JPS586282A - Flasher - Google Patents

Flasher

Info

Publication number
JPS586282A
JPS586282A JP10358081A JP10358081A JPS586282A JP S586282 A JPS586282 A JP S586282A JP 10358081 A JP10358081 A JP 10358081A JP 10358081 A JP10358081 A JP 10358081A JP S586282 A JPS586282 A JP S586282A
Authority
JP
Japan
Prior art keywords
chamber
water
steam
drain
geothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10358081A
Other languages
Japanese (ja)
Inventor
Toshio Iwano
岩野 利男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10358081A priority Critical patent/JPS586282A/en
Publication of JPS586282A publication Critical patent/JPS586282A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To obtain flash vapor of high dryness by providing a horizontal type cylindrical vessel closed at both ends by semicircular end plates, a perforated plate and a sepn. chamber for removing water drops in flash vapor by means of a moisture separator, etc. CONSTITUTION:The geothermal water fed through a geothermal water inlet 12 flows into a flash chamber 23 through an injection nozzle 23, and part thereof turns to flash vapor. Further, the geothermal water collides against an end plate 17, sticks thereon and flows in the form of a thin water film. This water is collected in the channel part 19a of a drain capturing device 19 and is discharged through a drain outlet 16. The flash vapor contg. the water drops failed to be separated in the chamber 23 flows as horizontal flow into a sepn. chamber 25, where it collids against a perforated plate 26, by which part of the water drops are separated. The vapor past the holes of said plate turns to the vapor flow of a uniformly regulated distribution of velocities. As it passes through a moisture separator 30, it is thoroughly removed of water drops.

Description

【発明の詳細な説明】 本発明は地熱発電ノラント勢に使用されるフラッシャに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flasher used in a geothermal power generation system.

地熱を利用して電力を得るシステムとしては第1wJに
示すような地熱水式地熱発電システムが知られている。
As a system for obtaining electric power using geothermal heat, a geothermal water type geothermal power generation system as shown in No. 1 wJ is known.

すなわち、地熱す1からの地熱水はセノ臂レータ、2に
導入され、ここで地熱水と蒸気とは分離され、蒸気はそ
のまま蒸気タービン3へ供給され、残りた地熱水は、七
ノ4レータ2より圧力の低い7I)ラシャ4へ導入して
再度7−)ツシ、させて蒸気にし、その蒸気を蒸気ター
ビン3へ供給して、蒸気タービン3、ならびに発電機5
から動力を取出すようになっている。また、フラッシュ
室に残留する地熱水、は、還元すCへ戻される一方、蒸
気タービンJで仕事をした蒸気は、復水器rで擬縮・復
水し、冷却水と混合して冷却水の一部となル、その後ポ
ンプ1を介して冷却塔りへ回収される。
That is, the geothermal water from the geothermal tank 1 is introduced into the ceno-arm unit 2, where the geothermal water and steam are separated, the steam is directly supplied to the steam turbine 3, and the remaining geothermal water is The pressure is lower than that of the steam turbine 3 and the generator 5.
It is designed to extract power from the In addition, the geothermal water remaining in the flash chamber is returned to the reducer C, while the steam that has done work in the steam turbine J undergoes pseudo-condensation and condensation in the condenser R, and is mixed with cooling water and cooled. A portion of the water is then collected via pump 1 to the cooling tower.

第2図は現在使用されている代表的なブックシャイの内
部構造を示すものである。第2図において11は本体胴
、12は地熱水入口、13は噴射ノズル、14は案内板
、15は蒸気出口、16はドレン出口をそれぞれ示す。
Figure 2 shows the internal structure of a typical booksheer currently in use. In FIG. 2, 11 is a main body shell, 12 is a geothermal water inlet, 13 is an injection nozzle, 14 is a guide plate, 15 is a steam outlet, and 16 is a drain outlet.

このような構造を有するフラツシャイにおいて、地熱水
人口12よシ本体胴11内へ流入した地熱水は、噴射ノ
ズル13よ)本体胴11内へ噴出すると同時に、その保
有する熱エネルギ量に対応し、その一部がフラッシュ蒸
気となる。更に地熱水は案内板14に衝突することによ
り、フラッシュが促進される。フラッシュした蒸気は本
体胴11内を上昇し、蒸気出口15を通シ、上述の蒸気
タービン3へ供給される。一方、残った地熱水は本体胴
11の下部に一旦溜った後、ドレン出口16から還元ポ
ンプ(図示せず)へ送られる。
In a flashy having such a structure, the geothermal water that has flowed into the main body shell 11 through the geothermal water population 12 is ejected into the main body shell 11 through the injection nozzle 13, and at the same time, the geothermal water is ejected into the main body shell 11 through the injection nozzle 13, and at the same time, the geothermal water is ejected into the main body shell 11 through the injection nozzle 13, and at the same time, the geothermal water is ejected into the main body shell 11 through the injection nozzle 13, and at the same time, the amount of thermal energy is Some of it becomes flash steam. Furthermore, the geothermal water collides with the guide plate 14, thereby promoting flushing. The flashed steam rises within the main body shell 11, passes through the steam outlet 15, and is supplied to the above-mentioned steam turbine 3. On the other hand, the remaining geothermal water once accumulates in the lower part of the main body shell 11 and is then sent from the drain outlet 16 to a reduction pump (not shown).

上記のように構成されたフラッシャにおいては噴出ノズ
ル13から噴出した熱水が案内板14に衝突した後、本
体胴1ノ内へ平均的に飛散した熱水の水滴のうち、比較
的径の大きいものは重力によシ下降して本体胴11の下
部に溜まシ、ドレンとなる。しかしながら、径の小さい
水滴はフラッジ、蒸気の上昇流から受ける抗力が重力に
うちかつて上昇流に同伴され、蒸気出口15を通って上
述した蒸気タービン3へ流入する。
In the flasher configured as described above, after the hot water jetted from the jet nozzle 13 collides with the guide plate 14, among the hot water droplets scattered on average into the main body 1, a relatively large diameter droplet is dispersed. The material descends due to gravity and accumulates at the bottom of the main body 11, becoming a drain. However, small-diameter water droplets become fludge, and the drag force from the upward flow of steam is entrained by the upward flow due to gravity, and the water droplets flow through the steam outlet 15 into the steam turbine 3 described above.

このように7ツクシ、蒸気中に水滴が同伴され、タービ
ン流入蒸気の乾き度が低下すると、それに比例してター
ビン最終段付近の湿〕度が上昇し、ノズル、羽根の浸食
が起る。更に地熱水中には多量のシリカ・カルシウム等
が溶は込んでお〕、フラッシャ4でこれらを含んだ水滴
が分離されずフラッジ、蒸気に同伴して蒸気タービンS
に流入すると入口付近のノズル、羽根に析出堆積し、通
路面積が狭まって出力の低下を招くばかシでなく、運転
にも重大な支障をきたす。
In this way, when water droplets are entrained in the steam and the dryness of the steam flowing into the turbine decreases, the humidity near the final stage of the turbine increases proportionally, causing erosion of the nozzles and blades. Furthermore, a large amount of silica, calcium, etc. are dissolved in the geothermal water], and the water droplets containing these are not separated by the flasher 4, becoming fludge and accompanying the steam to the steam turbine S.
If it flows into the air, it will deposit on the nozzles and blades near the inlet, narrowing the passage area and not only causing a decrease in output, but also seriously interfering with operation.

以上のように地熱水式地熱発電システムの性能向上及び
信頼性向上には、水滴の少ないフラッシュ蒸気を得るこ
とが不可欠である。
As described above, in order to improve the performance and reliability of geothermal water geothermal power generation systems, it is essential to obtain flash steam with fewer water droplets.

本発明は上記に鑑みてなされたものであシ、地熱水の飛
散を防止し、フラッジ、蒸気の流れを整流し、かつ湿分
分離装置によシ乾き度の高い7′yツシ、蒸気を得る小
形化された7ラツシヤを提供することを目的とする。
The present invention has been made in view of the above, and has the objective of preventing the scattering of geothermal water, rectifying the flow of flood and steam, and providing a moisture separator with a highly dry 7'y pipe and steam. The purpose of the present invention is to provide a miniaturized 7 latshear that obtains the following.

以下、本発明を図面に基づいて詳細に説明する。第3図
において、符号1ノは本体胴を示し本体胴11は、下部
にドレン出口ICを有する横形円筒容器である。この横
形円筒容器の両端には鏡板17.11が設けられている
。この一端の鏡板18には蒸気出口15を有し、また、
□もう一端の鏡板11の近傍には地熱水人口12が設け
られ、その先端には噴射ノズル13が接続している。噴
射ノズル13の中心軸は容器の中心軸に一致している。
Hereinafter, the present invention will be explained in detail based on the drawings. In FIG. 3, reference numeral 1 indicates a main body shell 11, which is a horizontal cylindrical container having a drain outlet IC at its lower part. End plates 17.11 are provided at both ends of this horizontal cylindrical container. The end plate 18 at one end has a steam outlet 15, and
□A geothermal water reservoir 12 is provided near the mirror plate 11 at the other end, and an injection nozzle 13 is connected to the tip thereof. The central axis of the injection nozzle 13 coincides with the central axis of the container.

鏡板17は噴射ノズル13から噴出する熱水の案内板で
もあシ、半球形に形成されている0球形が終わり、円筒
形に゛移行する本体胴部分には地熱水ドレンを分離する
ためのドレン分離装置19ならびにフラッジ、111z
 sがそれぞれ同心状に設けられている。
The end plate 17 is also a guide plate for the hot water spouted from the injection nozzle 13, and the main body part where the hemispherical shape ends and transitions to a cylindrical shape has a geothermal water drain for separating the geothermal water drain. Drain separator 19 and fludge, 111z
s are provided concentrically.

上記ドレン分離装置19I/i、断面コ字で、かつ一部
切欠を有する溝部19aを有し、この溝部19atf第
4図示のように本体胴11に褒状周設され、仕切板10
tで伸びている。仕切板20は、これに紙長して多孔版
21が接続されていて、多孔板21と仕切板20とによ
ってドレン排出室21が形成されている。
The drain separation device 19I/i has a groove portion 19a having a U-shaped cross section and a partial notch, and this groove portion 19atf is provided around the body body 11 as shown in the fourth figure, and the partition plate 10
It is growing at t. A perforated plate 21 is connected to the partition plate 20 in a paper-length manner, and a drain discharge chamber 21 is formed by the perforated plate 21 and the partition plate 20.

他方、7ラツシ、室23と背中合せに分離室25が連設
されていて、この分離室25は流れの上流側に多孔板2
6を、下流側に湿分分離装置30を配設する。・さらに
分離室25の隣シには、湿分分離装置30を隔てて蒸気
排出室28を設ける。
On the other hand, a separation chamber 25 is connected back to back to the chamber 23, and this separation chamber 25 has a perforated plate 2 on the upstream side of the flow.
6, and a moisture separator 30 is installed on the downstream side. - Further, a steam exhaust chamber 28 is provided adjacent to the separation chamber 25 with the moisture separator 30 in between.

次に作用について説明する。Next, the effect will be explained.

地熱水入口12から送られてきた地熱水は、噴射ノズル
13よシフラック。室23内へ流入し、その保有するエ
ンタルピーに対応してフラッシュ[7、一部がフラッジ
、蒸気となる。更に地熱水は鏡板11に衝突・付着して
薄い水膜と表り、鏡板1’FC沿って流れ、ドレン捕集
装置19の溝部19mK集められ、集められたドレンけ
、本体胴11下部中心に設けられたドレン出口1σよシ
ロ外へ排出される。フラッジ−に伴って地熱水の一部は
フ2ツシ、室2S内へ水滴となって飛散するが、径の大
きいものは重力によシ下方1然落下し、ドレンに合流し
て器外へ排出される。
The geothermal water sent from the geothermal water inlet 12 is sent to the injection nozzle 13. It flows into the chamber 23 and becomes flash [7, part of which becomes fludge and steam] corresponding to the enthalpy it possesses. Furthermore, the geothermal water collides with and adheres to the head plate 11, appears as a thin water film, flows along the head plate 1'FC, is collected in the groove 19mK of the drain collection device 19, and is collected at the center of the lower part of the main body body 11. It is discharged to the outside through the drain outlet 1σ installed in the drain outlet 1σ. With the flooding, some of the geothermal water becomes water droplets and scatters into the chamber 2S, but those with large diameters fall downward due to gravity, join the drain, and flow outside the vessel. is discharged to.

フラッジ、室23で分離されない水滴を含んだフラッジ
、蒸気は、水平流となシ分離@ZSへ流入し、多孔板2
6に衝突することによシ水滴の一部を分離するとともに
、孔を通過することによ多速度分布の均一な整流された
蒸気流となる。整流されたフラッジ、蒸気は湿分分離装
置30を通過することによシ水滴をほぼ完全圧分離され
る。多孔板2#および湿分分離装置sOで捕集分離され
た水滴は多孔板21を通りドレンに合流する。このよう
にしてフラッシュ蒸気は乾き飽和状態の蒸気とな多蒸気
排出室28を経て蒸気出口15から図示しないタービン
へ送られる。
Fludge and steam containing water droplets that are not separated in the fludge chamber 23 flow horizontally into the separator @ZS and pass through the perforated plate 2.
A part of the water droplets is separated by colliding with the pores 6, and a uniform rectified steam flow with a multi-velocity distribution is formed by passing through the holes. The rectified fludge and steam pass through a moisture separator 30, where water droplets are separated at almost complete pressure. The water droplets collected and separated by the perforated plate 2# and the moisture separator sO pass through the perforated plate 21 and join the drain. In this way, the flash steam becomes dry and saturated steam and is sent through the multi-steam discharge chamber 28 from the steam outlet 15 to a turbine (not shown).

以上説明したように本発明によれば、当て板を半球形の
鏡板にしたことによシ、熱水が付着して流れるから飛散
する水滴が少なくなる。また、熱水はドレン捕集装置に
導かれ、ドレンが7ラツシ、蒸気の流れと明確に分れて
いるから72ツシ、蒸気に同伴されにくい、さらに1径
の小さい水滴を含んだフラッシュ蒸気は分離型内に設置
された多孔板を通過することによ多速度分布を均一にさ
せ、湿分分離装置において水滴−はぼ完全に分離捕集さ
れフ2ツシー蒸気出口では乾き飽和状態となる。
As explained above, according to the present invention, since the caul plate is made of a hemispherical end plate, the hot water adheres and flows, thereby reducing the amount of water droplets that fly away. In addition, the hot water is led to a drain collection device, and since the drain is clearly separated from the steam flow, it is difficult to be entrained in the steam, and the flash steam containing water droplets with a small diameter is By passing through a perforated plate installed in the separation mold, the multivelocity distribution is made uniform, and the water droplets are almost completely separated and collected in the moisture separator, and become dry and saturated at the steam outlet of the fuselage.

従って、本発明の7ラツシヤによれば乾き度の高いフラ
ッジ、蒸気が得られるから、タービンノズル、羽根が浸
食を受ける懸念がなく、またシリカ、カルシウム勢がノ
ズル、羽根に析出堆積する心配がないから、熱水型地熱
発電システムの性能向上及び信頼性向上に多大の効果が
ある。
Therefore, according to the 7 lashers of the present invention, since highly dry fludge and steam can be obtained, there is no concern that the turbine nozzles and blades will be eroded, and there is no fear that silica and calcium particles will be deposited and deposited on the nozzles and blades. Therefore, it has a great effect on improving the performance and reliability of hydrothermal geothermal power generation systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱水製地熱発電システムの概略系統図、第2図
は従来の7ツツシヤの内部構造を示す横断面図、第3図
は本発明による7ラツシヤの内部構造を示す横断面図、
114図は第3図のムーム線に沿って切断し矢印方向に
見た断面図である。 11・・・本体胴、12・−地熱水入口、13・・・噴
射ノズル、xi−@気出口、1g−・ドレン出口、17
!、111・・・鏡板、I II−・・ドレン捕集装置
、19 &−・溝部、20−・・仕切板、21・−多孔
板、23・・・フラッジ、室、25・−分離室、26・
・・多孔板、jF−・ドレン排出室、28・・・蒸気排
出室、30・・・湿分分離装置。 出願人代理人  弁理士 鈴 江 武 彦f41 図 第2図
FIG. 1 is a schematic diagram of a hot water geothermal power generation system, FIG. 2 is a cross-sectional view showing the internal structure of a conventional 7-rusher, and FIG. 3 is a cross-sectional view showing the internal structure of a 7-rusher according to the present invention.
FIG. 114 is a sectional view taken along the Moum line in FIG. 3 and viewed in the direction of the arrow. 11... Main body trunk, 12... Geothermal water inlet, 13... Injection nozzle, xi-@ air outlet, 1g-- drain outlet, 17
! , 111... End plate, I II-... Drain collection device, 19 &-... Groove, 20... Partition plate, 21... Perforated plate, 23... Fludge, chamber, 25... Separation chamber, 26・
... Porous plate, jF-- Drain discharge chamber, 28... Steam discharge chamber, 30... Moisture separation device. Applicant's agent Patent attorney Takehiko Suzue f41 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 両端が生球形の鏡板によって閉じ込められ、中央に地熱
水入口を、一方の鏡板に蒸気出口を、下部にドレン出口
を有する横形円筒容器と、上記地熱水入口に連設する噴
射ノズルから送られてくる地熱水を上記鏡板に衝突させ
る間に減圧してフラッジ、する蒸気を集めるフラッシュ
室と、とのフラッジ&室内にあって上記噴射ノズルと同
心状に配設されたドレン捕集装置と、多孔板および湿分
分離装置によって7ラツシユ蒸気Ki&まれる水滴を除
去する分離室と、分離室底部に設けられた仕切板によっ
て形成され、上記ドレン出口に連通するドレン排出室と
、上記分離室に連設し、上記蒸気出口に連通する蒸気排
出室とを有する7ラツシヤ。
A horizontal cylindrical container is enclosed at both ends by spherical head plates, has a geothermal water inlet in the center, a steam outlet in one of the head plates, and a drain outlet in the lower part, and the water is sent from an injection nozzle connected to the geothermal water inlet. a flash chamber that collects the steam that is depressurized and flooded while colliding the geothermal water with the mirror plate, and a drain collection device that is located in the flutter and chamber and is arranged concentrically with the injection nozzle. , a separation chamber for removing water droplets separated by a perforated plate and a moisture separator, a drain discharge chamber formed by a partition plate provided at the bottom of the separation chamber and communicating with the drain outlet, and a drain discharge chamber for communicating with the drain outlet; 7. A steam exhaust chamber connected to the chamber and communicating with the steam outlet.
JP10358081A 1981-07-02 1981-07-02 Flasher Pending JPS586282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10358081A JPS586282A (en) 1981-07-02 1981-07-02 Flasher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10358081A JPS586282A (en) 1981-07-02 1981-07-02 Flasher

Publications (1)

Publication Number Publication Date
JPS586282A true JPS586282A (en) 1983-01-13

Family

ID=14357713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10358081A Pending JPS586282A (en) 1981-07-02 1981-07-02 Flasher

Country Status (1)

Country Link
JP (1) JPS586282A (en)

Similar Documents

Publication Publication Date Title
JP6239033B2 (en) Combustion engine
PL168951B1 (en) Method of causing mass exchange between liquid and gaseous media and apparatus therefor
US3524631A (en) Means for carrying out gas scrubbing operations
US4407127A (en) Flashing apparatus of geothermal power plants
PL176814B1 (en) Dripping tower for cooling, moistening and/or purifying a gas and method of cooling, moistening and/or purifying a gas in such tower
JPS586282A (en) Flasher
JPH0545842B2 (en)
CN206262255U (en) A kind of steam generator steam-water separator
CN108159850A (en) A kind of cold stripper of water mist fluid and dehumidifying demister and its dehumidifying defogging method
US2001259A (en) Method of and apparatus for conditioning gas or vapor
CN211936343U (en) Gas-liquid cyclone flue gas desulfurizer
CN106422536A (en) Steam-water separator for steam generator
CN102954706A (en) Cocurrent and countercurrent jet compound hyperbolic cooling tower
JPS636561Y2 (en)
JPS5878002A (en) Flusher for geothermal power plant
JPS636562Y2 (en)
CN216934723U (en) Flash evaporator
SU1474338A1 (en) Jet apparatus stage
CN210278630U (en) Multi-pipe type venturi wet dust collector
CN214842584U (en) Waste heat steam recovery device
CN113903952B (en) Ejector with steam-water separation function for fuel cell
RU2054384C1 (en) Thermal deaerator
JPH109624A (en) Method and device for humidifying
JP4011546B2 (en) Equipment for collecting water from exhaust gas
JPS5880402A (en) Flusher