JPS586284A - Method and device for measuring chlorine demand of water quality - Google Patents

Method and device for measuring chlorine demand of water quality

Info

Publication number
JPS586284A
JPS586284A JP10329881A JP10329881A JPS586284A JP S586284 A JPS586284 A JP S586284A JP 10329881 A JP10329881 A JP 10329881A JP 10329881 A JP10329881 A JP 10329881A JP S586284 A JPS586284 A JP S586284A
Authority
JP
Japan
Prior art keywords
chlorine
water
raw water
concentration
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10329881A
Other languages
Japanese (ja)
Inventor
Kyozo Kawachi
河内 恭三
Masao Kaneko
金子 政雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10329881A priority Critical patent/JPS586284A/en
Publication of JPS586284A publication Critical patent/JPS586284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To determine the fore chlorine demand corresponding to the characteristic of raw water by measuring the ammonium ion concn. of raw water and water temp., and determining the fore chlorine demand in a water purification plant by the use of these and the target value of the residual chlorine concn. near the inlet of a settling basin. CONSTITUTION:A device 40 is constituted of an ammonium ion cncn. mesuring part 41, a temp. indicating part 42, a target value setting part 43 for residual chlorine concn., an operator 44, and an indicating recorder 45. The raw water of a trough 5 is sampled with a sampling pump 16 or the like, and this is introduced into the part 41, by which the concn. of the ammonium ions in the raw water is measured. A temp. detector 46 is inserted into the trough 5 and the output thereof is inputted to the part 42, by which the temp. of the water is measured. The demand for the fore chlorine is determined by using these values and the target value of the residual chlorine concn. The fore chlorine corresponding to the momentarily changing characteristics of the raw water in the purification plant is quickly grasped.

Description

【発明の詳細な説明】 近年の都市化および工業化に伴い生活環境の悪化、特に
都市河川水、湖沼水の汚濁が進行している。この九め下
水道の整備拡充による排水の浄化が進められ、一方浄水
場の整備拡充によ抄飲料水の量的、質的確保が進められ
ている。
DETAILED DESCRIPTION OF THE INVENTION With urbanization and industrialization in recent years, the living environment has been deteriorating, and in particular, urban river water, lake water, and marsh water have become increasingly polluted. Purification of wastewater is progressing through the development and expansion of the Kume Sewerage System, while progress is being made in securing the quantity and quality of drinking water through the development and expansion of water purification plants.

浄水場における飲料水の質的確保の義務は水道法に定め
られている通りであり主な項目を第1表に示す。第1表
中に規定されている残留塩素a度は各樵水道管内での微
生物、病原菌等の完全な殺菌および再発生の防止を目的
とするものであや。
The obligation to ensure the quality of drinking water at water treatment plants is as stipulated in the Water Supply Law, and the main items are shown in Table 1. The residual chlorine degree specified in Table 1 is for the purpose of completely sterilizing microorganisms, pathogenic bacteria, etc. in each water pipe and preventing their recurrence.

残留塩素濃度の維持管理は浄水場の通常業務のうち最も
重要なものの一つである。これは河川等から取水した原
水に対して高度に管理され九塩素注入器を用いて塩素の
一定量を添加することによって成される。
Maintenance and management of residual chlorine concentration is one of the most important routine tasks at a water treatment plant. This is accomplished by adding a certain amount of chlorine to raw water taken from a river or the like using a highly controlled chlorine injector.

本発明は浄水場における残留塩素濃度の維持管理の際に
必要な塩素の注入量を決定する方法および装置に関する
ものである。
The present invention relates to a method and apparatus for determining the amount of chlorine injection necessary for maintaining and managing the residual chlorine concentration in a water purification plant.

第1図に一般的な浄水場のフローを示す。河川水等はゲ
ート、流量計2を通して取水井3に流入する。取水井3
からポンプ4を用いて着水井5にヘッドアップする。通
常着水井5までの水を原水と称す。着水井5内の原水は
落差によって導水管6、混和池7、沈殿池8、ろ過電9
を通過しちく水殺菌および浄化し九俵浄水池10に貯水
され、儒11に応じポンプ11で図中略した中継ポンプ
場に供給しさらに末端の需要家に供給されるO処理工1
iK於ける塩素の注入は通常2回実行される。その第1
は着水井5の出口付近の導管6内で実行される。これを
前塩素と称す。前塩素の目的は鉄、マンガン等の金属イ
オンの除去、アンモニア性窒素の除去および殺菌である
。塩素注入の第2は浄水池10の入口付近の導管12で
実行される。これを後塩素と称し、その目的は前塩素の
不足分の補充であり、末端の給水せんにおける残留塩素
濃度を確実にo、lppm以上に保持することKある。
Figure 1 shows the flow of a typical water treatment plant. River water etc. flows into the intake well 3 through the gate and flow meter 2. Intake well 3
From there, the head is raised to the landing well 5 using the pump 4. Normally, the water up to landing well 5 is called raw water. The raw water in the receiving well 5 is transferred to a water conveyance pipe 6, a mixing tank 7, a sedimentation tank 8, and a filtration tank 9 depending on the head.
The water that passes through is sterilized and purified, stored in the nine-bag water treatment pond 10, and is supplied to a relay pumping station (not shown in the figure) using a pump 11 in accordance with the law 11, and is further supplied to end users.
Chlorine injection in iK is typically performed twice. The first
is carried out in the conduit 6 near the outlet of the landing well 5. This is called pre-chlorine. The purpose of prechlorination is the removal of metal ions such as iron and manganese, the removal of ammonia nitrogen, and sterilization. A second chlorine injection is performed in conduit 12 near the inlet of water treatment pond 10. This is called post-chlorine, and its purpose is to replenish the shortage of pre-chlorine, and to ensure that the residual chlorine concentration in the terminal water supply is maintained at 0.1 ppm or higher.

  (以下全白) 前塩素注入量の管還は流量計2の出力Q(m/H)およ
び塩素注入器130出力M (g/H)を制御器14に
入力して式(1)の前塩素注入率ム(pm)を一定に制
御すること、および原水の性状、例えばアンモニア性窒
素員度の変化に応じて前塩素注入率人を追従変化させる
ことである。塩素は塩素タンク15に貯留されてお抄、
図中略した気化器を通して塩素注入器13に導びかれる
(All white below) The pre-chlorine injection amount is returned by inputting the output Q (m/H) of the flow meter 2 and the output M (g/H) of the chlorine injector 130 to the controller 14, and calculating the amount before formula (1). The purpose is to control the chlorine injection rate (pm) to a constant value, and to change the pre-chlorine injection rate according to changes in the properties of raw water, for example, the ammonia nitrogen content. Chlorine is stored in chlorine tank 15 and extracted.
It is guided to the chlorine injector 13 through a vaporizer (not shown).

ム=−・・・・・・・(1) 畠 前塩素注入率Aを一定に制御することは通常の比率制御
であや、はとんど全ての浄水場においてこの機能を備え
ている。
(1) Hatamae Controlling the chlorine injection rate A to be constant is normal ratio control, and almost all water treatment plants have this function.

一方時々刻智変化する原水の性状に合せて塩素の注入率
を追従制御する方法には、着水井5内の原水を一定時間
間隔で採取しアンモニア性窒素濃変d* (ppm)を
測定し、これに管理者が経験的に得ている係数を乗じて
前塩素注入率人を手動設定する方法とか沈殿池8の入口
付近の処理工揚水をサンプリングポンプ16で採取して
残留塩素濃度計17を用いて残留塩素濃度a(ppm)
を測定し、これを制御@14に入力して比例制御等のい
わゆるフィードバック方式により自動的に前塩素注入率
人を設定する方法等が現在考えられている。
On the other hand, a method of tracking and controlling the chlorine injection rate according to the properties of raw water, which changes from time to time, involves sampling the raw water in the receiving well 5 at regular intervals and measuring the ammonia nitrogen concentration change d* (ppm). , a method of manually setting the pre-chlorine injection rate by multiplying this by a coefficient obtained empirically by the administrator, or a method of sampling the pumped water from the treatment plant near the entrance of the sedimentation tank 8 with a sampling pump 16 and measuring the residual chlorine concentration meter 17 Residual chlorine concentration a (ppm) using
Currently, a method is being considered in which the pre-chlorine injection rate is automatically set by measuring the amount of chlorine, inputting it into the control@14, and using a so-called feedback method such as proportional control.

しかしながら前述の手動設定方法は、作業員の経験等に
依る個人差を生ずる骨動負荷を増大する、および測定に
時間遅れが生ずる等の欠点があり、またフィードバック
方式による設定では時間遅れの処理および残留塩素計1
7の一定値に多大な影響を受けるため安定した残留塩素
濃度1が得られない等の欠点がある。このため多くの浄
水場においては通常1日1回測定するアンモニア性−素
議度dlと残留塩素計17で浦続的に出力される残留塩
素濃度−tもとに’ll看者経験的に前塩素注入率ムを
決定している。
However, the above-mentioned manual setting method has drawbacks such as increasing the bone dynamic load that causes individual differences depending on the experience of the worker, and causing a time delay in measurement. Residual chlorine meter 1
There are drawbacks such as not being able to obtain a stable residual chlorine concentration 1 because it is greatly influenced by the constant value of 7. For this reason, in many water treatment plants, based on the ammonia level - dl, which is normally measured once a day, and the residual chlorine concentration - t, which is continuously output by the residual chlorine meter 17, The pre-chlorine injection rate is determined.

本発明の実繍例を述べる前に原水の塩素要求量に関して
説明する。原水に添加した塩素は、原水中の有機性物質
、還元性無機物質等によって消費される。このうちアン
モニア性窒素、有機性窒素による消費は特異でありかつ
大きい。アンモニア性窒素による塩素の消費の一例を第
2図に示す。
Before describing practical examples of the present invention, the amount of chlorine required for raw water will be explained. Chlorine added to raw water is consumed by organic substances, reducing inorganic substances, etc. in the raw water. Of these, consumption by ammonia nitrogen and organic nitrogen is unique and large. An example of chlorine consumption by ammonia nitrogen is shown in FIG.

これはアンモニア性窒素0.4 ppmの溶液に塩素を
1時間間隔で注入し残留塩lA一度を測定したものであ
り、図中の点線はトータル残留塩素濃度であ抄実線は遊
離形残留塩素濃度(通常単に残留塩素濃度と称する場合
が多く本文においても通例圧したがい以下残留塩素濃度
と略記する)である。図中のDを不連続点と称し、Dま
でに要した塩素注入率を塩素要求量と称する。通常アン
モニア性窒素と塩素要求量の重量比は1:8〜10とさ
れている(1上水試験法” 1978年版F−314、
日本水道協会編、以下文献−1と称す)。塩素要求量を
越えて更に塩素を注入すると注入等の増加にほぼ等しい
残留塩素の増加がみられるようになる。
This is a result of injecting chlorine into a solution containing 0.4 ppm of ammonia nitrogen at one hour intervals and measuring the residual salt lA once. The dotted line in the figure is the total residual chlorine concentration, and the solid line is the free residual chlorine concentration. (Usually, it is often simply referred to as residual chlorine concentration, and in the text, it is also abbreviated as residual chlorine concentration below). D in the figure is referred to as a discontinuity point, and the chlorine injection rate required up to D is referred to as chlorine demand. Normally, the weight ratio of ammonia nitrogen to chlorine demand is 1:8 to 10 (1: Clean water test method, 1978 edition F-314,
Edited by Japan Water Works Association, hereinafter referred to as Document-1). If more chlorine is injected beyond the required amount of chlorine, an increase in residual chlorine will be seen which is approximately equal to the increase in the amount of chlorine injection.

浄水場における前塩素の注入は沈殿池8の入口付近の残
留塩素濃度目標値を1〜2 ppmの範囲に設定してお
9これに要する塩素の注入率(前述の前塩素注入率人に
同じ)は文献−1によると式(2)%式% (2) 塩素要求量=(8〜10)×アンモニア性窒素濃度  
      ・・・・・・(3)式+2) 、 (3)
を検証するため業浄水場における1年間のデータから原
水のアンモニア性窒素濃度d1と前塩素注入率Aの実績
値との関係を調べこれを第3図に示す。仮りに式(2)
および(3)が1年間を通して成立するならば図中のA
とdlは良好な相−を有するはずである。しかるに両者
の相関は甚しく低いものであった。したがって式(2)
 、 (3)を浄水場の前塩素注入率人の決定に適用す
るためには季節要因天候要因等の検討を要し年間を通し
て使用し得る記述式に確立する必要がある。
Pre-chlorine injection at the water treatment plant is carried out by setting the target value of the residual chlorine concentration near the entrance of the sedimentation tank 8 in the range of 1 to 2 ppm9. ) is the formula (2)% formula% (2) Chlorine demand = (8~10) x ammonia nitrogen concentration according to literature-1
・・・・・・Equation (3) + 2), (3)
In order to verify this, the relationship between the ammonia nitrogen concentration d1 of the raw water and the actual value of the pre-chlorine injection rate A was investigated from one year's worth of data at a commercial water treatment plant, and this is shown in Figure 3. If formula (2)
If (3) holds throughout the year, A in the diagram
and dl should have good phase. However, the correlation between the two was extremely low. Therefore, equation (2)
In order to apply (3) to determining the pre-chlorine injection rate at water treatment plants, it is necessary to consider seasonal factors, weather factors, etc., and to establish a descriptive formula that can be used throughout the year.

本発明の目的は原水と塩素との反応のメカニズムを調べ
、これを数式化することにより、塩素必要量を求め、該
数式にもとづき塩素必要量を迅速に且り一義的に計測す
る方法および装置を提供することにある。
The purpose of the present invention is to investigate the mechanism of reaction between raw water and chlorine, calculate the required amount of chlorine by formulating it, and provide a method and device for quickly and uniquely measuring the required amount of chlorine based on the formula. Our goal is to provide the following.

第4図はアンモニア性窒素濃度1ppmJl液を作り、
これに塩素を20 ppm添加して反応速度を調べたも
のである。都市化の影響の大きい多くの浄水場における
原水のアンモニア性窒素濃度の年間値は0.1〜1.5
 ppm楊度ま九水温は2〜30℃程度の範囲にある丸
め実情に合った実験条件の設定、をした。これより浄水
場の原水中のアンモニア性i1素と前塩素との反応の9
0−は年間を通して15分以内に終了するものと推槻さ
れる。
Figure 4 shows how to make a Jl solution with an ammonia nitrogen concentration of 1 ppm.
The reaction rate was investigated by adding 20 ppm of chlorine to this. The annual value of ammonia nitrogen concentration in raw water at many water treatment plants, which are heavily influenced by urbanization, is 0.1 to 1.5.
The water temperature was in the range of 2 to 30°C, and the experimental conditions were set to suit the actual situation. From this, 9 of the reaction between ammoniacal I1 element and pre-chlorine in raw water of a water treatment plant.
0- is estimated to be completed within 15 minutes throughout the year.

第5図は化学的酸素要求量(JIS K−0102)1
0 ppmのフミン酸溶液を作りこ′れに一定量の塩素
を添加してそれぞれ残留塩素の時間変化を調べたもので
ある。多くの浄水場において取水量の変化に応じて若干
の差異はあるが、前塩素の注入から混和池7出口までに
豐する時間は30分11度である。第5図から経過時間
30分間における塩素の消費濃度を絖み取り第2表に示
す。
Figure 5 shows chemical oxygen demand (JIS K-0102) 1
A 0 ppm humic acid solution was prepared, a certain amount of chlorine was added to the solution, and the changes in residual chlorine over time were investigated. In many water treatment plants, there are slight differences depending on changes in the amount of water intake, but the time it takes from pre-chlorine injection to the outlet of mixing basin 7 is 30 minutes and 11 degrees. From FIG. 5, the consumed concentration of chlorine during the elapsed time of 30 minutes is shown in Table 2.

第2表 第2表からアミン酸により30分間に消費されする塩素
の消費量は概略式(4)で示される。また式(4)の反
応は第4図の反応に比して約10分の11!度と違い。
Table 2 From Table 2, the amount of chlorine consumed by the amino acid in 30 minutes is shown by the schematic formula (4). Also, the reaction of formula (4) is about 11 times smaller than the reaction of Figure 4! Degree and difference.

塩素消費II1度=塩素添加濃1eX水温X 0026
・・・・(4)以上の実験から浄水場における前塩素の
消費反応に於いては先づ原水中のアンモニア性窒素との
反応が終了し残った塩素とフミン酸等の有機物との反応
が進行するものと判断される。
Chlorine consumption II 1 degree = chlorine addition concentration 1 eX water temperature X 0026
(4) From the above experiments, in the pre-chlorine consumption reaction at a water treatment plant, the reaction with ammonia nitrogen in the raw water is completed first, and the reaction between the remaining chlorine and organic matter such as humic acid occurs. It is determined that the process will progress.

これを最も簡単に表わすと式(5)である。The simplest way to express this is equation (5).

入xC1dl +c、−a−T+a+01   ”” 
 (5)こごで改めて記号の定義をする。
Input xC1dl +c, -a-T+a+01 ””
(5) Define the symbols again here.

A:前塩素注入率(p pm > a:沈殿池8人口水の残留塩衆議11.(pprn)C
1* C1+ C@ :定数 d、:原水中の′アンモニア性窒素S度(pprfl)
T;原水の水温<”o> 第6図に式イ5)の検証結果を示す。これには第3図で
述べ九゛基浄水場の1年間のデータを用い。新しく塩素
消費量Bを式(6)で定義しBとdlとの相関性を調べ
たものである。
A: Pre-chlorine injection rate (pp pm > a: Residual salt in sedimentation tank 8 artificial water 11. (pprn) C
1* C1+ C@: Constant d,: 'Ammonia nitrogen S degree in raw water (pprfl)
T: Temperature of raw water <”o> Figure 6 shows the verification results of equation (a) 5). This uses data from the 9゛ base water treatment plant described in Figure 3 for one year. The new chlorine consumption B is This is defined by equation (6) and the correlation between B and dl was investigated.

B=ム−C1aT−a   == f6)    □C
Iは未定の定数である。検証の結果Ct=4X10de
g−1の時Bとdlの相関係数r B O,99を示し
B=mu-C1aT-a == f6) □C
I is an undefined constant. Verification result Ct=4X10de
When g-1, the correlation coefficient between B and dl is r B O, 99.

回帰線は式(7)である。式(7)よりC,、C,はそ
れぞれ9.5−0.1といえるこの結果式で5)の有効
性が実証され、必要となる前塩素の注入率(塩素必要量
ムと称す)は年間を通して原水中のアンモニア性窒衆議
1fdt、原水の水温T、沈殿池80入口水の残留塩素
一度目標値a・を用いて式(8)にzb高い精度で予測
されることが判明し九。
The regression line is equation (7). From equation (7), C, , C, can be said to be 9.5-0.1, respectively.This result proves the effectiveness of equation 5), and the required pre-chlorine injection rate (referred to as the required amount of chlorine) It was found that zb can be predicted with high accuracy by formula (8) using the ammonia nitrogen concentration 1 fdt in the raw water throughout the year, the water temperature T of the raw water, and the target value a of residual chlorine in the water at the inlet of the settling tank 80. .

B=9.5  dt   O,1(r−0,99)  
・”” (7)A=9.5  dB +0.04−51
$ −T+a*  0.1  =−(8)本発明者は更
に他の複数の浄水場の1年間のデータをもとに第6図と
同様の図を作成したところ第3表に示すように何れの場
合もBとdlの相関係数rは0.95以上と高い相関を
示した。
B=9.5 dt O,1(r-0,99)
・”” (7) A=9.5 dB +0.04-51
$ -T+a* 0.1 = - (8) The inventor further created a diagram similar to Figure 6 based on one year's worth of data from multiple other water treatment plants, and as shown in Table 3. In both cases, the correlation coefficient r between B and dl was 0.95 or higher, indicating a high correlation.

し九がって式(5)は一般的に且り高い精度で浄水場に
適用し得ることが判明した。
Consequently, it has been found that equation (5) can be generally applied to water purification plants with high accuracy.

第3表 (以下全白) 河川水および湖沼水の塩素要求量(前述の第3図におけ
るD点)0111定に用いられている。
Table 3 (hereinafter all white) The chlorine demand of river water and lake water (point D in the above-mentioned Figure 3) is used for the 0111 constant.

従来装置の一例を第7図を用いて説明する。An example of a conventional device will be explained using FIG. 7.

測定対象の試料水を電磁弁20を用いて間欠的に針量槽
21に供給しこれをポンプ22を用いて反応槽23に導
く。一方塊化す′トリクム水濤液を試薬槽24に貯領し
ポンプ25を用いて塩素発生槽26に過剰量供給する。
Sample water to be measured is intermittently supplied to a needle metering tank 21 using a solenoid valve 20, and guided to a reaction tank 23 using a pump 22. On the other hand, the agglomerated trichum aqueous solution is stored in a reagent tank 24 and supplied in excess to a chlorine generating tank 26 using a pump 25.

塩素発生槽26は塩化ナトリウム水溶液人口27.塩化
ナトリクム水−液出口28、隔膜29、陰極30、陽極
31.塩素ガス出口32および水素ガ・ス出ロ33等で
構成されており、良く知られ丸環化す) IJウム水濤
液の電気分解くより式(9)および(呻の反応が生じる
The chlorine generation tank 26 contains a sodium chloride aqueous solution 27. Sodium chloride water-liquid outlet 28, diaphragm 29, cathode 30, anode 31. It is composed of a chlorine gas outlet 32, a hydrogen gas outlet 33, etc., and is well known for its ring formation.

陽極反応  1 C4−+ −CAB +1   −・・(9)陰極反応 Na +H10+j −+Na”+OH−+ −L H
l・・・・@・陰極で発生する水素ガス−(Hs)は水
素ガス出口33から適癲な排気手段を用いて排気畜れ、
陽極で発生する塩素ガス(Cj、)のみを導管を用いて
反応槽23に導(。
Anodic reaction 1 C4-+ -CAB +1 -... (9) Cathode reaction Na +H10+j -+Na''+OH-+ -L H
l...@-Hydrogen gas (Hs) generated at the cathode is exhausted from the hydrogen gas outlet 33 using an appropriate exhaust means,
Only the chlorine gas (Cj, ) generated at the anode is guided to the reaction tank 23 using a conduit (.

反応槽23においては前述の針量され九試料水!Ill
 (!st)中に含有されるアンモニア性窒素、有機性
物質および還元性無機物質と塩素ガスとの反応か−、行
し塩素要求量りを越えて塩素ガスを供給すると反応液中
には残留塩素が生じる。これを残留塩素検出@34で検
出し所定値(通常0.1pμmmりK剰るまでに供給し
た塩素ガス量fill (mg)から式(ロ)Kよ抄試
料水の塩素要求量りを算出する。
In the reaction tank 23, the above-mentioned amount of sample water was collected! Ill
(!st) When chlorine gas reacts with ammonia nitrogen, organic substances, and reducing inorganic substances contained in chlorine gas, if chlorine gas is supplied in excess of the amount of chlorine required, residual chlorine will remain in the reaction liquid. occurs. This is detected by residual chlorine detection @ 34, and the amount of chlorine required for the paper sample water is calculated from the formula (b) K from the amount of chlorine gas supplied until the residual chlorine exceeds a predetermined value (usually 0.1 pμmm).

n1冨 D=  −XIO”  (ppm)    ・・・・・
・(6)1 式(ロ)の演算は制御器35で実行され、指示紀碌器3
6に表示される。
n1TomiD=-XIO” (ppm) ・・・・・・
・(6)1 The calculation of formula (b) is executed by the controller 35, and the instruction enhancer 3
6.

反応に要した塩素ガス量−は積算電流針37等により式
@に基づき間接的に決定する。ここで工は電流(アンペ
ア)、tは反応に要した時間(秒)である。
The amount of chlorine gas required for the reaction is indirectly determined using the integrating current needle 37 or the like based on the formula @. Here, t is the current (ampere) and t is the time (seconds) required for the reaction.

ms −35,5XI −t / 96500    
””” Q’1欄定測定後は排水弁3Bを開き、反応槽
23内を排水する。
ms -35,5XI-t/96500
"""Q'1 column After the measurement, the drain valve 3B is opened and the inside of the reaction tank 23 is drained.

従来装置を用いて某浄水場原水の塩素要求量りを測定し
た結果の一例を第8図に示す。図中の点線が従来装置の
指示値、XIは同時刻に実施した手分析結果である。
FIG. 8 shows an example of the results of measuring the chlorine demand of raw water at a certain water treatment plant using a conventional device. The dotted line in the figure is the indicated value of the conventional device, and XI is the result of manual analysis performed at the same time.

以上述べた従来例に於ては(1)試薬槽24内の塩化ナ
トリウム水溶液中に含有される微量元素により陰極3G
および陽極31(以下電極30.31と略記す石)の表
面が被覆され劣化する、−(2)電極30.31近傍で
塩化ナトリウムの鎖度勾配が生じる、(3)隔膜29が
閉1し機能を失う等の問題点を有してお艶前述の弐〇s
K基づ< CI3発生量の理論値−と実際に発生するC
!諺量の間には短時日の間に数10−の差が生じる。し
たがって式(2)の測定原理に基づ〈従来装置を維持管
理することは甚だ困難であった。また試料水の採取から
、塩素要求量りを指示記鍮@36に表示するまでに通常
30分l!度の時間遅れを生ずる。第1図に示した浄水
場のフローに於て導水路6および混和池γ内での原水の
滞留時間は通常20〜30分間であるしたがって従来装
置を浄水場の前塩素の注入率の管理計器として用いよう
とすると前述の時間遅れは致命的な欠陥である・ 本発明者は先に述べた本発明の式(5)を臭体化し塩素
必要量^を迅速に且つ連続的に決定するための装置の構
成例を第9図に示す。本装置40はアンモニウムイオン
濃度測定部41、温度指示部42、残留塩素濃度目標値
設定部43、演算器44詔よび指示紀碌針45等より構
成される。着水井5の原水をすyプリングポンプ16等
で採取し、これをアンモニウムイオン濃度測定部41に
導入し原水中のアンモニウムイオン濃度を測定する。ア
ンモニクムイオン磯W測定値C以下dと略記する)は式
(ロ)を用いてアンモニア性窒素#l直d1に変換され
る。C4には理論値0.778を用いる。
In the conventional example described above, (1) the trace elements contained in the sodium chloride aqueous solution in the reagent tank 24
and the surface of the anode 31 (hereinafter abbreviated as electrode 30.31 stone) is coated and deteriorated; (2) a gradient in the chain degree of sodium chloride occurs near the electrode 30.31; and (3) the diaphragm 29 closes. The above-mentioned 20s has problems such as loss of functionality.
Based on K < Theoretical value of CI3 generation amount - and actually generated C
! There is a difference of several tens of degrees between proverbs in a short period of time. Therefore, it has been extremely difficult to maintain and manage conventional devices based on the measurement principle of equation (2). Also, it usually takes 30 minutes from collecting the sample water to displaying the chlorine demand measurement on the instruction manual @36! This causes a degree of time delay. In the flow of the water treatment plant shown in Figure 1, the residence time of raw water in the water conduit 6 and the mixing pond γ is normally 20 to 30 minutes. The above-mentioned time delay is a fatal flaw when trying to use it as An example of the configuration of the device is shown in FIG. The device 40 includes an ammonium ion concentration measuring section 41, a temperature indicating section 42, a residual chlorine concentration target value setting section 43, an arithmetic unit 44, an indicator performance needle 45, and the like. Raw water from the landing well 5 is sampled using a spring pump 16 or the like, and introduced into the ammonium ion concentration measuring section 41 to measure the ammonium ion concentration in the raw water. The measured value of ammonium ion (W) (hereinafter abbreviated as d) is converted into ammonia nitrogen #l direct d1 using equation (b). A theoretical value of 0.778 is used for C4.

d、 −(:a d      ・・・・・・(2)d
s =0.778 d     ・・・・・・(ロ)ま
え着水井5に温度検出器46を挿入しこの出力を温度指
示部42に入力し水温を測定する。残留塩素の目標値a
・は前述の通り通常1〜2 ppmの範囲であ抄これら
を式(5)に代入すると塩素必要量^はd、Tおよび暑
・を用いて連続的に式(至)で求められる。
d, -(:a d...(2)d
s = 0.778 d (b) A temperature detector 46 is inserted into the front landing well 5, and its output is input to the temperature indicator 42 to measure the water temperature. Target value of residual chlorine a
As mentioned above, . is usually in the range of 1 to 2 ppm. By substituting these into equation (5), the required amount of chlorine can be continuously calculated using equation (to) using d, T, and heat.

ムtmc@  C4d+c1  Ill@  ・T+m
@  +c、    ・m5OJ!ここで定数c、 、
c’、 、c、 、C4は浄水場により若干の差異が生
ずるがwL3表および式(ロ)から概略。
Mu tmc@ C4d+c1 Ill@ ・T+m
@+c, ・m5OJ! Here constant c, ,
Although c', , c, , and C4 vary slightly depending on the water treatment plant, they are approximate from the wL3 table and formula (b).

c、 幸s、s 、 C1+0.04 + C14”0
゜O、Cm +0.78  まりC1・C4をCmとす
るとCm +7.4である。
c, s, s, C1+0.04 + C14”0
°O, Cm +0.78 So, if C1 and C4 are Cm, then Cm +7.4.

本装置の他の構成例を第1″0図に示す。図中略したサ
ンプリングポンプ16等を用い調整槽5゜K原水を採取
し、調整槽50内に温度検出器51を挿入し水温Tを測
定する。一方調整檜5o内の原水をボング!s2等を用
いて反応@53に導入する。また試薬槽54内φ酸化ナ
トリクム溶液等のアルカリ剤を貯留し、ポンプ55を用
いて反応槽53に導入する。反応槽53内で原水の■を
■11以上に保つと弐曽の反応が生じ1発生するアンモ
ニア(NHl)を市販の隔膜式電極56等を用いて測定
することにより原水中のアンモニウムイオン−[dが測
定され、Tおよびdを演算器57に入力し1・を設定す
ると前述の式に)Kより塩素必要量tが連続的に求めら
れる。
Another example of the configuration of this device is shown in Fig. 1''0. 5°K raw water is sampled from a regulating tank using a sampling pump 16 etc. not shown in the figure, and a temperature sensor 51 is inserted into the regulating tank 50 to measure the water temperature T. On the other hand, the raw water in the adjustment hinoki 5o is introduced into the reaction @53 using a bong! When the raw water is maintained at 11 or higher in the reaction tank 53, a Niso reaction occurs and the generated ammonia (NHl) is measured using a commercially available diaphragm electrode 56, etc. When ammonium ion - [d is measured, T and d are input to the calculator 57 and 1. is set, the required amount of chlorine t is continuously determined from K using the above-mentioned formula.

+    − NH,+OH→NH,+H,O・・1曽また接液配管の
汚れおよび隔膜式電極56の隔膜の汚れは適機な方法で
加圧清水を流すとか数−の硝酸水溶液を用いた洗浄機能
を付加することにより防止され長期間安定した性能が維
持される。
+ - NH, +OH → NH, +H, O...1 Also, dirt on the wetted piping and dirt on the diaphragm of the diaphragm electrode 56 can be removed by running pressurized clean water or using an aqueous solution of several - nitric acid. By adding a cleaning function, this can be prevented and stable performance can be maintained for a long period of time.

第10図で述べた塩素必要量測定装置を用いた前述の某
浄水場における測定例を第11図に示す。
FIG. 11 shows an example of measurement at a certain water purification plant mentioned above using the chlorine requirement measuring device described in FIG. 10.

ここではa・を1.5 ppm Ic設定し、測定値の
検証のために別に各時刻の原水を採取し文献−1に従っ
て残留塩素濃度を1.5 ppmにするまでに要した塩
素注入量を求めこれを×印で示した。両者は良く一致し
てお9本装置の有効性が実証された。
Here, we set a to 1.5 ppm Ic, sampled raw water at each time separately to verify the measured values, and calculated the amount of chlorine injection required to bring the residual chlorine concentration to 1.5 ppm according to Reference-1. This is indicated with an x mark. Both results showed good agreement, demonstrating the effectiveness of this device.

第9図および第10図で述べた実施例は何れも塩素必要
量Aを連続的に求めるものであったが本発明はこれに限
定されるものではない。例えば第12図に示すように1
式(5)を簡易装置として具体化することが可能である
。本装置は水温入力部60、アンモニア性窒素濃度(ま
たはアンモニウムイオン濃度)入力部61、残留塩素濃
度目標値入力部62.演算部63および指示部64等で
構成される。これは適当な手段を用いて原水の水温Tを
測定し、一方原水のアンモニア性窒素濃度d1(または
アンモニウムイオン濃度d)を一定し、T、dl(また
はd)および残留塩衆議Il[目標値1・をそれぞれ水
温入力部6o、アンモニア性窒素濃度(またはアンモニ
ウムイオン濃lり久方部61および残留塩素濃度目標値
入力部62に手動的に入力して、演算部63で式(5)
K基づく演算を実行し、塩素必要量ムを指示部64に表
示するものである。
In both the embodiments described in FIGS. 9 and 10, the required amount A of chlorine is determined continuously, but the present invention is not limited thereto. For example, as shown in Figure 12, 1
It is possible to embody equation (5) as a simple device. This device includes a water temperature input section 60, an ammonia nitrogen concentration (or ammonium ion concentration) input section 61, and a residual chlorine concentration target value input section 62. It is composed of a calculation section 63, an instruction section 64, and the like. This involves measuring the temperature T of the raw water using a suitable means, while keeping the ammonia nitrogen concentration d1 (or ammonium ion concentration d) of the raw water constant, and adjusting T, dl (or d) and residual salt Il [target value 1 to the water temperature input section 6o, ammonia nitrogen concentration (or ammonium ion concentration long time section 61, and residual chlorine concentration target value input section 62), and the calculation section 63 calculates the formula (5).
It executes calculations based on K and displays the required amount of chlorine on the indicator 64.

Tおよびds (またはd)の収集には遠隔地からテレ
メータ等を用いた伝送、測定相嶺者が直接現場計器の指
示を読み取る。試料水を持ち帰9分析する等積々の方法
が可能である。またT、dl(またはd)およびa・を
それぞれの入力部60,61゜62に入力するKは抵抗
分割方式とか分圧方式等通常の手法を用いる。
To collect T and ds (or d), a telemeter or the like is used to transmit data from a remote location, and the measuring person directly reads the instructions from the on-site instrument. Many methods are possible, such as taking sample water home and analyzing it. Further, for K inputting T, dl (or d), and a. into the respective input sections 60, 61.degree. 62, an ordinary method such as a resistance division method or a voltage division method is used.

以上述べた変形例は小形化され携帯が可能になるだけで
なく、個々の浄水場から水温Tおよびアンモニア性塞素
濃度d1(またはアンモニウムイオ/II度d)を入力
することにより複数の浄水場の前塩素注入率の管理が可
能とな・る。
The modification described above is not only compact and portable, but also allows multiple water treatment plants to be used by inputting the water temperature T and ammonia ion concentration d1 (or ammonium io/II degrees d) from each water treatment plant. It is possible to control the pre-chlorine injection rate.

本発明においてTを原水の水温としたが浄水場において
は取水井3から浄水池5の間で水温の差は高々5℃であ
り、通常2〜3℃である。式(5)においてこの程度の
温度差は実用1何等の影響も与えない。したがって水温
Tの測定は取水井3および着水井5に限定されるもので
はなく、浄水場の処理工程の何れの井、池および導水路
で実施しても実用上支障ない。
In the present invention, T is the temperature of raw water, but in a water purification plant, the difference in water temperature between the water intake well 3 and the water purification pond 5 is at most 5°C, and usually 2 to 3°C. In equation (5), this level of temperature difference does not have any effect on practical use. Therefore, measurement of the water temperature T is not limited to the water intake well 3 and the water receiving well 5, and may be carried out in any well, pond, or water conduit in the treatment process of a water purification plant without causing any practical problems.

また残留塩素#度目標値としては沈殿池8の入口付近に
おける残留塩素濃度目標値を用いれば良い。この付近の
定義は混和池70入口から滞留時間で10〜20分間下
流までの間のいづれかを意味する。この理由は先に述べ
たように塩素とアンモニア性窒素との反応は15分間程
度と速く、一方塊素と有機物との反応は比較的緩慢であ
り、通常試料水の採取から残留塩素濃度の分析までには
持運び時間を含めて10〜20分間を要しているのが実
情である。したがって混和池70入口から滞留時間で1
0〜20分間下流の何れの場所で残留塩素濃度を測定し
ても纜ぼ同一の結果を得るためである。
Further, the residual chlorine concentration target value near the entrance of the settling tank 8 may be used as the residual chlorine degree target value. The definition of this vicinity means anywhere from the inlet of the mixing pond 70 to downstream for 10 to 20 minutes in terms of residence time. The reason for this is that, as mentioned earlier, the reaction between chlorine and ammonia nitrogen is fast, taking about 15 minutes, whereas the reaction between bulk elements and organic matter is relatively slow, and the residual chlorine concentration is usually analyzed from the collection of sample water. The reality is that it takes 10 to 20 minutes, including the time to carry it. Therefore, the residence time from the entrance of the mixing pond 70 is 1
This is because no matter where the residual chlorine concentration is measured downstream for 0 to 20 minutes, almost the same results will be obtained.

以上述べた本発明によれば時々刻々変化する浄水場の原
水の性状に対応し友前塩素を迅速に且つ年間を通して一
義的に把握し得る装置が提供され適正な前塩素注入およ
び水質の安定化に寄与する。
According to the present invention as described above, a device is provided that can respond to the ever-changing properties of raw water at a water treatment plant and can quickly and uniquely grasp chlorine throughout the year, allowing for proper pre-chlorine injection and stabilization of water quality. Contribute to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な浄水場の浄水システムを示すフロー図
、第2図はアンモニア性窒素による塩素の消費を示す特
性図、第3図は某浄水場におけるアンモニア性窒素濃度
と前塩素注入率の実績値との関係を示す図、第4図はア
ンモニア性窒素と塩素との反応の一例を示す特性図、第
5図はフミン酸と塩素との反応の一例を示す特性図、第
6図はアンモニア性窒素濃度と本発明による塩素消費量
の実績値との関係を示す図、第7図は塩素要求量測定の
従来装置の一例を示す説明図、第8図は従来装置を用い
た塩素要求量の測定例を示す特性図。 第9図は本発明による塩素必要量測定装置の構成例を示
すブロック図、第10図は本発明による塩素必要量測定
装置の実施例を示す説明図、第11図は本発明の塩素必
要量測定装置を用いた塩素必要量の測定例を示す特性図
、第12図は本発明の塩素必要量測定装置の変形例を示
すブロック図である。 1・・・・・・ゲート     ?・・・・・流量針3
・・・・・・取水井     5゛°・・・着水井70
00.1.混和池     8・・・・・沈殿池9・・
・・・・ろ通油     10・・・・浄水池13・・
・・塩素注入器   14・・・・制御器15・・・・
塩素タンク 16・・・・サンプリングポンプ 17・・・・残留塩素濃度計 21・・・・計量槽22
 、25・・・・ポンプ    23・・・・反応槽2
4・・・・試薬槽     26・・・・塩素発生器2
7・・・・NaC1溶液人口 28・・・・NaC1溶
液出口29・・・・隔1I30・・・・陰極 31・・・・陽 極     32・・・・塩素ガス出
口33・・・・水素ガス出口  34・・・・残留塩素
検出器3s・・・・制御器     36・・・・指示
記鍮器37・・・・積算電流針   40・・・・塩素
必要量測定装置41・・・・7yモニウムイオン濃度測
定部42・・・・温度指示部 43・・・・残留塩素szb標値設定部44・・・・演
算器     45・・・・ 指示記録計46・・・・
温蜜検出器   50・・・・ 調整槽51・・・・温
度検出19   52.5!S・・・・ポンプ53・・
・・反応槽     54・・・・試薬槽56・・・・
隔膜式電極   57・・・・演算器6o・・・・水温
入力部 61・・・・アンモニア性窒素濃度(又はアンモニクム
イオン濃vt>入力部 62・・・・残留塩素濃度目標値入力部63・・・・演
算部     64・・・・指示部(7317)  代
通人 弁溝士 則 近 憲 佑 (ほか1名)第2図 ? 第3図 第4図 第5図 暗問 第6図 第7図 第8図 第9図 第10図 第11図 時間 第12図
Figure 1 is a flow diagram showing the water purification system of a general water treatment plant, Figure 2 is a characteristic diagram showing the consumption of chlorine by ammonia nitrogen, and Figure 3 is the ammonia nitrogen concentration and pre-chlorine injection rate at a certain water treatment plant. Fig. 4 is a characteristic diagram showing an example of the reaction between ammonia nitrogen and chlorine, Fig. 5 is a characteristic diagram showing an example of the reaction between humic acid and chlorine, and Fig. 6 is a diagram showing the relationship between the ammonia nitrogen concentration and the actual value of chlorine consumption according to the present invention, Figure 7 is an explanatory diagram showing an example of a conventional device for measuring chlorine demand, and Figure 8 is a diagram showing the relationship between the ammonia nitrogen concentration and the actual value of chlorine consumption measured by the present invention FIG. 3 is a characteristic diagram showing an example of measurement of the required amount. FIG. 9 is a block diagram showing a configuration example of the chlorine requirement measuring device according to the present invention, FIG. 10 is an explanatory diagram showing an embodiment of the chlorine requirement measuring device according to the present invention, and FIG. A characteristic diagram showing an example of measuring the required amount of chlorine using the measuring device, and FIG. 12 is a block diagram showing a modification of the required amount of chlorine measuring device of the present invention. 1...Gate? ...Flow rate needle 3
...Intake well 5゛°...Water landing well 70
00.1. Mixing basin 8...Sedimentation basin 9...
... Filtered oil 10 ... Water purification pond 13 ...
...Chlorine injector 14...Controller 15...
Chlorine tank 16...Sampling pump 17...Residual chlorine concentration meter 21...Measuring tank 22
, 25...Pump 23...Reaction tank 2
4... Reagent tank 26... Chlorine generator 2
7...NaC1 solution population 28...NaC1 solution outlet 29...Separation 1I30...Cathode 31...Anode 32...Chlorine gas outlet 33...Hydrogen gas Outlet 34...Residual chlorine detector 3s...Controller 36...Indication brass device 37...Accumulating current needle 40...Chlorine required amount measuring device 41...7y Monium ion concentration measuring section 42... Temperature indicating section 43... Residual chlorine szb target value setting section 44... Computing unit 45... Indication recorder 46...
Warm honey detector 50... Adjustment tank 51... Temperature detection 19 52.5! S...Pump 53...
... Reaction tank 54 ... Reagent tank 56 ...
Diaphragm type electrode 57... Calculator 6o... Water temperature input section 61... Ammonia nitrogen concentration (or ammonium ion concentration vt> input section 62... Residual chlorine concentration target value input section 63 ...Calculation part 64...Instruction part (7317) Substitute person Benzoshi Nori Chika Kensuke (and 1 other person) Figure 2? Figure 3 Figure 4 Figure 5 Memorization question Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Time Figure 12

Claims (2)

【特許請求の範囲】[Claims] (1)浄水場における前塩素の注入に際して、原水のア
ンモニウムイオン濃度および水温を測定しこれらと沈殿
池の入口付近における残留塩素濃度の目標値を用いて前
塩素の必要量を決定するようにした水質の塩素必要量を
測定する方法。
(1) When injecting pre-chlorine at a water treatment plant, the ammonium ion concentration and water temperature of the raw water are measured, and the required amount of pre-chlorine is determined using these and the target value of the residual chlorine concentration near the entrance of the settling tank. How to measure the chlorine requirement of water.
(2)浄水場において、原水もしくは処理工程水の温度
検出器、原水に配管接続したアンモニウムイオン濃度測
定部、沈殿池の入口付近における残留塩素濃度の目標値
設定部およびこれらの出力信号を入力する演算器等で構
成され、水温、アンモニウムイオン濃度および残留塩素
濃度の目標値を用いて前塩素の必要量を測定する水質の
塩素必要量を測定する装置。
(2) At the water treatment plant, input the temperature detector for raw water or treatment process water, the ammonium ion concentration measuring unit connected to the raw water via piping, the target value setting unit for residual chlorine concentration near the entrance of the settling tank, and their output signals. A device that measures the required amount of chlorine for water quality, consisting of a calculator, etc., that measures the required amount of pre-chlorine using target values for water temperature, ammonium ion concentration, and residual chlorine concentration.
JP10329881A 1981-07-03 1981-07-03 Method and device for measuring chlorine demand of water quality Pending JPS586284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10329881A JPS586284A (en) 1981-07-03 1981-07-03 Method and device for measuring chlorine demand of water quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10329881A JPS586284A (en) 1981-07-03 1981-07-03 Method and device for measuring chlorine demand of water quality

Publications (1)

Publication Number Publication Date
JPS586284A true JPS586284A (en) 1983-01-13

Family

ID=14350349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10329881A Pending JPS586284A (en) 1981-07-03 1981-07-03 Method and device for measuring chlorine demand of water quality

Country Status (1)

Country Link
JP (1) JPS586284A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778463A1 (en) * 1998-05-06 1999-11-12 Sagem Automatic system for controlling the chlorine content of water e.g. in swimming pools
JP2021071293A (en) * 2019-10-29 2021-05-06 東亜ディーケーケー株式会社 Chlorine demand measurement method and measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778463A1 (en) * 1998-05-06 1999-11-12 Sagem Automatic system for controlling the chlorine content of water e.g. in swimming pools
JP2021071293A (en) * 2019-10-29 2021-05-06 東亜ディーケーケー株式会社 Chlorine demand measurement method and measurement device

Similar Documents

Publication Publication Date Title
CA2620824C (en) Denitrification process and system
WO2014006129A1 (en) Determination of a conversion factor relating the conductivity and the hardness of water
CN106082430A (en) A kind of aeration control system and aeration control method
CN104114498A (en) Method of controlling addition rate of an odor control chemical
Stratton Nitrogen losses from alkaline water impoundments
CN113933372A (en) Method for quantitatively identifying river entering load and river entering coefficient of river basin nitrate nitrogen source
CN211999002U (en) Automatic dosing control system for breakpoint chlorine, deamination and denitrification
Kim et al. Inorganic chemicals in an effluent-dominated stream as indicators for chemical reactions and streamflows
JPS586284A (en) Method and device for measuring chlorine demand of water quality
CN117215343A (en) Intelligent sulfuric acid adding control method for industrial circulating water
Lung Lake acidification model: practical tool
He et al. Oxygen-transfer measurement in clean water
Parkhill et al. Indirect measurement of oxygen solubility
JP2015089548A (en) Sludge activity measuring apparatus and method for measuring sludge activity
CN110412233B (en) Method and device for quantitatively measuring ozone consumption of different water qualities
CN110794883A (en) Control method and system for automatically adding ammonia into condensed water of power plant
Jung et al. Towards an on-line biochemical oxygen demand analyser
JP2002174402A (en) Method and system for treating boiler water
Alexander et al. Field verification of an integrated hydraulic and multi-species water quality model
JP3401387B2 (en) Solution composition measurement system
Wert et al. Real-time modeling of trihalomethane formation in a full-scale distribution system
JP3103155B2 (en) Alkaline agent injection control device
JP3385767B2 (en) Measuring and calculating device of Langeria index
KR100324362B1 (en) Method for streamflow estimation using dissolved chemical species in effluents from a wastewater treatment plant
Taseiko et al. Biochemical processes of self-purification model in small rivers