JPS5862530A - Photosensor - Google Patents

Photosensor

Info

Publication number
JPS5862530A
JPS5862530A JP16225281A JP16225281A JPS5862530A JP S5862530 A JPS5862530 A JP S5862530A JP 16225281 A JP16225281 A JP 16225281A JP 16225281 A JP16225281 A JP 16225281A JP S5862530 A JPS5862530 A JP S5862530A
Authority
JP
Japan
Prior art keywords
optical
polarizer
light
optical sensor
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16225281A
Other languages
Japanese (ja)
Other versions
JPS6161612B2 (en
Inventor
Kazuo Hisama
和生 久間
Shuichi Tai
田井 修市
Toshio Aranishi
新西 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16225281A priority Critical patent/JPS5862530A/en
Publication of JPS5862530A publication Critical patent/JPS5862530A/en
Publication of JPS6161612B2 publication Critical patent/JPS6161612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To improve sensitivity and reliance, by a method wherein a polarizer and an analizer are provided within a sensing element. CONSTITUTION:A polarizer 10 having a multilayer film as an interference film and an analyzer 11 having a multilayer film as an interference film are arranged so that they cut a Faraday element made of lead glass in fixed shaped. Said polarizer 10, analyzer 11 and Faraday element 9 are formed in one body by forming films in said cut portions by evaporation etc. and again covering the cut portions by lead glass. A photosensor according to this structure has the advantage that sensitivity of a photo-magnetic field sensor is improved, as the polarizer and analizer are formed within the optical-Faraday element having multilayer films, and further, that the reliability is improved and the size can be minimized, as each optical-components are formed monoblockly.

Description

【発明の詳細な説明】 □ この発明は、光の偏向を応用した光センサに関する
ものである。
[Detailed Description of the Invention] □ The present invention relates to an optical sensor that applies light deflection.

□第1図は従来の光センサを利用した光i界計測装置を
示す図で、図において、(1)は光源、(2)は光ファ
イバ、(3)は光センサ% (4) (4’ )はマイ
クロレンズ、(5)は偏光子、(6)は外部磁界などに
よって光が偏向さnる感知素子としての光ファラデー素
子、(7)は検光子、(8)は受光器を表わす。
□Figure 1 is a diagram showing an optical i-field measurement device using a conventional optical sensor. In the figure, (1) is the light source, (2) is the optical fiber, and (3) is the optical sensor% (4) (4 ) represents a microlens, (5) represents a polarizer, (6) represents an optical Faraday element as a sensing element whose light is deflected by an external magnetic field, (7) represents an analyzer, and (8) represents a light receiver. .

次に動作について説明する。光源(1)から出射iれた
光は光ファイバ(2)によって、光センサ(3)に導ひ
かれる。光センサ(3)では、晃ファイバから出射さn
た光はマイクロレンズ(4)によって平行光線に変換さ
口、偏光子(5)で直線偏光とされる。光ファラデー素
子(6)内を伝搬する直線偏光波の偏光面は、光の進行
方向と平行な外部磁界が存在する場合、その磁界の強さ
に応じてファラデー同転さ口る7この回転角は、検光子
(7)で強度変調に変換さ口、マイクロレンズ(4’)
、光ファイバ(2)を通して、受光器(3)で光/電気
変換される。この電気出力を測定するととtよって、光
センサ(3)の周囲の外部磁界を測定できる。
Next, the operation will be explained. Light emitted from a light source (1) is guided to a light sensor (3) by an optical fiber (2). In the optical sensor (3), the light emitted from the optical fiber is
The emitted light is converted into parallel light by a microlens (4), and linearly polarized by a polarizer (5). When there is an external magnetic field parallel to the traveling direction of the light, the polarization plane of the linearly polarized light wave propagating inside the optical Faraday element (6) undergoes Faraday rotation depending on the strength of the magnetic field.7 This rotation angle is converted into intensity modulation by analyzer (7), microlens (4')
, through an optical fiber (2), and undergoes optical/electrical conversion at a photoreceiver (3). By measuring this electrical output, it is possible to measure the external magnetic field around the optical sensor (3).

なお以上は感知素子として鉛ガラス等のファラデー素子
を用いた例を示したが、ファラデー素子の代りにLim
b’sやB112sio2o等のポッケルス素子を用い
た場合は、素子周囲の電圧・電流を測定することができ
る。またファラデー素子の代シにテルルガラスやエポキ
シ樹脂の有する光弾性効果を用いt=木子を用いた場合
は素子に加わる圧力、虫。
The above example uses a Faraday element made of lead glass as a sensing element, but instead of a Faraday element, a Lim
When a Pockels element such as b's or B112sio2o is used, the voltage and current around the element can be measured. In addition, if the photoelastic effect of tellurium glass or epoxy resin is used instead of a Faraday element, and t = wood, the pressure applied to the element, insects.

振動、加速度等を測定することができる。Vibration, acceleration, etc. can be measured.

従来の光による計測装填は以上のように構成さ第1てい
るので、光センサ(3)内に偏検光子(5バフ)、光フ
ァラデー素子(6)等の感知素子を別々に配重しなけれ
ばならず、光センサ(3)内における結合損失が大きい
こと、温度や振動による各光学部品の光軸ずれが生じ信
頼性か低下することなどの欠点があった。
Since the conventional optical measurement device is configured as described above, sensing elements such as a polarized analyzer (5 buffs) and an optical Faraday element (6) are separately arranged inside the optical sensor (3). However, there are drawbacks such as a large coupling loss within the optical sensor (3) and optical axis misalignment of each optical component due to temperature or vibration, which reduces reliability.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、感知素子内部に偏光子と検光子を
形成し、感度および信頼性を向上させた光センサを提供
することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and the purpose is to provide an optical sensor with improved sensitivity and reliability by forming a polarizer and an analyzer inside the sensing element. It is said that

以下、この発明の一実施例を光磁界計測装置に適用した
第2図について説明する。第2図において、(1)は光
源、(2)は光ファイバ、(3)は光センサ、(4) 
(4”)はマイクロレンズ、(9)は偏光子と検光子を
内蔵した感知素子である光ファラデー素子である。第8
図は、この光ファラデー素子の詳細を示したもので、萌
は干渉膜とした多層膜を用いた偏光子、0υは干渉12
.シた多層膜を用いた検光子を表わす。すなわちとfL
ら偏光子O0および検光子Ovは鉛ガラスのファラデー
素子を所定形状に切断し、その部分に蒸着等によって膜
を形成し、再び切断部を鉛ガラスで覆って、偏光子OQ
および検光子αυおよびファラデー素子(9)を一体化
する。
Hereinafter, a description will be given of FIG. 2 in which an embodiment of the present invention is applied to a magneto-optical field measuring device. In Figure 2, (1) is a light source, (2) is an optical fiber, (3) is a light sensor, and (4) is a light source.
(4") is a microlens, and (9) is an optical Faraday element which is a sensing element with a built-in polarizer and analyzer. 8th
The figure shows the details of this optical Faraday element, where Moe is a polarizer using a multilayer film as an interference film, and 0υ is an interference 12
.. This represents an analyzer using a thin multilayer film. That is, and fL
For the polarizer O0 and analyzer Ov, a lead glass Faraday element is cut into a predetermined shape, a film is formed on the part by vapor deposition, etc., and the cut part is covered with lead glass again.
and an analyzer αυ and a Faraday element (9) are integrated.

次に第2図および第8図によりこの発明の動作について
説明する。
Next, the operation of the present invention will be explained with reference to FIGS. 2 and 8.

第2図および第8図において、光# (1)からの出射
光は、光ファイバ(2)内に結合され、光磁界センサ(
3)内に導びかれる。光センサ(3)では、まずマイク
ロレンズ(4)によって平行ビームに変換され、偏光子
QOによって一方向の電界成分のみ取シ出される。すな
わち、偏光子01からの出射光は直線偏光となる。磁場
を加えられたファラデー素子(9)内を光が伝搬すると
、光の偏光面が、次式のように回転する。
2 and 8, the output light from light # (1) is coupled into the optical fiber (2) and the optical magnetic field sensor (
3) Be guided within. In the optical sensor (3), the beam is first converted into a parallel beam by the microlens (4), and only the electric field component in one direction is extracted by the polarizer QO. That is, the light emitted from the polarizer 01 becomes linearly polarized light. When light propagates within the Faraday element (9) to which a magnetic field is applied, the plane of polarization of the light rotates as shown in the following equation.

ΔX=VIH(1) (1)式において、ΔXは偏光面の回転角、■は光ファ
ラデー素子向有のベエルデ定数、lは光路長、Hは外部
磁界を表わす。検光子aυは、偏光子Qlと同様の機能
を有するものであるが、通過電界方向が回転さnている
。すなわち、ファラデー素子(9)からの出力光は、検
光子0υによって光強度変調に変換さ口る。検光子出力
は、マイクロレンズ(4′)によって、出力用光ファイ
バ(2)のコア面に集光され、光ファイバを通シ受光器
(8)に導ひかれる。この受光器で光/電気変換さnた
電気信号から、光フアラデー素子内での偏光面の回転角
ΔX、すなわち、磁界Hを知ることができる。
ΔX=VIH (1) In the equation (1), ΔX is the rotation angle of the plane of polarization, ■ is Beherde's constant for optical Faraday elements, l is the optical path length, and H is the external magnetic field. The analyzer aυ has the same function as the polarizer Ql, but the direction of the passing electric field is rotated. That is, the output light from the Faraday element (9) is converted into light intensity modulation by the analyzer 0υ. The analyzer output is focused by a microlens (4') onto the core surface of an output optical fiber (2), and guided through the optical fiber to a light receiver (8). The rotation angle ΔX of the plane of polarization within the optical faraday element, that is, the magnetic field H can be determined from the electrical signal converted from light to electricity by this light receiver.

この発明では、第8図に示すように、偏検光子は多層膜
等を用いて光フアラデー素子内に作られているので、光
磁界センサの感度が向上する。今、従来例での光磁界セ
ンサにおいて、方解石等を用いた偏検光子の光路長をI
P、光ファラデー素子の光路長を/Fとすると、従来の
センサに対してこの発明のセンサの感度の向上率ηは、
lp+ly η;α□         (2) p で近似さnる。αは、4M検光子、光フアラデー素子間
で生じる反射損失がなくなる効果による感度の向上を表
わし、α〉lである。例えば、1p−2txa。
In this invention, as shown in FIG. 8, the polarizing analyzer is fabricated within the optical faraday element using a multilayer film or the like, so that the sensitivity of the optical magnetic field sensor is improved. Now, in the conventional optical magnetic field sensor, the optical path length of the polarized analyzer using calcite etc. is I
P, and the optical path length of the optical Faraday element is /F, then the sensitivity improvement rate η of the sensor of the present invention compared to the conventional sensor is:
lp+ly η;α□ (2) Approximate by p. α represents the improvement in sensitivity due to the effect of eliminating reflection loss occurring between the 4M analyzer and the optical faraday element, and α>l. For example, 1p-2txa.

jy−1am、axl、2とすれは、η=1.8となる
jy-1am, axl, 2, η=1.8.

なお、上記実施例では、光磁界センサ、およびその応用
計測装置について述べたが、これらはもちろん電流計測
にも適用できる。
In the above embodiments, a magneto-optical field sensor and an applied measurement device thereof have been described, but these can of course also be applied to current measurement.

また、上記実施例では、光ファラデー素子を用いた光磁
界センサ、光計測装置について述べたが、偏光子、検光
子またはその両方を用いたセンサおよびその応用装置で
は、どのようなものにも適用できる。例えば、従来と同
様LiNbO3やBi128102o等のポッケルス効
果を用いた光電圧、電界センサ。
In addition, in the above embodiments, an optical magnetic field sensor and an optical measurement device using an optical Faraday element were described, but it can also be applied to any sensor using a polarizer, an analyzer, or both, and their applied devices. can. For example, photovoltage and electric field sensors using the Pockels effect of LiNbO3, Bi128102o, etc. as in the past.

またテルルガラスやエポキシ樹脂の有する光弾性効果を
用いた光加速度、圧力、歪センサ等にも適用できる。
It can also be applied to optical acceleration, pressure, strain sensors, etc. that utilize the photoelastic effect of tellurium glass or epoxy resin.

さらに、上記実施例では、光フアラデー素子内で光が直
進するセンサについて述べたが、第4図のように光を反
射させたシすることによシセンサを小型化することもで
きる。第4図に2いて、亜は反射金鵬膜である。
Further, in the above embodiment, a sensor in which light travels straight within the optical faraday element has been described, but the sensor can also be miniaturized by reflecting the light as shown in FIG. In Fig. 4, 2 indicates a reflective gold film.

1123、上記実施例で、よ偏検光子門光、ア5 f 
−系子等内に内蔵した光センサについて述べたが、これ
は、計測装置のみならず光アイソレータ、光サーキュレ
ータ等偏検光子を必要とする光テパイスにも適用できる
1123, in the above example, the polarized analyzer gate light, A5 f
- Although the optical sensor built into the system has been described, this can be applied not only to measuring devices but also to optical devices such as optical isolators and optical circulators that require polarized analyzers.

以上のように、この発明によれば光偏光子、検光子を光
ファラデー素子、ポッケルス素子、光弾性効果素子等の
感知素子内に形成しているので、光センサの感度が向上
し、また各光部品が一体化さ口たことによる信頼性の向
上、光センサの小型化がなさnる効果がある。
As described above, according to the present invention, a light polarizer and an analyzer are formed within a sensing element such as an optical Faraday element, a Pockels element, or a photoelastic effect element, so that the sensitivity of the optical sensor is improved and each This has the effect of improving reliability due to the integration of optical components and reducing the size of the optical sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光センサを用いた磁界計測装置の概略図
、第2図はこの発明の光センサを用いた光磁界計測装璽
の概略図、第8図はこの発明の一実施例を示す光センサ
の詳細図、第4図はこの発明の他の実施例による光セン
サの構成図である。 図において、(1)は光源、(2)は光ファイバ、(3
)は光センサ、(4) (4’ )はマイクロレンズ、
(8)は受光器、(9)は偏恢光子を内蔵した感知素子
である光ファラデー素子、0Qは多−膜を用いた偏光子
、OIJは多層膜を用いた検光子、(2)は反射金k1
4展でおる。 なお、図中、同一符号は同一、又は相当部分を示す。 千゛続補正書(Iii発) 特許庁長官殿 1、事件(7)表示    特願昭Be−16225’
2号2、発明の名称   光センサ 3、補正をする者 明細書の特許請求の範囲および発明の詳細な説明の欄 6、補正の内容 (1)明細書の特許請求の範囲を別紙の通シ訂正する。 (2)同第2頁第16行に「が偏向される」とあるのな
「の偏向状態を変化させる」と訂正する。 (3)同第3頁第14行に「電流」とあるのを「電界」
と訂正する。 7、添付11類の目録 (1)訂正後の特許請求の範囲を記載した書面1通 以上 特許請求の範囲 (1)偏光子と光を伝搬すると共に周囲媒体によって光
の偏向状態を変化させる感知素子と検光子とからなる光
センサにおいて、上記感知素子の中に偏光子及び検光子
を多層膜によシ形成し、偏光子と検光子と感知素子を一
体化したことを特徴とする光センサ。 (2)感知素子は光ファラデー素子によって構成された
ことを特徴とする特許請求の範囲第1項記載の光センサ
。 (3)感知素子はポッケルス素子によって構成されたこ
とを特徴とする特許請求の範囲第1項記載の光センサ− (4)感知素子は光弾性効果素子によって構成されたこ
とを特徴とする特許請求の範囲第1項記載の光センサ。 (6)感知素子はその中を伝搬する光が反射するように
構成したことを特徴とする特許請求の範囲第1項記載の
光センサ。 (6)偏光子および検光子は光ファイバを通じて光に記
載の光センサ。 (7)光7アラデー素子内での回転角が45@となるよ
うな一定外部磁界を加えて光アイソレータとした特ff
ltM求の範囲第2項記載の光センサ。
Fig. 1 is a schematic diagram of a magnetic field measuring device using a conventional optical sensor, Fig. 2 is a schematic diagram of an optical magnetic field measuring device using an optical sensor of the present invention, and Fig. 8 is a schematic diagram of an optical magnetic field measuring device using an optical sensor of the present invention. FIG. 4 is a detailed view of the optical sensor shown in FIG. 4, which is a configuration diagram of an optical sensor according to another embodiment of the present invention. In the figure, (1) is a light source, (2) is an optical fiber, and (3) is a light source.
) is an optical sensor, (4) (4') is a microlens,
(8) is a light receiver, (9) is an optical Faraday element which is a sensing element with a built-in polarized photon, 0Q is a polarizer using a multi-layer film, OIJ is an analyzer using a multi-layer film, and (2) is an optical Faraday element that is a sensing element with a built-in polarized photon. reflective gold k1
There will be 4 exhibitions. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Thousand-Continued Amendment (from III) Director General of the Patent Office 1, Case (7) Display Patent Application Sho Be-16225'
No. 2 2. Title of the invention Optical sensor 3. Person making the amendment Claims of the specification and detailed description of the invention column 6. Contents of the amendment (1) Claims of the specification should be submitted in the attached document. correct. (2) On page 2, line 16, the phrase ``is deflected'' should be corrected to ``change the deflection state of.'' (3) In the 14th line of page 3, replace "current" with "electric field"
I am corrected. 7. Attachment Catalog of Class 11 (1) One or more documents stating the amended scope of claims Claims (1) Polarizer and sensing that propagates light and changes the polarization state of light by surrounding medium An optical sensor comprising an element and an analyzer, characterized in that a polarizer and an analyzer are formed in a multilayer film in the sensing element, and the polarizer, analyzer, and sensing element are integrated. . (2) The optical sensor according to claim 1, wherein the sensing element is constituted by an optical Faraday element. (3) The optical sensor according to claim 1, characterized in that the sensing element is constituted by a Pockels element. (4) Claim, characterized in that the sensing element is constituted by a photoelastic effect element. The optical sensor according to item 1. (6) The optical sensor according to claim 1, wherein the sensing element is configured so that light propagating therein is reflected. (6) Polarizer and analyzer are optical sensors that transmit light through optical fibers. (7) Optical isolator created by applying a constant external magnetic field such that the rotation angle within the optical 7 Alladay element is 45@
The optical sensor according to item 2 of the range of ltM requirements.

Claims (7)

【特許請求の範囲】[Claims] (1)偏光子と光を伝搬すると共に周囲媒体によって光
を偏向する感知素子と検光子とからなる光センサにおい
て、上記感知素子の中に偏光子及び検光子を多層膜によ
り形成し、偏光子と検□光子と感知素子を一体化したこ
とを特徴とする光センサ。
(1) In an optical sensor consisting of a polarizer, a sensing element that propagates light and deflects the light by a surrounding medium, and an analyzer, the polarizer and analyzer are formed in the sensing element by a multilayer film, and the polarizer An optical sensor characterized by integrating photons and a sensing element.
(2)感知素子は光ファラデー素子によって構成された
ことを特徴とする特許請求の範囲第1項記載の光センサ
(2) The optical sensor according to claim 1, wherein the sensing element is constituted by an optical Faraday element.
(3)感知素子はポッケルス素子によって構成されたこ
とを特徴とする特許請求の範囲第1項記載の光センサ。
(3) The optical sensor according to claim 1, wherein the sensing element is constituted by a Pockels element.
(4)感知素子は光弾性効果素子によって構成されたこ
とを特徴とする特許請求の範囲第1項記−の光センサ。
(4) The optical sensor according to claim 1, wherein the sensing element is constituted by a photoelastic effect element.
(5)感知素子はその中を伝搬する光が反射する上うに
構成してなる特許請求の範囲第1項記載の光センサ。
(5) The optical sensor according to claim 1, wherein the sensing element is configured so that light propagating therein is reflected.
(6)偏光子および検光子は光ファイバを通じて光源よ
シス光および受光器へ出光するようにさ口てなる特許請
求の範囲第1項乃至第6項のいずれかに記載の光センサ
(6) The optical sensor according to any one of claims 1 to 6, wherein the polarizer and the analyzer are arranged so as to emit cis light from the light source and the light receiver through an optical fiber.
(7)光フアラデー素子内での回転角が45°となるよ
べな一定外部磁界を加えて光アイソレータとした特許請
求の範囲第2項記載の光センサ。
(7) The optical sensor according to claim 2, which is made into an optical isolator by applying a constant external magnetic field such that the rotation angle within the optical faraday element is 45 degrees.
JP16225281A 1981-10-12 1981-10-12 Photosensor Granted JPS5862530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16225281A JPS5862530A (en) 1981-10-12 1981-10-12 Photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16225281A JPS5862530A (en) 1981-10-12 1981-10-12 Photosensor

Publications (2)

Publication Number Publication Date
JPS5862530A true JPS5862530A (en) 1983-04-14
JPS6161612B2 JPS6161612B2 (en) 1986-12-26

Family

ID=15750890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16225281A Granted JPS5862530A (en) 1981-10-12 1981-10-12 Photosensor

Country Status (1)

Country Link
JP (1) JPS5862530A (en)

Also Published As

Publication number Publication date
JPS6161612B2 (en) 1986-12-26

Similar Documents

Publication Publication Date Title
US4584470A (en) Single-polarization fiber optics magnetic sensor
US4970385A (en) Temperature measuring device utilizing birefringence in photoelectric element
JPH0475470B2 (en)
US4612500A (en) Temperature stabilized Faraday rotator current sensor by thermal mechanical means
JPH07501888A (en) Photovoltage and electric field sensor based on Pockels effect
CN110187525B (en) Electro-optic phase modulator with low residual amplitude modulation
US5059894A (en) Electro-optic voltage measuring appartaus with single ended optics
JPS5862530A (en) Photosensor
JP3489701B2 (en) Electric signal measuring device
JPH02173518A (en) Optical fiber rotational angular velocity sensor
CN1292272C (en) Method for structuring feedback delay of optical fiber line and full light fiber white light interference system made thereof
JP3049190B2 (en) Electric field sensor device
US6404503B1 (en) Apparatus with a retracing optical circuit for the measurement of physical quantities having high rejection of environmental noise
JPS58140716A (en) Magnetic field-light transducer
JPS58146858A (en) Optical current and magnetic field measuring device
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
CN113341236B (en) Polarization maintaining fiber coupling type electrooptical crystal electric field sensor
JPS60263866A (en) Optical electric field sensor
JP3516174B2 (en) Physical quantity detector
JP3355502B2 (en) Electric field sensor
JPH09274056A (en) Current measuring device for optical fiber
JPS6398568A (en) Optical potential device
JPS6135940Y2 (en)
JPH04355323A (en) Optical fiber sensor
JPH1065189A (en) Photodetector