JPS5861566A - Production method of lattice for lead storage battery - Google Patents

Production method of lattice for lead storage battery

Info

Publication number
JPS5861566A
JPS5861566A JP56159782A JP15978281A JPS5861566A JP S5861566 A JPS5861566 A JP S5861566A JP 56159782 A JP56159782 A JP 56159782A JP 15978281 A JP15978281 A JP 15978281A JP S5861566 A JPS5861566 A JP S5861566A
Authority
JP
Japan
Prior art keywords
lead
lattice structure
lattice
synthetic resin
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56159782A
Other languages
Japanese (ja)
Other versions
JPS6050035B2 (en
Inventor
Sadao Furuya
定男 古屋
Kenji Kobayashi
健二 小林
Yoichi Kikuchi
洋一 菊地
Tetsushige Kawase
川瀬 哲成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56159782A priority Critical patent/JPS6050035B2/en
Publication of JPS5861566A publication Critical patent/JPS5861566A/en
Publication of JPS6050035B2 publication Critical patent/JPS6050035B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a close contact with an active material and to improve the productivity by immersing a lattice structure made of a synthetic resin with a cross section of a circular shape in melted lead so as to form a thin lead film on the surface of the lattice structure. CONSTITUTION:A lattice structure 1 is formed with a thermo plastic and thermosetting resin material such as polypropylene, and its cross section is made a circular shape or oval shape. This lattice structure 1 is immersed in a melted lead alloy controlled at the temperature of about 335 deg.C for about 0.3sec, then it is quickly taken out so that a thin lead film 2 with the thickness of about 200mu is uniformly stuck on the surface of the lattice structure 1. Accordingly, the synthetic resin material gets into a close contact with the thin lead film 2 and the strength of the lattice can be increased, and also the corrosion of the lead proceeds uniformly, thereby the life performance can be improved and the production process can be simplified.

Description

【発明の詳細な説明】 本発明は、鉛蓄電池に使用される格子の改良に“関する
もので、合成樹脂よシなる格子構造体を溶融鉛合金に浸
漬しすばやく引き上げることによって合成樹脂の周囲に
鉛の薄膜を付着させて格子体とする方法において、合成
樹脂の格子構造体形状を鉛の薄膜が付着しやすく改良す
ることによって、性能信頼性および生産性の向上を図る
ことを目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the improvement of lattices used in lead-acid batteries, in which a lattice structure made of synthetic resin is immersed in molten lead alloy and quickly pulled up. The purpose of this method is to improve performance reliability and productivity by improving the shape of the synthetic resin lattice structure to make it easier for the lead thin film to adhere to the grid structure by attaching a lead thin film. It is.

鉛蓄電池の軽量化は、自動車用では燃費の向上、器用に
あっては持ち運び易さのため、今日ではその要望が極め
て大きい。
Reducing the weight of lead-acid batteries is in great demand today because it improves fuel efficiency for automobiles and makes them easier to carry.

しかし、通常鉛蓄電池の格子は鉛合金を鋳造することに
よって製造される。この鉛の比重は11.3と重く、し
かも1配以下の厚みで鋳造することは困難であり、鋳造
格子を軽量化することには一定の限界があった。
However, lead-acid battery grids are typically manufactured by casting lead alloys. This lead has a heavy specific gravity of 11.3, and it is difficult to cast it to a thickness of less than 1 inch, so there is a certain limit to reducing the weight of a cast grid.

格子体の主たる役割は、■ 充放電時の導電体、■ 活
物質の保持、■ 極板としての機械的強度の確保にあり
、■の部分にのみ鉛を使用して、■。
The main role of the lattice body is to ■ act as a conductor during charging and discharging, ■ hold the active material, and ■ ensure mechanical strength as an electrode plate.

■の役割を他の比重の低い材料、例えば鉛の約イの比重
である合成樹脂を使用する、いわゆる鉛合金−合成樹脂
複合格手体が考えられてきた。
A so-called lead alloy-synthetic resin composite grating body has been considered in which the role of (2) is replaced by another material with a low specific gravity, such as a synthetic resin whose specific gravity is approximately A that of lead.

例えば、導電性が必要な部分をあらかじめ鉛合金で鋳造
し、その後これを合成樹脂の成型金型に挿入して合成樹
脂を流し込んで一体化し格子体をつくる方法が提案され
ている。
For example, a method has been proposed in which the parts that require electrical conductivity are cast in advance from a lead alloy, which is then inserted into a synthetic resin mold, and the synthetic resin is poured in to integrate the parts to form a grid.

また、合成樹脂の格子体と鉛合金製有孔板とを積層接着
して格子体をつくる方法も知られている。
Also known is a method of making a grid by laminating and bonding a synthetic resin grid and a lead alloy perforated plate.

しかし、これらはいずれも製造工程および取扱いが複雑
となるために生産性が悪く、コスト高となる欠点があっ
た。
However, all of these have the drawbacks of poor productivity and high cost due to complicated manufacturing processes and handling.

本発明は、合成樹脂よりなる格子構造体を溶融鉛又は鉛
合金に浸漬し、すばやく引き上げるか、あるいは合成樹
脂体に溶融鉛を流し掛けて合成樹脂体に鉛の薄膜を形成
したものである。この方法では、製造工程が簡易化され
、連続的に格子体を製造することも′可能なので、格子
体の生産性が著しく向上する。
In the present invention, a lattice structure made of synthetic resin is immersed in molten lead or a lead alloy and quickly pulled up, or molten lead is poured onto the synthetic resin body to form a thin lead film on the synthetic resin body. In this method, the manufacturing process is simplified and it is also possible to continuously manufacture the lattice body, so that the productivity of the lattice body is significantly improved.

さらに、格子体周囲が鉛合金で覆われ、活物質との密着
が良く、活物質が脱落しにくくなるので、電池組立も容
易になり、電池の性能を向上することができる。
Furthermore, the periphery of the lattice body is covered with a lead alloy, which has good adhesion to the active material, making it difficult for the active material to fall off, making it easier to assemble the battery and improving the performance of the battery.

しかし第1図に示す枠骨1aは四角形、内部の活物質支
持骨1bは三角形の断面形状をもった従来の鋳造格子と
同形状の合成樹脂からなる格子構造体1を溶融鉛中に浸
漬しすばやく引上ることにより製造した格子体は、鉛の
薄膜aが角部すではがれやすく、かつ均一な厚みに被覆
できないという欠点があった。
However, the frame frame 1a shown in FIG. 1 is square, and the internal active material supporting frame 1b has a triangular cross-section.A grid structure 1 made of synthetic resin having the same shape as a conventional cast grid is immersed in molten lead. The lattice body manufactured by quickly pulling up had the disadvantage that the lead thin film a easily peeled off at the corners and could not be coated with a uniform thickness.

本発明の鉛蓄電池用船−介成樹脂複合格子体は、断面形
状を楕円9円形などのまるみを持たせた合成樹脂からな
る格子構造体′を溶融した鉛又は鉛合金に浸漬するか、
あるいは溶融鉛などを上から流し掛けることにより表面
に均一な薄膜を形成したものであする。
The lead-acid battery ship/intermediate resin composite lattice of the present invention is obtained by immersing a lattice structure made of synthetic resin with a rounded cross-sectional shape such as an ellipse in molten lead or a lead alloy;
Alternatively, a uniform thin film is formed on the surface by pouring molten lead or the like from above.

以下実施例により本発明の内容を詳述する。The content of the present invention will be explained in detail below using examples.

第2図の合成樹脂からなる格子構造体1は、ポリプロピ
レン、ポリエチレン、ポリ塩化ビニール。
The lattice structure 1 made of synthetic resin shown in FIG. 2 is made of polypropylene, polyethylene, or polyvinyl chloride.

ABS、As、  フェノール樹脂等の熱可塑性、熱硬
化性樹脂材料によってつくられ、その断面形状は円形も
しくは楕円形とする。円形にすることが一般には望まし
いが、極板の厚みが厚いものや機械的強度を高く望む場
合には楕円形を活用すると効果的である。
It is made of thermoplastic or thermosetting resin material such as ABS, As, or phenol resin, and its cross-sectional shape is circular or oval. Although it is generally desirable to have a circular shape, it is effective to use an elliptical shape when the electrode plate is thick or high mechanical strength is desired.

このような断面形状とした合成樹脂の格子構造。A synthetic resin lattice structure with such a cross-sectional shape.

体を約335℃に温度コ、ントロールされた溶解鉛合金
に約0.3秒浸漬し、その後すばやく引上げることによ
って、約200μの厚さの鉛薄膜2を格子構造体1の表
面に均一に付着させること力(できる。
A thin lead film 2 with a thickness of about 200μ is uniformly spread on the surface of the lattice structure 1 by immersing the body in a molten lead alloy whose temperature is controlled at about 335°C for about 0.3 seconds and then quickly pulling it up. Adhering force (can be used)

上記あ条件で、四角形、三角形の断面形状をもつ従来の
格子と本発明の円形断面をもつものとを処理した結果、
角部をもつ従来品は第1図りのp口く、格子周囲に均一
な厚みで鉛が付着せずに、806部では厚く、b部では
薄くなる形で付着する。
Under the above conditions, as a result of processing the conventional lattice with a square or triangular cross-sectional shape and the one with a circular cross-section of the present invention,
In the conventional product having corners, lead does not adhere to the periphery of the lattice with a uniform thickness as shown in the first drawing, but is thicker at the 806th part and thinner at the b part.

さらに第3図に示すように格子構造体を一辺2咽の正方
形断面とし、溶融鉛温度、浸漬時間を変えた場合、鉛の
付着範囲条件Aでは格子構造体の表面全体に鉛が付着す
るが、Bの条件では第1図りのようにb部に鉛の膜をつ
くることは不可前ヒとなる。
Furthermore, as shown in Figure 3, when the lattice structure has a square cross section with two sides on each side and the molten lead temperature and immersion time are varied, lead will adhere to the entire surface of the lattice structure under lead adhesion range condition A. Under conditions B, it is impossible to form a lead film on portion b as shown in the first diagram.

合成樹脂からなる格子構造体に鉛の薄膜を形成する原理
は、浸漬する合成樹脂が鉛の融点よりも低いため、合成
樹脂を溶融鉛に浸漬すると合成樹脂に熱をうばわれ、周
囲の溶解鉛が瞬間的に凝固する。その時にすばやぐ引上
げることによって鉛の薄膜が形成される。そのため長時
間浸した場合には合成樹脂が溶けるぜかりでなく、一度
凝固し6.5 。
The principle behind forming a thin lead film on a lattice structure made of synthetic resin is that the synthetic resin being immersed in it has a lower melting point than the lead, so when the synthetic resin is immersed in molten lead, the heat is absorbed by the synthetic resin and the surrounding molten lead is absorbed. solidifies instantly. A thin film of lead is then formed by rapid pulling. Therefore, when soaked for a long time, the synthetic resin does not melt, but solidifies once.

た鉛は周囲の溶解鉛によって融点以上になって再び溶解
するため鉛の薄膜を付着することはできない。
It is not possible to attach a thin film of lead because the surrounding molten lead will raise the temperature above the melting point and melt again.

格子構造体の断面形状に角部がある場合、角部すは辺部
aに比べて溶解鉛に付着した時に合成樹脂格子構造体周
辺の鉛の失う熱量は少ないため、付着する鉛の薄膜の厚
さは薄くなるとともに、容易に周囲の溶融鉛により再溶
解するため第1図りのようになる。
If there are corners in the cross-sectional shape of the lattice structure, the lead around the synthetic resin lattice structure loses less heat when attached to molten lead at the corner than at the side a, so the thin film of lead that adheres to the corner loses less heat. As the thickness becomes thinner, it is easily remelted by the surrounding molten lead, resulting in the shape shown in the first diagram.

したがって、構造条件の管理、製造工程での鉛の薄膜の
はがれ、および鉛の薄膜が切れることによって導電性が
なくなるとともに、厚みも均一にならないという欠点が
あった。
Therefore, due to control of structural conditions, peeling off of the lead thin film during the manufacturing process, and breakage of the lead thin film, there are disadvantages in that conductivity is lost and the thickness is not uniform.

本発明では第2図の如く格子構造体の断面形状が円形ま
たは楕円形のため、均一み厚みが全体に得られると共に
部分的熱量差がないため、直径2岨の円形の場合、第4
図Aに示す如く鉛の付着範囲条件が拡大することとなり
、製造条件の管理に幅ができ、工程中に鉛の薄膜がはか
れることがなくなり、信頼性、生産性の向上が図れた。
In the present invention, since the cross-sectional shape of the lattice structure is circular or elliptical as shown in FIG.
As shown in Figure A, the range of lead adhesion conditions has been expanded, allowing greater control over manufacturing conditions, eliminating the need for a thin lead film to form during the process, and improving reliability and productivity.

また、合戚′樹脂からなる格子構造体が冷却収縮する前
に、鉛の冷却収縮が行なわれるため、合成樹脂体と鉛の
薄膜の密着性が良くなり、格子体の強度が増加すると共
に、鉛の腐食が均一に進むため寿命性能が向上した。以
上のように本発明は簡単な構造で価値の高いものである
In addition, since the lead is cooled and shrunk before the lattice structure made of synthetic resin is cooled and shrunk, the adhesion between the synthetic resin body and the lead thin film is improved, and the strength of the lattice body is increased. The life performance has been improved because lead corrosion progresses evenly. As described above, the present invention has a simple structure and high value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の合成樹脂からなる格子構造体を示しAは
その正面図、BはAのイー口に沿った断面図、Cは溶融
鉛に浸漬した後の断面図、Dは高温の溶融鉛に浸漬処理
された断面図であり、第2図は本発明の実施例における
合成樹脂からなる格子構造体を示しAは正面図、BはA
のイー口に沿った断面図、Cは溶融鉛に浸漬した後の断
面図、第3図、第4図は鉛薄膜を形成する溶融鉛温度と
浸漬時間との関係図を示す。 1・・・・・・合成樹脂からなる格子構造体、1a・・
・・・・・枠骨、1b・・・・・・活物質支持骨、2・
・・・・・鉛又は鉛合金薄膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 @3図 子伊飄t@逼戸【 (・C) 第4図 己賽融嘱iを漏洩(’C)
Figure 1 shows a conventional lattice structure made of synthetic resin; A is its front view, B is a cross-sectional view along the E-port of A, C is a cross-sectional view after being immersed in molten lead, and D is a high-temperature molten FIG. 2 is a cross-sectional view of a lattice structure made of synthetic resin according to an embodiment of the present invention, and A is a front view, and B is a cross-sectional view after being immersed in lead.
C is a sectional view taken along the E inlet, C is a sectional view after being immersed in molten lead, and FIGS. 3 and 4 are diagrams showing the relationship between molten lead temperature and immersion time to form a lead thin film. 1... Lattice structure made of synthetic resin, 1a...
...Frame bone, 1b...Active material supporting bone, 2.
...Lead or lead alloy thin film. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure @ 3 Figure Izuku t @ Tsuruto [ (・C) Figure 4 leaked personal information ('C)

Claims (1)

【特許請求の範囲】[Claims] に浸漬するか、あるいけ前記溶融体を上から流し掛けて
格子構造体の表面に鉛又は鉛合金の薄膜を形成すること
を特徴とした鉛蓄電池用格子体の製造法。
1. A method for producing a lead-acid battery lattice, which comprises forming a thin film of lead or lead alloy on the surface of the lattice structure by immersing it in water or by pouring the molten material from above.
JP56159782A 1981-10-06 1981-10-06 Method for manufacturing grids for lead-acid batteries Expired JPS6050035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159782A JPS6050035B2 (en) 1981-10-06 1981-10-06 Method for manufacturing grids for lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159782A JPS6050035B2 (en) 1981-10-06 1981-10-06 Method for manufacturing grids for lead-acid batteries

Publications (2)

Publication Number Publication Date
JPS5861566A true JPS5861566A (en) 1983-04-12
JPS6050035B2 JPS6050035B2 (en) 1985-11-06

Family

ID=15701145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159782A Expired JPS6050035B2 (en) 1981-10-06 1981-10-06 Method for manufacturing grids for lead-acid batteries

Country Status (1)

Country Link
JP (1) JPS6050035B2 (en)

Also Published As

Publication number Publication date
JPS6050035B2 (en) 1985-11-06

Similar Documents

Publication Publication Date Title
EP0076626A1 (en) Grid for lead storage battery and method for its production
JPS5861566A (en) Production method of lattice for lead storage battery
JPH1027616A (en) Lead-acid battery with erosion resistant electrode structure and its manufacture
JPS6151383B2 (en)
JP3474487B2 (en) Electrodeposited drum for manufacturing porous metal foil
JPS5864762A (en) Lead accumulator
JPH0318306B2 (en)
JPS58123863A (en) Manufacture of grid for lead storage battery
JPS5859561A (en) Manufacturing method for grid of lead storage battery
JPH0148611B2 (en)
JPH0139633B2 (en)
JP2001093530A (en) Lattice for lead storage battery and storage battery
JPS58126672A (en) Manufacture of grid for lead-acid battery
JPS62243246A (en) Strap connecting method for plate group of lead-acid battery
JPS6369147A (en) Manufacture of grid for lead-acid battery
JPH09192820A (en) Production of hybrid lead battery
JP2765222B2 (en) Manufacturing method of lithium battery
JPS6325461B2 (en)
JPH01241410A (en) Method for manufacturing electrocasting mold
JPS63245854A (en) Process for manufacturing electrode group for lead storage battery
JPH04294845A (en) Method for continuously casting plate base body for battery
JPH01115607A (en) Manufacture of electroformed mold
JPH01115608A (en) Manufacture of electroformed mold
JPS5996657A (en) Lattice structure for lead storage battery
JPH02310327A (en) Manufacture of lithium alloy for lithium secondary battery