JPS5864759A - Manganese dry cell - Google Patents

Manganese dry cell

Info

Publication number
JPS5864759A
JPS5864759A JP56161589A JP16158981A JPS5864759A JP S5864759 A JPS5864759 A JP S5864759A JP 56161589 A JP56161589 A JP 56161589A JP 16158981 A JP16158981 A JP 16158981A JP S5864759 A JPS5864759 A JP S5864759A
Authority
JP
Japan
Prior art keywords
positive
steel
positive electrode
battery
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56161589A
Other languages
Japanese (ja)
Inventor
Yuzuru Ito
譲 伊藤
Akio Takahashi
昭男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP56161589A priority Critical patent/JPS5864759A/en
Publication of JPS5864759A publication Critical patent/JPS5864759A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To obtain a manganese dry cell excellent in the properties of squeeze processing and corrosion resistance by using high chrome steel, which does not contain Ni but contains a specific quantity of Cr, for a can used for both a collector of a positive pole and a negative pole and collection of electricity. CONSTITUTION:A positive pole 1, which is added by carbon black as a conductive material having MnO2 as the main acting substance as well as molded by pressure while being added by a binder, is inserted into a positive can 2 in a state of directly making contact with the can. Said positive can 2 is formed by high Cr steel, which contains no Ni but not less than 25wt% of Cr. Further a Zn plate 3 of a negative pole is stored directly making contact with a negative can 4, wherein high Cr steel is used like the positive can. Thereby a battery excellent in corrosion resistance can be obtained at a low cost.

Description

【発明の詳細な説明】 本発明は、正極活物質[Mn01.負極活物質にZnf
:それぞれ使用し、塩化アンモニウムあるいは塩化亜鉛
を主成分とする電解液を使用するマンガン乾電池に関す
るもので、Wに正極、負極の集電体の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a positive electrode active material [Mn01. Znf as negative electrode active material
: This relates to a manganese dry battery using an electrolyte containing ammonium chloride or zinc chloride as a main component, respectively, and relates to improvements in current collectors for the positive electrode and negative electrode for W.

従来は、正極集電体に炭素棒又は炭素板を、負極集電体
にz n1it−使用していたが、耐食性にすぐれた高
クロムステンレス鋼を用いて、耐漏液性にすぐれ、かつ
小型高性能のマンガン乾電池を得ることを目的としてい
る。
Conventionally, a carbon rod or carbon plate was used for the positive electrode current collector and a carbon plate was used for the negative electrode current collector, but by using high chromium stainless steel with excellent corrosion resistance, a compact high-speed The aim is to obtain high-performance manganese dry batteries.

従来のマンガン乾電池では、正極集電体に炭素棒あるい
は炭素板を使用していたが、炭素材は電導度が悪く、機
械的強度が弱い欠点があった。更に負極活物質としてZ
nが、集電体と容器を兼用していたので、電池を放電す
るとZnが#解して薄くなるので、容器に孔が開いて漏
液するから、Znf多Ji−[使用して厚くする必要が
あった。従来、Znは活物質としては約30チしか使用
されず、残りは無駄になっており、小型化する上でネッ
クとなっていた。
Conventional manganese dry batteries use carbon rods or carbon plates as the positive electrode current collector, but carbon materials have the drawbacks of poor electrical conductivity and weak mechanical strength. Furthermore, Z as a negative electrode active material
Since Zn was used as both a current collector and a container, when the battery is discharged, Zn decomposes and becomes thinner, creating a hole in the container and leaking liquid. There was a need. Conventionally, only about 30 pieces of Zn were used as an active material, and the rest was wasted, which was a bottleneck in downsizing.

このような欠点を除く次めに、本発明は集電体に高クロ
ムステンレス鋼を使用するものである。
In order to overcome these drawbacks, the present invention uses high chromium stainless steel for the current collector.

酸化性化合物が存在するハロゲン塩の水溶液では、一般
に金J@は腐食しゃすい几め、集電体に使用することは
出来ないが、周期律表、第4族のチタン。
In aqueous solutions of halogen salts containing oxidizing compounds, gold generally corrodes and cannot be used as a current collector, but titanium, which is in Group 4 of the periodic table, cannot be used as a current collector.

ジルコニウム、あるいは、第5族のタンタルは、それら
の金属の表面に、電解液に不溶性の不働態皮膜ができる
ので、耐食性集1体として有効であることが知られてい
る。
It is known that zirconium or tantalum of Group 5 is effective as a corrosion-resistant material because a passive film insoluble in an electrolyte is formed on the surface of these metals.

しかし、ジルコニウム、タンタルは、希少資源のため高
価であり、最近需要が増えているチタンでも、貴金属に
比べれば安価だが、一般に電池缶材料として使用さtて
いる8US!504材に比べて約10倍と未だ高価であ
り、かつ絞り加工性に乏しいなどの欠点がある。
However, zirconium and tantalum are expensive resources as they are rare resources, and titanium, whose demand has been increasing recently, is cheaper than precious metals, but is generally used as a material for battery cans. It is still about 10 times more expensive than 504 material, and has drawbacks such as poor drawing workability.

これらの価格、絞り加工性9強度、外観などを満足し、
かつ耐食性にすぐれ次電池缶材料として、ニッケルをは
とんど含有せず、クロムを25重量%以上含有する鋼が
最良であることを見出し穴。
Satisfied with these price, drawing workability 9 strength, appearance, etc.
In addition, we discovered that steel containing at least 25% by weight of chromium, with almost no nickel, was the best material for secondary battery cans with excellent corrosion resistance.

なお、ニッケル含有量は、J工8.G4312のフェラ
イト系材料にα60%以下であることが明記されている
ので、これをほとんど含有しない量とみなした。
In addition, the nickel content is J Engineering 8. Since it is specified that the ferrite material of G4312 has α of 60% or less, this was considered to be an amount that is hardly contained.

以下、本発明の実施例を図面にもとすいて説明する。Embodiments of the present invention will be described below with reference to the drawings.

実施例 を 第1図は、ボタン型電池の断面図であり、図中、1はM
nOmt主活物質とし、導電材としてカーボンブラック
全添加すると共に、結着剤を加えて加圧成形した正極で
あり、この正極は、正極缶2内に、缶と直接接触する状
態で入っている。この正極缶2は、本発明による高クロ
ム鋼により形放されている。その組成物の一例を第1表
に示す。
Example Figure 1 is a cross-sectional view of a button-type battery, and in the figure, 1 is M.
This is a positive electrode made of nOmt as the main active material, carbon black as a conductive material, and press-molded with a binder added, and this positive electrode is placed in the positive electrode can 2 in direct contact with the can. . The positive electrode can 2 is made of high chromium steel according to the invention. An example of the composition is shown in Table 1.

第  1  表 3は負極のZn板であり、正極缶と同じく高クロム鋼を
使用した電極缶4に直接接触して収納されている。5は
、エーテル化デンプンを塗布したコツトンよりなるセパ
レータである。各活物質を収納した正極缶2は、その上
部をナイロン製ガスケット6を介して電極缶4の側にが
しめることにより、密閉封止されている。同、かしめ時
に正極の変形を防止するために、正極に台座7を挿入し
である。電解液として、30〜40重量−のZncl!
、水溶液に塩化アンモニウムを溶解したものを用いた。
Table 1 shows a negative electrode Zn plate, which is housed in direct contact with an electrode can 4 made of high chromium steel like the positive electrode can. 5 is a separator made of cotton coated with etherified starch. The positive electrode can 2 containing each active material is hermetically sealed by attaching its upper part to the electrode can 4 through a nylon gasket 6. Similarly, in order to prevent deformation of the positive electrode during caulking, a pedestal 7 is inserted into the positive electrode. As an electrolyte, 30 to 40% by weight of Zncl!
, an aqueous solution containing ammonium chloride was used.

又、電池サイズは、直径1t6ms、高さ五〇惧とした
The battery size was 1t6ms in diameter and 50mm in height.

実施例 2 第2図に示すように、円筒形電池としたものであり、図
中、8は、実施例1で述べた正極缶2と同材料の厚さ0
.211Bのクロム鋼板からなるエキスバンドメタルを
用いており、この上に、二酸化マンガン金主活物質とし
、導電剤としてカーボンブラックを添加し、更に結着剤
を添加して塗布し、圧着乾燥した正極である。
Example 2 As shown in Figure 2, a cylindrical battery is used, and in the figure, 8 is made of the same material as the positive electrode can 2 described in Example 1 and has a thickness of 0.
.. Expanded metal made of 211B chromium steel plate is used. On top of this, manganese dioxide gold is the main active material, carbon black is added as a conductive agent, and a binder is added and applied, followed by pressing and drying the positive electrode. It is.

9は、Znの負極であり、正・負両極は、セパレータ1
0を介してうず巻状に巻かれ、負極端子を兼ねる本発明
の高クロム鋼よりなる電池電極缶11に収納されている
。封口金12は、封口導通8X15を有し、その周囲を
ナイロン製ガスケット14で包み、更に、封口導通部1
3の上に、正極端子を兼ねるキャップ15を有している
。この封口仮12が、前述の電池電極缶11の上部に作
られた溝部16の上に載置され、電極缶11の上端部1
7を内方に折り曲げることにより密封される。
9 is a negative electrode of Zn, and both positive and negative electrodes are separator 1
The battery electrode can 11 made of high chromium steel of the present invention also serves as a negative electrode terminal. The sealing metal 12 has a sealing conduction 8×15, which is surrounded by a nylon gasket 14, and further has a sealing conduction portion 1.
3 has a cap 15 that also serves as a positive electrode terminal. This sealing temporary 12 is placed on the groove 16 made in the upper part of the battery electrode can 11, and the upper end 1 of the electrode can 11 is placed on the groove 16.
It is sealed by folding 7 inward.

18は、正極と導通部15とを電気的に導通させるため
のリードである。電解液は、実施例1と同様である。
Reference numeral 18 denotes a lead for electrically connecting the positive electrode and the conductive portion 15. The electrolyte solution is the same as in Example 1.

次に、本発明の効果について述べる。Next, the effects of the present invention will be described.

実施例1で述べたボタン型電池において、電池缶材料に
本発明の高クロム鋼と、従来の5US304鋼を用いた
場合の電池とを比較して第3図に示した。
FIG. 3 shows a comparison between the button type battery described in Example 1 and a battery using the high chromium steel of the present invention and conventional 5US304 steel as the battery can material.

第5図は、60℃で40日保存した後、25℃で7.5
にΩ負荷で放11ヲ行なったもので、図中、A及びBは
本発明によるもので、Aは30%(!r金含有′Bは2
5%Or含有の一クローム鋼である。
Figure 5 shows that after storage at 60°C for 40 days, 7.5% at 25°C
In the figure, A and B are according to the present invention, and A is 30% (!r gold content 'B is 20%).
It is monochrome steel containing 5% Or.

父、Bの主な成分例は、次の通りである。Examples of the main components of father B are as follows.

又、0Vi8US430鋼、DijSUS504鋼であ
る。
Moreover, they are 0Vi8US430 steel and DijSUS504 steel.

図から明らかなように、保存後にN1を含有しない高ク
ロム鋼を電池缶に用いた、本発明による電池(AとB)
は、はとんど性能劣化が認められなかった。一方、他の
電池(CとD)は、保存直後から電池缶のふくれや、缶
の一部に腐食がみられ、特性の劣化も著しいことがわか
った。なお、第2図に示すような筒型乾電池でも同様な
実験を行なったところ、ボタン型電池と同じ傾向を示し
次。
As is clear from the figure, batteries according to the invention (A and B) in which high chromium steel without N1 was used for the battery can after storage.
Almost no performance deterioration was observed. On the other hand, it was found that the other batteries (C and D) had bulging of the battery cans and corrosion in some parts of the cans immediately after storage, and the characteristics had significantly deteriorated. When a similar experiment was conducted using a cylindrical dry battery as shown in Figure 2, it showed the same tendency as the button type battery.

次に、耐漏液性の比較を行なったので、第5表に示す。Next, a comparison of leakage resistance was performed, which is shown in Table 5.

第3表は、60℃、90%相対湿度の雰囲気中に40日
保存した後の漏液不良率を比較したものである。判定は
、肉視で行ない、ガスケットから白色粉末が少しでも閣
められるものは、大小にかかわらず不良とした。漏液不
良率の定義は次の通りである。
Table 3 compares the leakage failure rate after 40 days of storage in an atmosphere of 60° C. and 90% relative humidity. Judgment was made by visual inspection, and if even a small amount of white powder was observed from the gasket, it was judged as defective, regardless of size. The definition of leakage failure rate is as follows.

第3表で明らかなように、高温多湿試験で耐漏液性がす
ぐれているものは、高クロム鋼を用いた本発明電池(A
とB)のみであり、他の電池は負極缶とガスケットのす
き間から白色粉末がはみ出しており、正極缶底部が全て
ふくらみを生じていた。又、分解の結果、正極缶底部の
内側に、孔食を生じており、明らかに電池缶材料と電解
液により腐食が進んだものと思われた。
As is clear from Table 3, the batteries of the present invention (A
and B), and in the other batteries, white powder was protruding from the gap between the negative electrode can and the gasket, and the bottom of the positive electrode can was all bulged. Furthermore, as a result of the disassembly, pitting corrosion occurred on the inside of the bottom of the positive electrode can, and it was evident that the corrosion had progressed due to the battery can material and electrolyte.

筒型乾電池においても、同一条件で比較したが、ボタン
型電池と同様な傾向がみられ次。
When comparing cylindrical dry batteries under the same conditions, the same trends as button batteries were observed.

以上の結果から、クロム含有量が多い程、耐食性が良好
であり、特VC25重量−以上で、耐食性がすぐれるこ
とが認められ友。更に、ニッケルを含′Mしないことが
、耐食性を高めていると考えられた。
From the above results, it is recognized that the higher the chromium content, the better the corrosion resistance, and that the corrosion resistance is excellent at VC of 25 weight or more. Furthermore, it was thought that the fact that it did not contain nickel improved its corrosion resistance.

以上、詳細に述べたように、正極及び負極の集電体もし
くは、集電を兼ねる缶に、ニッケルを含有せず、クロム
を25重量%以上含有する高クロム鋼を使用することに
より、耐食性のすぐf′N′fc電池を得ることができ
、安価でしかも実用性の高い小型マンガン乾電池を供給
することができるので、工業的価値は極めて大きい。
As described above in detail, corrosion resistance can be improved by using high chromium steel that does not contain nickel and contains 25% by weight or more of chromium for the current collectors of the positive and negative electrodes or the cans that also serve as current collectors. Since f'N'fc batteries can be obtained immediately and small manganese dry batteries that are inexpensive and highly practical can be supplied, the industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、それぞれボタン型及び筒型のマンガ
ン乾電池の断面図であり、第3図は、放電の比較図であ
る。 1.8・・・・・・正極活物質 2.15・・・正極缶 3.9・・・・・・負極活物質 4.11・・・負極缶 510・・・セパレータ 614・・・ガスケット 7 ・・・・・・・・・正極台座 12・・・・・・封口根 13・・・・・・封口導通部 16・・・・・・負極溝部 17・・・・・・負極上端部 18・・・・・・正極リード 以上 出願人 株式会社第二精工舎 代理人 弁理士 最上  務
FIGS. 1 and 2 are cross-sectional views of button-type and cylindrical manganese dry batteries, respectively, and FIG. 3 is a comparison diagram of discharge. 1.8...Positive electrode active material 2.15...Positive electrode can 3.9...Negative electrode active material 4.11...Negative electrode can 510...Separator 614...Gasket 7......Positive electrode pedestal 12...Sealing root 13...Sealing conduction part 16...Negative electrode groove 17...Negative electrode upper end part 18...Applicant for positive electrode leads and above Daini Seikosha Co., Ltd. Agent Patent attorney Tsutomu Mogami

Claims (1)

【特許請求の範囲】[Claims] (1)正極活物質に二酸化マンガン、負極活物質に亜鉛
をそれぞれ使用し、塩化アンモニウムあるいは塩化亜鉛
を主底分とする電解液を使用するマンガン乾1.池にお
いて、正極及び負極の集電体として、ニッケルをほとん
ど含有せずクロムを25重量%以上含む鋼を用いたこと
をq#徴とするマンガン乾電池。
(1) Manganese drying using manganese dioxide as the positive electrode active material and zinc as the negative electrode active material, and using an electrolyte containing ammonium chloride or zinc chloride as the main base 1. A manganese dry battery having a q# characteristic in that steel containing almost no nickel and containing 25% by weight or more of chromium is used as a current collector for the positive and negative electrodes.
JP56161589A 1981-10-09 1981-10-09 Manganese dry cell Pending JPS5864759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161589A JPS5864759A (en) 1981-10-09 1981-10-09 Manganese dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161589A JPS5864759A (en) 1981-10-09 1981-10-09 Manganese dry cell

Publications (1)

Publication Number Publication Date
JPS5864759A true JPS5864759A (en) 1983-04-18

Family

ID=15737999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161589A Pending JPS5864759A (en) 1981-10-09 1981-10-09 Manganese dry cell

Country Status (1)

Country Link
JP (1) JPS5864759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0118614A2 (en) * 1982-12-15 1984-09-19 Hitachi Maxell Ltd. Alkaline cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0118614A2 (en) * 1982-12-15 1984-09-19 Hitachi Maxell Ltd. Alkaline cell

Similar Documents

Publication Publication Date Title
US2650945A (en) Primary dry cell
JP3215448B2 (en) Zinc alkaline battery
US5639578A (en) Current collectors for alkaline cells
US3644145A (en) Incorporation of valve metals into current-producing cell constructions
US3418172A (en) Method of manufacturing a small, button-type alkaline cell having a loose, powdered zinc anode
JPS5864759A (en) Manganese dry cell
JPH10255733A (en) Small-sized battery
JPH0560233B2 (en)
JPS60101858A (en) Button-shaped alkaline cell
JPS6158163A (en) Alkaline zinc battery
JPS5931004Y2 (en) thin alkaline battery
JPH03134949A (en) Thin type lithium battery
JP3681799B2 (en) Button-type alkaline battery
JP3594752B2 (en) Air zinc button type battery
JPS63124358A (en) Battery
US3672997A (en) Sealed metallic oxide-indium secondary battery
JP2021174577A (en) Manganese dry battery
JPH0278150A (en) Alkaline dry battery
JPS6151750A (en) Button-type alkaline battery
JPS6116599Y2 (en)
JP2953156B2 (en) Stacked manganese dry battery
JP2009170161A (en) Aaa alkaline battery
JPS5981873A (en) Solid electrolyte battery
JPH08222193A (en) Button type alkaline battery
JPS585965A (en) Alkaline battery