Open / close valve drive for knotless braiding machine
EP0774764B1 (en) Electromagnet with movable core member
JPS5866309A (en) Rotary solenoid
JPH0724145Y2 (en) Small linear actuator