JPS5863902A - Controlling method of optical waveguide - Google Patents

Controlling method of optical waveguide

Info

Publication number
JPS5863902A
JPS5863902A JP56162493A JP16249381A JPS5863902A JP S5863902 A JPS5863902 A JP S5863902A JP 56162493 A JP56162493 A JP 56162493A JP 16249381 A JP16249381 A JP 16249381A JP S5863902 A JPS5863902 A JP S5863902A
Authority
JP
Japan
Prior art keywords
waveguide
optical waveguide
refractive index
optical
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56162493A
Other languages
Japanese (ja)
Inventor
Hiroki Nakajima
啓幾 中島
Minoru Kiyono
清野 実
Ippei Sawaki
一平 佐脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56162493A priority Critical patent/JPS5863902A/en
Publication of JPS5863902A publication Critical patent/JPS5863902A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the uniform characterisics with high accuracy for an optical waveguide, by irradiating a laser beam to the waveguide and controlling the distribution of refractive index with the local heating of the waveguide. CONSTITUTION:An optical waveguide is formed by diffusing Ti to a substrate 1 of an LiNbO3 single crystal. The light of the He-Ne laser 2 is irradiated to the optical waveguide, and the two output beams are received by a silicon photodiode 3. Then powers P1 and P2 of both beams are measured, and at the same time the beam of a CO2 laser 5 is irradiated at the peak position A of the refractive index at the incident edge side of the optical waveguide. As the time of irradiation elapses, the curve of the refractive index is gradually flattened. Then a light beam 7 in the waveguide moves gradually toward the route shown by a dotted line, and accordingly the branching ratio P1/(P1+P2) is reduced to be set at a prescribed level. In the same way, the laser beam 5 is irradiated at the maximum point B of the refractive index at the output edge of the waveguide. Thus the control is possible for the distribution of the refractive index. In such way, the characteristics of an optical waveguide are made uniform with high accuracy.

Description

【発明の詳細な説明】 本発明は光集積回路に使用される光導波路または光導波
路を構成要素とする光スィッチ、光フィルタ、光モード
スプリッタおよq光カプラに係り、%に、これら素子の
有効な調整方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to optical waveguides used in optical integrated circuits or optical switches, optical filters, optical mode splitters, and q-optical couplers each having an optical waveguide as a component. It concerns an effective adjustment method.

光集積回路は現在研究開発中であり、真用化のためには
まだ多くの解決しなければならない問題がある〇 特に素子特性の正確なコントロール、たとえ詐プラーの
分岐比、光フィルターの分波特性および光スィッチの動
作電圧等の正確なコントロー、ルが実用化のために重要
な問題であり、これらの正確な゛コントロールによって
はじめて充分な動作マージンを持った光装置が製造可能
とな、る。前記素子の分岐比0分波特性tたは動作電圧
等はその素子の構成要素である光導波路によりて主に左
右され。
Optical integrated circuits are currently under research and development, and there are still many problems that need to be solved in order to put them into practical use. In particular, the precise control of element characteristics, the branching ratio of false pullers, and the demultiplexing of optical filters. Accurate control of the characteristics and operating voltage of optical switches is an important issue for practical use, and only through accurate control can optical devices with sufficient operating margins be manufactured. Ru. The branching ratio 0 branching characteristic t or operating voltage of the element is mainly influenced by the optical waveguide which is a component of the element.

更に詳しくはその導波路の屈折率分布によって左右され
る。先導波路を不純物拡散によって形成する場合、現状
ではその導波特性のコントロールは。
More specifically, it depends on the refractive index distribution of the waveguide. When forming a leading waveguide by impurity diffusion, there is currently no way to control its waveguide characteristics.

不純物の拡散条件、即ち不純物源の量、拡散温度および
拡散時間によって行なわれている。しかしながら導波特
性はわずかな屈折率分布の違いにより大きく変るために
単なる拡散条件のコントロールだけでは実用化の観点か
ら充分な特性の再現性は得られない。
The impurity diffusion conditions are determined by the impurity source amount, diffusion temperature, and diffusion time. However, since the waveguide characteristics change greatly due to slight differences in the refractive index distribution, sufficient reproducibility of the characteristics cannot be obtained from the viewpoint of practical use simply by controlling the diffusion conditions.

本発明は前述のような不充分な再現性を補償し。The present invention compensates for the aforementioned poor reproducibility.

実用的なレベルの均一性を得る九めに光導波路の形成後
その導波特性會効果的に調整する方法ti供するもので
ある。具体的にはレーザービーム等のエネルギービーム
管1元カプラ、光フィルタおよび光スィッチ等の構成要
素である光導波路の一部に照射し、局部加熱により屈折
率分布を調整するものであ21%性を好まし一方向に向
上させると同時に好童しい値に各素子を均一化させるこ
とが出来る0更に本調整法はビーム照射中の特性シフ)
?リアルタイムで計測しながら行なういわゆる動作トリ
ミングの手法を可能とするものであり。
The present invention provides a method for effectively adjusting the waveguide characteristics of an optical waveguide after its formation to achieve a practical level of uniformity. Specifically, energy beams such as laser beams are irradiated onto parts of optical waveguides, which are components of linear couplers, optical filters, and optical switches, to adjust the refractive index distribution by local heating. In addition, this adjustment method can improve the characteristics in one direction and at the same time uniformize each element to a desirable value (0).
? This enables a so-called motion trimming method that is performed while measuring in real time.

特性の均一化は極めて高精度である。The uniformity of characteristics is extremely accurate.

つぎに−実施例として交叉臘光カツラの分岐比の調整に
ついて第1図−能4図に基づいて説明するO 第1図は本発明による調整法會実施するための装置の構
成図である。試料となる交叉塁光カプラ1はLiMbO
,単結晶基板上1cTit約4201真空蒸着し、パタ
ーン幅10μmでバタン形成後約960℃で6時間和度
加熱拡散させたものである0この試料のT10等濃直線
図は第2図のようになっており、実線は拡散前のテ1蒸
着膜のパターンであり、矢印6は光導波路内の光ビーム
の進行方向を示すものである。同図のA点およびB点が
Ti鎖度の最高点でIL従って屈折率の最高点でもある
O −偶葺を行なう場合は測定用光線としてHe−N・レー
ザ2の光【試料の一端の光導波路に入れ、他端より出て
来た2つの光をシリコンホトダイオード3に尚て、指示
器番により各々の光パワーP。
Next, as an example, the adjustment of the branching ratio of a cross-linked wig will be explained based on FIGS. The cross base optical coupler 1 used as a sample is LiMbO
, about 4201 cTi was vacuum-deposited on a single-crystal substrate, and after forming a batten with a pattern width of 10 μm, it was heated and diffused at about 960°C for 6 hours. The solid line is the pattern of the Te1 vapor deposited film before diffusion, and the arrow 6 indicates the traveling direction of the light beam within the optical waveguide. Points A and B in the same figure are the highest points of Ti chain degree, and are also the highest points of IL and therefore the highest refractive index.When performing O-even roofing, the light of He-N laser 2 is used as the measuring light beam [at one end of the sample]. The two lights entering the optical waveguide and coming out from the other end are sent to the silicon photodiode 3, and each light power P is determined by the indicator number.

およびPitl1m定する。この測定を行な−ながら調
整、用レーザービームとして、CO,レーザー6會ビー
ム径約30μm、ビームパワー約50 mmに調整し、
入射端側の第2図A点に相轟する部分に照射する。照射
時間tの経過とともに屈折率の山は徐々に平担化され、
光導波路内の光ビームフは第3図の実線の経路から点線
の経路の方に徐々に移行し1分岐比(Pi /I’s 
+Pt )は、第4図実線のような変化曲線で低下して
行く。したがって、分岐比@aS即ちP、対P、11対
lに調整した一場合は予め分岐比が06以上になるよう
に不純物拡散条件を設定しておく必要がある。を九、未
拡散のテ1が基板上に残留している場合ぽ、レーザービ
ームの照射によって第2図ム点の基板中のT1濃度は上
昇し、屈折率の山は高くなり、分岐比Fi第4図点線の
ように逆に上昇して行く。し九ザービーム調整を行なう
ことも可能である。本実施例で使用した00.レーず−
(波長106μ!+1)は光導波路に良く吸収され、測
定用レーザー光のパワー指示ttすこ、ともないので調
整用として好適である。照射点は第2図のB点など先導
波路上の他の部分でも調整は可−であるが、前記のA点
が最も効果的である0また1本実施例の00.レーザー
は比較的低出力であるが、これt高出力とし調整時間の
短縮を計ることも出来る。
and Pitl1m are determined. While performing this measurement, the CO laser beam was adjusted to have a beam diameter of approximately 30 μm and a beam power of approximately 50 mm.
Irradiate the part that resonates with point A in Figure 2 on the incident end side. As the irradiation time t passes, the peak of the refractive index gradually becomes flat,
The optical beam in the optical waveguide gradually moves from the solid line path to the dotted line path in Figure 3, and the branching ratio of 1 (Pi/I's
+Pt) decreases along a change curve as shown by the solid line in FIG. Therefore, in one case where the branching ratio is adjusted to @aS, that is, P, to P, and 11 to l, it is necessary to set the impurity diffusion conditions in advance so that the branching ratio becomes 06 or more. 9. If undiffused T1 remains on the substrate, the T1 concentration in the substrate at the point M in Figure 2 increases due to laser beam irradiation, the peak of the refractive index becomes high, and the branching ratio Fi increases. In contrast, it rises as shown by the dotted line in Figure 4. It is also possible to perform nine laser beam adjustments. 00. used in this example. Race
(Wavelength 106μ!+1) is well absorbed by the optical waveguide, and the power indication of the measuring laser beam is not required, so it is suitable for adjustment. Although the irradiation point can be adjusted at other locations on the leading waveguide, such as point B in FIG. 2, point A is most effective. Although the laser has a relatively low output, it is also possible to increase the output to shorten the adjustment time.

なお1本発明は前記実施例のような交叉麿光カプラの分
岐比の調整に限定するものではなく、同様な交叉臘で、
第6図(a)のように波長λ、の光とλ、の光を分離す
る光フィルターの場合の分波特性、同図(1))のよう
にTICモードとTMモードを分よび同図(c)のよう
に光ビームエをどちらかのチャンネルに切換える光スィ
ッチの場合の動作電圧又は消光比等の調整に全く同様に
適用出来るものであ・る・また、第6図のような!分岐
型および第1図のような方向性結合器型の各構造におい
ても本発明゛シ効果的に適用可能である0 以上のような方法により光導波路を構成要素とする光カ
ブラ、光フィルタ、光モードスプリッタおよ、び光スィ
ッチ等の各種特性を円滑にしかも極めて高精jI!に調
整することが出来る。また1本発明による調整法は動作
トリミングの手法を用いているので、量産性を得るため
の自動化が容易であるO
Note that the present invention is not limited to the adjustment of the branching ratio of the crossed optical coupler as in the above embodiments, but is similar to that of the crossed cross-linked optical coupler.
Figure 6(a) shows the demultiplexing characteristics of an optical filter that separates light with wavelength λ and light with wavelength λ, and as shown in Figure 6(1), the TIC mode and TM mode are separated and synchronized. It can be applied in exactly the same way to adjust the operating voltage or extinction ratio in the case of an optical switch that switches the optical beam to either channel as shown in Figure (c). Also, as shown in Figure 6! The present invention is also effectively applicable to branch type and directional coupler type structures as shown in FIG. Smoothly control various characteristics of optical mode splitters, optical switches, etc., and with extremely high precision! It can be adjusted to In addition, since the adjustment method according to the present invention uses a motion trimming method, it is easy to automate for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による調整法を実施するため′の装置構
成図、第3図〜第4図は一実施例を説明するための図、
第5図−第7図は他の実施例を説明する九めの図である
。ここで1は交叉型光力・プラ。 2は測定用He−N・レーザ、3はシリコンホトダイオ
ード、番は光パワー指示器、5は調整用00゜レーザ、
6は光導波路内の光ビームの進行方向。 フは光導波路内の光ビームである◎ 犀 1[!1 $41!] 一一争i (111in )
FIG. 1 is a configuration diagram of an apparatus for carrying out the adjustment method according to the present invention, and FIGS. 3 and 4 are diagrams for explaining one embodiment.
FIGS. 5 to 7 are ninth diagrams illustrating other embodiments. Here, 1 is the cross-type light power/Pura. 2 is a He-N laser for measurement, 3 is a silicon photodiode, number is an optical power indicator, 5 is a 00° laser for adjustment,
6 is the traveling direction of the light beam within the optical waveguide. F is the light beam inside the optical waveguide◎ Rhinoceros 1 [! 1 $41! ] 111in (111in)

Claims (1)

【特許請求の範囲】[Claims] (1)、不純物分布によって屈折率分布を形成して成る
先導波路において、エネルギービームを照射するととに
より局部的に加熱し、該光導波路の屈折率分布を局部的
に調整し、所望の導波特性を得ることt−特徴とし次光
導波路(Dllll決方法2)  エネルギービームが
レーザービームテア盾ること1*黴とした特許請求の範
囲第1項記載の光導波路の調整方法。
(1) When a guiding waveguide is formed with a refractive index distribution formed by impurity distribution, irradiation with an energy beam causes local heating, locally adjusting the refractive index distribution of the optical waveguide, and creating a desired waveguide. Obtaining characteristics of optical waveguide (Dllll determination method 2) A method for adjusting an optical waveguide according to claim 1, wherein the energy beam is shielded from laser beam tear.
JP56162493A 1981-10-12 1981-10-12 Controlling method of optical waveguide Pending JPS5863902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56162493A JPS5863902A (en) 1981-10-12 1981-10-12 Controlling method of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56162493A JPS5863902A (en) 1981-10-12 1981-10-12 Controlling method of optical waveguide

Publications (1)

Publication Number Publication Date
JPS5863902A true JPS5863902A (en) 1983-04-16

Family

ID=15755661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56162493A Pending JPS5863902A (en) 1981-10-12 1981-10-12 Controlling method of optical waveguide

Country Status (1)

Country Link
JP (1) JPS5863902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037504A (en) * 1983-08-09 1985-02-26 Fujitsu Ltd Manufacture of optical waveguide
JPH07196334A (en) * 1993-02-17 1995-08-01 Canada Optical fiber with increased photo- sensitivity and its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162747A (en) * 1974-11-28 1976-05-31 Nippon Electric Co Hikari ic soshino seizohoho
JPS54161350A (en) * 1978-06-10 1979-12-20 Nippon Telegr & Teleph Corp <Ntt> Production of thin film optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162747A (en) * 1974-11-28 1976-05-31 Nippon Electric Co Hikari ic soshino seizohoho
JPS54161350A (en) * 1978-06-10 1979-12-20 Nippon Telegr & Teleph Corp <Ntt> Production of thin film optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037504A (en) * 1983-08-09 1985-02-26 Fujitsu Ltd Manufacture of optical waveguide
JPH07196334A (en) * 1993-02-17 1995-08-01 Canada Optical fiber with increased photo- sensitivity and its production
JP3011308B2 (en) * 1993-02-17 2000-02-21 カナダ Manufacturing method of optical fiber with increased photosensitivity.

Similar Documents

Publication Publication Date Title
CN1957277B (en) Refractive index distribution type optical member, and production method for refractive index distribution type optical member
JP3563376B2 (en) Manufacturing method of optical multiplexer / demultiplexer
JP2003504685A (en) Method and apparatus for adjusting the optical path length of an optical fiber component
JP2676301B2 (en) Integrated optical component and method of adjusting the component
JP2004295066A (en) Method for manufacturing optical waveguide
US4208637A (en) Tunable optical device
JPS5863902A (en) Controlling method of optical waveguide
US6374009B1 (en) TEMC fiber based optical switch
JP2004503812A (en) Method for stabilizing and adjusting the optical path length of a waveguide device
US5118923A (en) Laser annealed optical devices made by the proton exchange process
JPH10170743A (en) Optical waveguide for mode field matching, method and apparatus for production of the optical waveguide, and optical circuit, optical coupler and optical information communication path formed by using the optical waveguide
JP2001124944A (en) Optical multiplexing/demultiplexing circuit
JP2001007002A (en) Laser beam drawing system
JPH04264409A (en) Optical coupling circuit
Chen et al. Fast trimming of electro-optic polymer waveguide Y-branches by post-photobleaching for tuning the power splitting ratio
JP3937218B2 (en) Programmable optical circuit
JPS63175812A (en) Production of optical fiber coupler
JPH01201627A (en) Waveguide type optical switch
Svistunov Developed passive components of planar optical schemes
JPS635310A (en) Production of optical connecting circuit
JPH0763936A (en) Production of plastic waveguide type optical element
JPH0379691B2 (en)
Douglass Complex devices fabricated using femtosecond laser direct write
EP1308758A2 (en) Control of the fabrication process of a fiber optics Mach-Zehnder interferometer using fast phase modulation
Mullaney et al. Optimised process for fabricating tapered long period gratings