JPS5863831A - Monitoring method for periodically moving body - Google Patents

Monitoring method for periodically moving body

Info

Publication number
JPS5863831A
JPS5863831A JP56163805A JP16380581A JPS5863831A JP S5863831 A JPS5863831 A JP S5863831A JP 56163805 A JP56163805 A JP 56163805A JP 16380581 A JP16380581 A JP 16380581A JP S5863831 A JPS5863831 A JP S5863831A
Authority
JP
Japan
Prior art keywords
periodically moving
periodic
moving components
fourier transform
periodic motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56163805A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takeyasu
数博 竹安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP56163805A priority Critical patent/JPS5863831A/en
Publication of JPS5863831A publication Critical patent/JPS5863831A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/021Gearings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission Devices (AREA)
  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To detect abnormality by separating time serial data to periodically moving components and non-periodically moving components by Fourier transform, and further calculating effective values for the former and normalized values for the latter by inverse Fourier transform, and making overall evaluation. CONSTITUTION:An oscillation detector 2 is mounted to an oscillation generating body 1 such as a bearing, a gear or the like, and the output of the device 2 is stored via a sampling device 3 into a storage device 4. An arithmetic device 5 separates time serial data to periodically moving components and non-periodically moving components by Fourier transform, and further separates the same to periodically moving components and non-periodically moving components in time regions by inverse Fourier transform. Effective values are calculated from the former, and the K value normalized by dividing the higher order moments of propability density functions by variance. Both values are inputted to a comparator 7 together with the data relating to the normal levels and life levels stored in a reference data storage device 6. and when the body 1 is decided overall to be abnormal, an alarm is emitted by an alarm device 8.

Description

【発明の詳細な説明】 本発明はベアリング、歯車等のように周期運動を行う物
体即ち周期運動体及びこれらを備えた機器の監視方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to objects that perform periodic motion such as bearings, gears, etc., that is, periodic moving bodies, and a method for monitoring devices equipped with these objects.

一般にベアリング、歯車等の周期運動体及びこれらを備
えた機器において、部品の傷、回転軸の偏心、潤滑の不
良等の異常が発生した場合には、これを放置するとベア
リング、歯車等の部品的破損のみならず、これらを備え
た機器全体の故障、破壊を惹起する。従ってこのような
異常を正確に把握することはベアリング、歯車等を有す
る機器の保守管理上、極めて重要な課題である。従来こ
のような異常を正確に把握するために周期運動体に中ン
サを収り付け、その出力信号から得られる時系列データ
より、その実効値即ち下記(1)式に示すRMS (R
oot Mean 5quare)値を求め、その解析
によってベアリング、歯車等の周期運動体、更にはこれ
らを備えた機器も含めた被監視体の診断、監視が行われ
ていた。
In general, if abnormalities such as scratches on parts, eccentricity of the rotating shaft, or poor lubrication occur in periodic moving bodies such as bearings and gears, and equipment equipped with these, if left untreated, the bearings, gears, and other parts may become damaged. This causes not only damage but also failure and destruction of the entire equipment equipped with them. Therefore, accurately understanding such abnormalities is an extremely important issue in the maintenance and management of equipment including bearings, gears, and the like. Conventionally, in order to accurately grasp such anomalies, a medium sensor is installed in a periodic moving body, and from the time series data obtained from the output signal, its effective value, that is, RMS (R
The diagnosis and monitoring of objects to be monitored, including periodic moving objects such as bearings and gears, as well as equipment equipped with these objects, has been performed by determining the value of oot Mean 5 square) and analyzing it.

但し、  x(【) :時系列データ(1=1,2・・
・N)N  :データ数 然るにこのRMS値により評価する場合は、時系列デー
タを全体的に把握するのに適しているが、このRMS値
は被監視体のサイズ、負荷の大小、回転速度等によって
区々に異なり、普遍的なり]新基準を設けることができ
ないので、個々の正常時のデータを蓄積しておく必要が
あって煩わしく、また微妙な異常を判定する場合には感
度が低いという難点もあった。
However, x([): Time series data (1=1,2...
・N)N: When evaluating based on the number of data and this RMS value, it is suitable for understanding the time series data as a whole, but this RMS value depends on the size of the monitored object, the size of the load, the rotation speed, etc. Since it is not possible to establish new standards, it is cumbersome to accumulate individual normal data, and the sensitivity is low when determining subtle abnormalities. There were also some difficulties.

本発明は斯かる事情に鑑みてなされたものであり、周期
運動体を監視する場合において、上記RMS値の如き実
効値の他に、被監視体から得られる時系列データの確率
密度関数(ProbabilityDensity F
unction、以下P、 D、 F、と略す)をとり
、その分布の乱れを正規化した値、即ちP、 D、 F
、の高次モーメント(分布の広がりを示す偶数次モーメ
ントを選択する)をその分散にて除して正規化した値(
K値)を収り入れることによって、時系列データを全体
的に把握すると共に普遍的な判断基準で異常を判定する
感度の高い周期運動体の監視方法を提供することを1」
的とする。
The present invention has been made in view of the above circumstances, and when monitoring a periodic moving body, in addition to the effective value such as the RMS value described above, the probability density function (Probability Density) of time series data obtained from the monitored body is used. F
(hereinafter abbreviated as P, D, F) and normalize the disturbance of its distribution, that is, P, D, F
, which is the normalized value of the higher-order moments (select even-numbered moments that indicate the spread of the distribution) divided by its variance (
We aim to provide a highly sensitive monitoring method for periodic moving bodies that can comprehensively grasp time-series data and determine abnormalities using universal criteria by incorporating the K value).
target

而して、一般に糸が正常である場合、そのP、D、 F
Therefore, in general, if the thread is normal, its P, D, F
.

は正規分布をなすと考えられ、このときに値は3.0と
なる。然るに本発明において監視の対象としている周期
運動体には必ず周期運動成分が混入するため、系が正常
時に必ずしもP、 D、 F、が正規分布をなさず、K
値が引き下げられ(周期運動信号例として正弦波のみの
場合、K=1.5)、K値の評価が正確なものとならな
い。このだめ得られた信号を周期運動成分と非周期運動
成分に分離し、各々をそれぞれふされしい方法で評価す
ることを考える。
is considered to have a normal distribution, and in this case the value is 3.0. However, since periodic motion components that are the object of monitoring in the present invention are always mixed with periodic motion components, P, D, and F do not necessarily have a normal distribution when the system is normal, and K
The value is lowered (K=1.5 in the case of only a sine wave as an example of a periodic motion signal), and the evaluation of the K value becomes inaccurate. Consider separating the obtained signal into periodic motion components and non-periodic motion components, and evaluating each component in an appropriate manner.

即ち、後者は系が正常時には正規分布をなし、系が劣化
するとそのP、 D、 F、が乱れると考えられるから
、それに対しに1直を計算すれば上述の原理に基づいた
正確な判定が可能となる。また前者については系の劣化
に伴いその運動エネルギーは増加することから例えば実
効値等で評価すればよい。
In other words, the latter has a normal distribution when the system is normal, but when the system deteriorates, its P, D, and F are thought to be disturbed, so if you calculate the 1st shift, you can make an accurate judgment based on the above principle. It becomes possible. Regarding the former, since the kinetic energy increases as the system deteriorates, it may be evaluated using, for example, an effective value.

以下その内容を詳述する。The details are detailed below.

本発明に係る周期運−1体の監視方法は、周期運動体の
振動を一定周期でサンプリングして得た時系列データに
対し、フーリエ変換を施すことにより周期運動成分と非
周期運動成分とに分離し、これらの少なくとも一方につ
いて逆フーリエ変換を施すことによりntl記時系列デ
ータを時間@域での周期運動成分と非周期運動成分とに
分離し、周期運動成分に対してはその実効値を算出し、
また非周期運動成分に対してはそれによって構成される
P、 D、 F、の高次モーメントをその分散にて除し
て正規化した値を算出し、両算出値を組み合わせて評価
すること例よって周期運動体の異常を検知することを特
徴とする。
The method for monitoring one periodic motion body according to the present invention is to perform Fourier transformation on time series data obtained by sampling the vibrations of a periodic motion body at a constant period, thereby converting the periodic motion component and the non-periodic motion component. By performing inverse Fourier transform on at least one of these, the time series data in ntl is separated into a periodic motion component and a non-periodic motion component in the time @ domain, and for the periodic motion component, its effective value is Calculate,
In addition, for non-periodic motion components, the higher-order moments of P, D, and F formed by them are divided by their variance to calculate a normalized value, and the two calculated values are combined for evaluation. Therefore, it is characterized by detecting abnormalities in periodic moving bodies.

先ず本発明方法の原理について説明する。本発明方法に
おいては、時系列データを全体的に把握するために、前
記(1)式に示すRMS値を用い、普遍的な判断基準で
異常を判定するために、時系列データのP、 D、 F
、の高次モーメントをその分散にて除して正規化した値
、例えば下記(2)式に示すに値を用いる。
First, the principle of the method of the present invention will be explained. In the method of the present invention, in order to understand the time series data as a whole, the RMS value shown in equation (1) is used, and in order to determine abnormality using a universal criterion, P and D of the time series data are used. , F
A value obtained by dividing the higher-order moment of , by its variance, and normalizing it, for example, the value shown in equation (2) below, is used.

・・・(2) 但し、  P(x)  : x(t)のP、 D、 F
...(2) However, P(x): P, D, F of x(t)
.

E :平均操作 /’4”4次モーメント σ2:x(t)の分散 即ち時系列データに対してフーリエ変換を施すことによ
り周期運動成分と非周期運動成分とに分離し、これらの
少なくとも一方について逆フーリエ変換を施すことによ
り、前記時系列データを時間領域での周期運動成分と非
周期運動成分とに分離し、周期運動成分に対してはRM
S値を算出し、また非周期運動成分に対してはに値を算
出し、両算出値を組み合わせて総合評価するのである。
E: Average operation/'4'' Fourth-order moment σ2: The variance of x(t), that is, the time series data, is separated into a periodic motion component and an aperiodic motion component by performing Fourier transformation, and at least one of these is calculated. By applying inverse Fourier transform, the time series data is separated into periodic motion components and aperiodic motion components in the time domain, and RM is applied to the periodic motion components.
The S value is calculated, and the value is calculated for the non-periodic motion component, and both calculated values are combined for a comprehensive evaluation.

以下本発明を図面に基いて詳述する。第1図はその実施
に使用する装置の略示ブロック図であって、振動発生体
1にはその振動を検出して電気信号に変換する振動検出
装置2が収り付けられている。この振動検出装置2の出
力はサンプリング装置3へ入力され、ここで一定周期に
てサンプリングされ、アナログデータからディジタルデ
ータに変換されて記憶装置4ヘスドアされていく。演算
装置5け記憶装置1′イ4にストアされた時系列データ
x(t)を収り込んで以下に述べる演算処理を行う。
The present invention will be explained in detail below based on the drawings. FIG. 1 is a schematic block diagram of a device used to implement the method, and a vibration generator 1 houses a vibration detection device 2 that detects the vibration and converts it into an electric signal. The output of this vibration detection device 2 is input to a sampling device 3, where it is sampled at a constant period, converted from analog data to digital data, and stored in a storage device 4. The time-series data x(t) stored in the five arithmetic units and the storage device 1'i4 is stored and the arithmetic processing described below is performed.

第2図は、この処理手順を示す説明図である。FIG. 2 is an explanatory diagram showing this processing procedure.

先ず第2図(イ)にて、時系列データx(t)について
下記(3)式に示す如くフーリエ変換を施す。
First, in FIG. 2(a), time series data x(t) is subjected to Fourier transformation as shown in equation (3) below.

閃    −j27Lft X(f) = / x(t)e    dt    −
(3)fl」シ、  t  :サンプリング時点を表わ
す序数f :周波数 j  :虚数単位 これは時系列データx (t)をRMS値を算出する周
期運動成分とに値を算出する非周期運動成分とに分離す
るだめの操作である。所くして得られたデータX(f)
は、例えば被監視体の周期運動体の運動周期が30Hz
である場合、周波数fが30Hzにてピークを形成する
。従って周波数fが30Hz及びその高調波(60Hz
、  90Hz・・・)の部分を第2図(ロ)にてピッ
クアンプすることによって、周期運!IIIJjt分A
、(f)を下記(4)式に示す!/11 <周波数ti
l’f域で分離して得ることができる。
Flash −j27Lft X(f) = / x(t)e dt −
(3) fl', t: Ordinal number representing the sampling point f: Frequency j: Imaginary unit This means that the time series data This is an operation to separate the two. The data X(f) thus obtained
For example, if the motion period of the periodic moving body of the monitored object is 30Hz
In this case, the frequency f forms a peak at 30 Hz. Therefore, if the frequency f is 30Hz and its harmonics (60Hz
, 90Hz...) as shown in Figure 2 (b), the periodic luck! IIIJjt minute A
, (f) is shown in equation (4) below! /11 <frequency ti
It can be obtained by separation in the l'f region.

A(f) −X(f)・P(f)       ・・・
(4)IL1シ、  P(f)  : fが被監視体か
ら(IPられる固イ1周波数及びその旨調波周波数のと
き ば1、それ以外のときば0 そしてこのデータを下r妃(5)式に示す如く第2図C
′)にて逆フーリエ変換すれば時間領域での周期運10
J1戊分a(t)が算出される。
A(f) -X(f)・P(f)...
(4) IL1, P(f): 1 if f is IP 1 frequency and its harmonic frequency from the monitored object, 0 otherwise. ) As shown in the formula, Figure 2C
’), the periodic luck in the time domain is 10.
J1 把minute a(t) is calculated.

a(t) −/  A(f) e   d f    
・−(5)そして時間1ili域での非周期運!lνJ
成分b(t)は、下記(6)式に示す如く第2図に)に
て時系列データx(t)から上記周期運動成分a(t)
を差引いて算出する。
a(t) −/A(f) e d f
・-(5) And non-periodic luck in the time 1ili range! lνJ
The component b(t) is derived from the periodic motion component a(t) from the time series data x(t) as shown in equation (6) below (see Figure 2).
Calculated by subtracting.

b(t) −x(t) =a(t)     ・(6)
なおこの時・同領域での非周期運動成分b(t)は、時
X列データx(t)についてフーリエ変換して得られだ
データX(f)から周波&領域での非周期運IJの成 
  ゛分B (f)を下記(7)式に示す如く分離して
得た後、B(f) −X(f) −A(f)     
 ・・・(7)その非周期運:IiIノ成分B(f)を
逆フーリエ変換することにより算出してもよく、虹に時
間領域での周期運1の成分a(t)についても、第2図
の方法によらず、上述の方法により時間領域での非周期
運動成分b(t)を得た後、時系列データx (t)か
らそれを差引いて算出してもよいことは勿論である。
b(t) −x(t) = a(t) ・(6)
At this time and in the same region, the aperiodic motion component b(t) is obtained by Fourier transforming the time X column data x(t). Growth
After separating B(f) as shown in equation (7) below, B(f) -X(f) -A(f)
...(7) The non-periodic luck: It may be calculated by inverse Fourier transforming the IiI component B(f), and the component a(t) of the periodic luck 1 in the time domain can also be calculated by Instead of using the method shown in Figure 2, it is of course possible to obtain the aperiodic motion component b(t) in the time domain using the method described above and then subtract it from the time series data x(t). be.

而して周J(Jl運紬成分a (t)に対しては下記(
8)式に示す如く第2図(ホ)にてRMS値をとり、非
周期運動成分b(t)に対しては下記(9)式に示す如
く第2図(へ)にてに値をとる。
Therefore, for Zhou J (Jl Unpongmu component a (t)), the following (
8) Take the RMS value in Figure 2 (e) as shown in formula 2, and for the non-periodic motion component b(t), take the value in Figure 2 (f) as shown in formula (9) below. Take.

但し、iニー!−ダa(t)  (a(t)の平均値)
N t−+ /  (b(t))’P(x)dx K−□    ・・・(9) [/  (b(t))2P(x)dx 、)2但し、P
(x) : b(t)のP、 D、 F。
However, i-nee! -da a(t) (average value of a(t))
N t-+ / (b(t))'P(x)dx K-□...(9) [/(b(t))2P(x)dx,)2However, P
(x): P, D, F of b(t).

斯くして得られたRMS値及びに値に関するデータは、
基準データ記憶装置6に記憶されている正常レベル及び
寿命レベルに関するデータと共に比較装置7へ入力され
、そこで両データが比較された結果、彼盃視体が異常と
総合判定されると゛府報装置d8へ′1ヒ気信号が送ら
れ、警報が発せられるように々っている。なお総合判定
するにあたってはRMS値及びに値に関するデータを例
えば51没階に評価し、その平均にて全体評価を行う等
の方法が考えられるが、これは適用機器及び判定者のl
ll1i11a利断による七ころが大きいので適宜簡易
判定ロジックを組めばよい。
The data regarding the RMS value and the value thus obtained are as follows:
The information is input to the comparison device 7 together with the data regarding the normal level and the lifespan level stored in the reference data storage device 6, and as a result of comparing both data there, if it is comprehensively determined that the eyelid is abnormal, the prefectural notification device d8 An alarm signal has been sent to the area, and an alarm is being issued. In order to make a comprehensive judgment, it is possible to evaluate the data related to the RMS value and the value, for example, at 51 points, and then use the average to make the overall evaluation.
Since the seven rolls due to ll1i11a's decision are large, it is only necessary to create a simple judgment logic as appropriate.

所かる装置1qを用いて周期運動体を監視する場合、例
えばベアリングに支承された復改の歯車を用いて助力を
減速伝達する減速機を監視する場合に得られる時系列デ
ータは、周期運動成分が混入して正弦波が入ったもの(
原系列データが正弦波のときのに値は理論的には1.5
となる。)と類似した形となり、従来法により正常時に
おけるに値をとると、理論的には30であるのに対して
約2.7となる。これに対し、本発明方法を実施するた
めの上述した装置を用いて時系列データを周jg1運り
の成分と非周期運動成分とに分離し、非周明運!I’d
J成分に対して正常時におけるに値をとると約3.0と
なり、正確な判定がrIr能となる。また本発明方法で
は周期運動成分の貴重な情報についても、前記周期運動
成分に対してRMS値をとることにより評価するので、
時系列データを全体的に把握することも可能である。
When monitoring a periodic moving body using a certain device 1q, for example, when monitoring a reducer that decelerates and transmits assistance using a reversing gear supported on a bearing, the time series data obtained is a periodic motion component. is mixed with a sine wave (
Theoretically, the value is 1.5 when the original series data is a sine wave.
becomes. ), and if we take the value of in normal conditions using the conventional method, it will be approximately 2.7, whereas it is theoretically 30. In contrast, the above-described apparatus for carrying out the method of the present invention is used to separate the time series data into a periodic motion component and a non-periodic motion component. I'd
If we take the value for the J component under normal conditions, it will be approximately 3.0, and accurate determination will be possible. In addition, in the method of the present invention, valuable information on the periodic motion component is also evaluated by taking the RMS value for the periodic motion component.
It is also possible to understand time series data as a whole.

以−ヒ詳述した如く本発明による場合は、時系列データ
に対してフーリエfmを施すことにより周期運動成分と
非周j1J]運動成分とに分離し、これらの少なくとも
一方について逆フーリエ変換を施すことにより時間領域
での周期運動成分と非周期運動成分とのうち、前者に対
しては実効値(RMS値)を算出し、後者に対してはそ
れによって構成される確率密度関数の高次モーメントを
その分散にて除して正規化した値(K値)を算出し、両
算出値を組み合せて総合評価するので、時系列データを
全体的に把握でき、しかも普遍的な判断基準で異常を判
定できる感度の高い周期運動体監視方法が可能となる。
As described in detail below, in the case of the present invention, time series data is subjected to Fourier fm to be separated into a periodic motion component and a non-periodic motion component, and at least one of these is subjected to inverse Fourier transform. Therefore, between the periodic motion component and the non-periodic motion component in the time domain, the effective value (RMS value) is calculated for the former, and the higher-order moment of the probability density function formed by it is calculated for the latter. A normalized value (K value) is calculated by dividing the value by its variance, and both calculated values are combined for a comprehensive evaluation, so it is possible to understand the time series data as a whole, and also to identify abnormalities using universal judgment criteria. A highly sensitive method for monitoring periodic moving objects that can be used for judgment becomes possible.

従って本発明は周期運動体の異常検知技術等の向上に多
大の貢献をなす。
Therefore, the present invention makes a significant contribution to the improvement of abnormality detection technology for periodic moving bodies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用する装置の略本ブロック図
、vJ2図は本発明に係る演算処理手順を示す説明図で
ある。 1・・・振切発生体 2・・・振動検出装置 5・・・
演算装置 7・・・比較回路 特 許 出 願 人   住友金属工業株式会社代理人
 弁理士  河 野 登 犬
FIG. 1 is a schematic block diagram of an apparatus used to implement the present invention, and FIG. vJ2 is an explanatory diagram showing the arithmetic processing procedure according to the present invention. 1... Shaking off generator 2... Vibration detection device 5...
Arithmetic device 7...Comparison circuit patent applicant: Sumitomo Metal Industries, Ltd. agent Patent attorney: Noboru Kono

Claims (1)

【特許請求の範囲】[Claims] 1、周期運動体の振動を一定周期でサンプリングして得
た時系列データに対し、フーリエ変換を施すこと例より
周期運動成分と非周期運動成分とに分離し、これらの少
なくとも一方について逆フーリエ変換を施すことにより
前記時系列データを時間領域での周期運動成分と非周期
運動成分とに分離し、周期運動成分に対してはその実効
値を算出し、また非周期運動成分に対してはそれによっ
て構成される確率密度関数の高次モーメントをその分散
にて除して正規化した値を算出し、両岸出値を組み合わ
せて評価することにより周期運動体の異常を検知するこ
とを特徴とする周期運動体の監視方法。
1. Apply Fourier transform to the time series data obtained by sampling the vibration of a periodic body at a constant period. For example, separate the periodic motion component and the non-periodic motion component, and perform inverse Fourier transform on at least one of them. The time series data is separated into a periodic motion component and a non-periodic motion component in the time domain by applying It is characterized by detecting abnormalities in periodic moving bodies by calculating the normalized value by dividing the higher-order moment of the probability density function composed of by its variance, and by evaluating the combination of values from both sides. A method for monitoring periodic moving objects.
JP56163805A 1981-10-13 1981-10-13 Monitoring method for periodically moving body Pending JPS5863831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56163805A JPS5863831A (en) 1981-10-13 1981-10-13 Monitoring method for periodically moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56163805A JPS5863831A (en) 1981-10-13 1981-10-13 Monitoring method for periodically moving body

Publications (1)

Publication Number Publication Date
JPS5863831A true JPS5863831A (en) 1983-04-15

Family

ID=15781035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56163805A Pending JPS5863831A (en) 1981-10-13 1981-10-13 Monitoring method for periodically moving body

Country Status (1)

Country Link
JP (1) JPS5863831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199132A (en) * 1988-02-04 1989-08-10 Ono Sokki Co Ltd Method for extracting error waveform of engagement transmission
WO2004076874A1 (en) * 2003-02-28 2004-09-10 Thk Co., Ltd. Condition-detecting device, method, and program, and information-recording medium
JP2007132767A (en) * 2005-11-10 2007-05-31 Jtekt Corp Drive shaft damage diagnosis device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199132A (en) * 1988-02-04 1989-08-10 Ono Sokki Co Ltd Method for extracting error waveform of engagement transmission
WO2004076874A1 (en) * 2003-02-28 2004-09-10 Thk Co., Ltd. Condition-detecting device, method, and program, and information-recording medium
US7555953B2 (en) 2003-02-28 2009-07-07 Thk Co., Ltd. Condition-detecting device, method, and program, and information-recording medium
JP2007132767A (en) * 2005-11-10 2007-05-31 Jtekt Corp Drive shaft damage diagnosis device

Similar Documents

Publication Publication Date Title
KR101874472B1 (en) Fault prediction system for rotating body using frequency energy of vibration signal and method thereof
Bafroui et al. Application of wavelet energy and Shannon entropy for feature extraction in gearbox fault detection under varying speed conditions
US8171797B2 (en) Sideband energy ratio method for gear mesh fault detection
JP3609982B2 (en) Fault diagnosis method and apparatus
CN111509847A (en) Intelligent detection system and method for power grid unit state
JP2931187B2 (en) Pump deterioration diagnosis system
US20200158562A1 (en) Condition monitoring apparatus, condition monitoring system, and condition monitoring method
CA2159920A1 (en) Method and apparatus for analyzing and detecting faults in bearings and other rotating components that slip
JPH0315698B2 (en)
JP2017101954A (en) Mechanical facility evaluation method
Babu et al. Condition monitoring and vibration analysis of boiler feed pump
CN114813124B (en) Bearing fault monitoring method and device
Yang et al. Experimental study on the optimum time for conducting bearing maintenance
CN114674562B (en) Rail transit tapered roller bearing service life prediction method considering service life monitoring conditions
KR19980084275A (en) Motor abnormal condition monitoring system through signal analysis of power supply line
GB2122749A (en) Electrical condition monitoring of electric motors
JPS5863831A (en) Monitoring method for periodically moving body
JP3103193B2 (en) Diagnostic equipment for rotating machinery
JPH06307921A (en) Diagnostic monitoring system for rotating machine
JP2006285884A (en) Failure diagnosis method and control apparatus therewith
DK181393B1 (en) Establishing health indicator of a rotating component
JPS58127142A (en) Detector for bearing defect
TWI386653B (en) Method for diagnosing energy consumption of a power plant
JPS644611B2 (en)
Dou et al. Common faults analysis and detection system design of elevator tractor