JPS5861512A - Movable high frequency coaxial cable - Google Patents

Movable high frequency coaxial cable

Info

Publication number
JPS5861512A
JPS5861512A JP16116081A JP16116081A JPS5861512A JP S5861512 A JPS5861512 A JP S5861512A JP 16116081 A JP16116081 A JP 16116081A JP 16116081 A JP16116081 A JP 16116081A JP S5861512 A JPS5861512 A JP S5861512A
Authority
JP
Japan
Prior art keywords
coaxial cable
wire
frequency coaxial
flexibility
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16116081A
Other languages
Japanese (ja)
Other versions
JPH0145683B2 (en
Inventor
田辺 完一
和田 昭司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyuugoku Densen Kogyo Kk
Original Assignee
Chiyuugoku Densen Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyuugoku Densen Kogyo Kk filed Critical Chiyuugoku Densen Kogyo Kk
Priority to JP16116081A priority Critical patent/JPS5861512A/en
Publication of JPS5861512A publication Critical patent/JPS5861512A/en
Publication of JPH0145683B2 publication Critical patent/JPH0145683B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Communication Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ツ? 本発明は新規な移動用高周波間  関する。[Detailed description of the invention] tsu? The present invention relates to a novel mobile high frequency transmission.

さらに詳しくは、耐屈曲性および可撓性にすぐれた移動
用高周波同軸ケーブルに関する・近時、遠隔監視用の工
業用テレビの普及はめざましいものがあり、種々の工業
用テレビが市販されている。かかる工業用テレビは、通
常テレビカメラなどの検出部と受像機などの監視部とを
高周波同軸ケーブルで連結し、情報が検出部から監視部
へと伝送される。
More specifically, the present invention relates to a mobile high-frequency coaxial cable with excellent bending resistance and flexibility.Recently, industrial televisions for remote monitoring have become widespread, and various industrial televisions are commercially available. In such industrial televisions, a detection section such as a television camera and a monitoring section such as a receiver are usually connected through a high frequency coaxial cable, and information is transmitted from the detection section to the monitoring section.

前記高周波同軸ケーブルとしては、検出部の位置が固宇
されているばあいには、Jより O;6501に規宏さ
れているように、軟銅線またはこれを撚り合わせたもの
からなる内部導体の外周上に絶縁体としてポリエチレン
を同心円状に被覆し、さらに軟#74線の編組およびポ
リ塩化ビニルのシースを順次同心円状に施して形成され
る同軸ケーブルが採用されている。
In the case where the position of the detection part is fixed, the high frequency coaxial cable may have an outer periphery of an inner conductor made of annealed copper wire or twisted copper wire, as specified in J.O.6501. A coaxial cable is used, which is formed by concentrically covering polyethylene as an insulator, and then sequentially concentrically applying a braid of soft #74 wire and a polyvinyl chloride sheath.

しかしながら、検出部のテレビカメラを機械の可動部分
に取りつけて用いるばあい、たとえばテレビカメラを工
場内の走行うレーンや港湾におけるアン四−ダなどに取
りつけてそれらの積荷作業などを遠隔監視しようとする
ばあいには、走行うレーンやアンローダが広い範囲にね
りゃ繰り出しが行なわれ、あるいは撓みや屈曲が与えら
れることとなる。
However, if the TV camera of the detection unit is attached to a moving part of the machine, for example, it may be attached to a moving lane in a factory or an unloader at a port to remotely monitor loading operations. In such a case, the running lane or unloader will be rolled out over a wide range, or bent or bent.

また、最近では工業用テレビの新しい用途として、高層
ビルや高層住宅におけるエレベータ内での犯罪防止のた
めに、エレベータ内に監視用のテレビカメラを設置する
ことが強く望まれている。そのばあい、エレベータ内の
テレビカメラと管理室の受信機とを連結する高周波同軸
ケーブルはエレベータの絶え間ない昇降による激しい屈
曲や撓みに充分に耐えうるちのでなければならない。さ
らに産業用田ポッシなどにおいても、該四ボットの可動
部分にテレビカメラが設置されることがあり、このよう
なばあいにも高周波同軸ケーブルに耐屈曲性および可撓
性が必要とされる。
Recently, as a new use for industrial televisions, there has been a strong desire to install monitoring television cameras in elevators in order to prevent crime in elevators in high-rise buildings and high-rise residences. In that case, the high-frequency coaxial cable that connects the television camera in the elevator and the receiver in the control room must be able to withstand severe bending and bending due to the constant lifting and lowering of the elevator. Furthermore, even in industrial equipment, a television camera is sometimes installed on the movable part of the four-bot, and in such cases, the high frequency coaxial cable is also required to have bending resistance and flexibility.

しかるに、前述のごとき高周波同軸ケーブルは、耐屈曲
性や可撓性がわるく、前記のような用途には耐えること
ができないという欠点がある。
However, the above-mentioned high-frequency coaxial cable has a drawback in that it has poor bending resistance and flexibility, and cannot withstand the above-mentioned uses.

そこで、耐屈曲性を改善するため、内部導体を可撓撚線
とすることが考えられるが、それだけでは耐屈曲性はい
くぶん改善されるとしても、シースにポリ塩化ビニルな
どの熱可塑性樹脂を用いる限り、可撓性がわるく、とく
に温度が低いほど硬くなるので、取り扱いにくいという
欠点がある。
Therefore, in order to improve the bending resistance, it is possible to use a flexible stranded wire for the internal conductor, but even if this alone will improve the bending resistance somewhat, using a thermoplastic resin such as polyvinyl chloride for the sheath However, it has the disadvantage that it has poor flexibility and is difficult to handle, especially as it becomes harder at lower temperatures.

さらにシースをクロルプレンなどの合成ゴム部材で形成
することも考えられるが、このばあい通常の加硫温度(
約140〜150°O)では、シースの加硫時に、絶縁
体のポリエチレンが熱変形をおこすので、低温で長時間
をかけて加硫しなければならず、きわめて生産性がわる
く、高価になるという問題がある。
Furthermore, it is also possible to form the sheath with a synthetic rubber material such as chlorprene, but in this case, the normal vulcanization temperature (
(approximately 140 to 150 degrees O), the insulating polyethylene undergoes thermal deformation during vulcanization of the sheath, so vulcanization must be performed at low temperatures for a long time, resulting in extremely low productivity and high costs. There is a problem.

本発明は叙上の問題点を排除し、すぐれた伝送特性を有
し、しかも耐屈曲性および可撓性にすぐれた移動用高周
波同軸ケーブルを提供すべく完成されたものであって、
その要旨とするところは内部導体のまわりに、絶縁体層
、外部導体層およびシース層を順次設けた高周波同軸ケ
ーブルにおいて、内部導体が可1m撚線、絶縁体層がぎ
りオレフィン系熱可塑性エラストマー、外部導体層が金
属線編組、さらにシース層が合成ゴムからそれぞれなる
ことを特徴とする耐屈曲性、可撓性にすぐれた移動用高
周波同軸ケーブル(以下、同軸ケーブルという)にある
The present invention has been completed in order to eliminate the above-mentioned problems and provide a mobile high frequency coaxial cable that has excellent transmission characteristics, and has excellent bending resistance and flexibility.
The gist is that in a high-frequency coaxial cable in which an insulator layer, an outer conductor layer, and a sheath layer are sequentially provided around an inner conductor, the inner conductor is a 1 m stranded wire, the insulator layer is made of olefin thermoplastic elastomer, A mobile high-frequency coaxial cable (hereinafter referred to as coaxial cable) with excellent bending resistance and flexibility, characterized in that the outer conductor layer is made of metal wire braid and the sheath layer is made of synthetic rubber.

本発明の同軸ケーブルは、内部導体として、軟鋼細線ま
たは錫めっき軟鋼細線を補強線のまわりに撚り合わせる
か、あるいは補強線なしに撚り合わせた可撓撚線を用い
ると共に、シースに耐屈曲性と可撓性にすぐれた合成ゴ
ムを用い、しかも絶縁体には誘電率が小さく、絶縁性お
よび可撓性にすぐれたポリオレフィン系熱可盟性エラス
トマーを用いてしするので、ぼリエチレン絶縁の同軸ケ
ーブルとほぼ同様の伝送特性を有し、しかもすぐれた耐
屈曲性と可撓性とを有するものである。したがって、前
述のごとき走行うレーンやアンマーダのような移動機械
における遠隔監視はもとより、エレベータ内の遠隔監視
や産業用ロボットの機内配線などのように耐屈曲性や可
撓性がとくに要求される移動用の同軸ケーブルとして好
適に採用しうるという顕著な効果を賽する。
The coaxial cable of the present invention uses, as an internal conductor, a flexible stranded wire in which fine mild steel wires or thin tin-plated mild steel wires are twisted around reinforcing wires, or twisted without reinforcing wires, and the sheath has flexibility. Polyethylene-insulated coaxial cables are made of synthetic rubber with excellent flexibility, and the insulator is a thermoplastic polyolefin elastomer with a low dielectric constant and excellent insulation and flexibility. It has almost the same transmission characteristics as , and also has excellent bending resistance and flexibility. Therefore, in addition to remote monitoring of moving machines such as lanes and unmadas as mentioned above, it is also useful for remote monitoring of elevators and in-machine wiring of industrial robots, which require particularly high bending resistance and flexibility. It has the remarkable effect that it can be suitably employed as a coaxial cable for use in other applications.

さらに本発明の同軸ケーブルは絶縁体として用いるポリ
オレアイン系熱可塑性エラスジマーがそれ自体加硫を必
要とせず、しかも耐熱性にもすぐれているので、合成ゴ
ムシースを通常の加硫温度で加硫しても絶縁体が、熱変
形を生ずることがなく、安価に製造しうるという利点も
ある。
Furthermore, in the coaxial cable of the present invention, the polyolein thermoplastic elastomer used as the insulator does not require vulcanization itself and has excellent heat resistance, so even if the synthetic rubber sheath is vulcanized at normal vulcanization temperatures. Another advantage is that the insulator does not undergo thermal deformation and can be manufactured at low cost.

以下、図面を用いて本発、明の同軸ケーブルを説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS The coaxial cable of the present invention will be described below with reference to the drawings.

第1図において、(1)は内部導体であり、該内部導体
(1)は補強線αυと該補強線(ロ)のまわりに軟鋼細
線または錫めっき軟鋼細線を撚り合わせてなる撚線(ロ
)とからなる。
In Fig. 1, (1) is an internal conductor, and the internal conductor (1) is a twisted wire (ro) made by twisting thin mild steel wires or thin tin-plated mild steel wires around the reinforcing wire αυ and the reinforcing wire (b). ).

この内部導体(1)の外周上に同心円状に絶縁体層(2
)が被覆され、さらに外部導体層(8)およびシース層
(4)がこの順に絶縁体層(2)上に施されて同軸クー
プルがえられる。
An insulator layer (2) is placed concentrically on the outer periphery of this internal conductor (1).
) is coated, and further an outer conductor layer (8) and a sheath layer (4) are applied in this order on the insulator layer (2) to obtain a coaxial couple.

内部導体(1)における前記補強線(ロ)は撚線(ロ)
の有する耐屈曲性および可撓性を損わせることなく、内
部導体(1)に適度な引張強さを付与させるために設け
られるが、本発明における可撓撚線にはかかる補強線の
ないものもtllれる。補強線(ロ)としては1、たと
えばXX8 G 5502に規定されるピアノ線1.7
に511505に規定される歌鋼線やIXB Gる50
6に規定される硬鋼線に錫めり會もしくは亜鉛めっきを
施したもの、−・さらに7XB G4609に規定され
るステンレス鋼線などを撚り合わせたものが採用される
The reinforcing wire (b) in the internal conductor (1) is a twisted wire (b)
This reinforcing wire is provided in order to impart appropriate tensile strength to the inner conductor (1) without impairing its bending resistance and flexibility, but the flexible twisted wire in the present invention does not have such reinforcing wire. Things are also tll. The reinforcing wire (b) is 1, for example piano wire 1.7 specified in XX8 G 5502.
511505 and IXB Glu50
Hard steel wires specified in 6 are tin-plated or galvanized, and stainless steel wires stranded as specified in 7XB G4609 are used.

また前記細線(ロ)を形成する軟ll1III蒙重たは
錫めつき軟銅細線としては通常直径が0.18〜0.4
5論朧のものが用いられる。絶縁体中の成分による腐食
や変色防止の上から錫めりき軟鋼細線を用いるのが好ま
し□い。
In addition, the diameter of the thin soft copper wire or tinned annealed copper wire forming the thin wire (b) is usually 0.18 to 0.4.
5 Arrondissements are used. It is preferable to use tin-plated mild steel wire to prevent corrosion and discoloration caused by components in the insulator.

前記絶縁体層(2)はポリオレアイン系熱可塑性エラス
トマーを押出機により内部導体(1)上に押出して形成
される。
The insulating layer (2) is formed by extruding a polyolein thermoplastic elastomer onto the internal conductor (1) using an extruder.

熱可塑性エラストマーは一般に常温でゴム弾性を示し、
高温では可塑化されて態動し、通常の熱可塑性樹脂と同
様に押出成形などができる材料として宇義することがで
き、加硫工程を必要としないという利点を有する。lジ
オレフィン系熱可塑性エラストマーはかかる熱可塑性エ
ラストi−の利点を有すると共に、他の熱可塑性エラス
トマー(たとえばポリスチレン系、ポリウレタン系、ポ
リエステル系など)に比して電気特性(絶縁性)にすぐ
れ、その高い耐屈曲性および可撓性と相俟って移動用同
軸ケーブルの絶縁体素材として好適に採用しうるちので
ある。すなわちポリオレフィン系熱可塑性エラスジマー
は誘電率が従来絶縁体材料として用いられるプリエチレ
ンのそれとほぼ同等(A8TM D 15G、、1kl
lsで2.1〜2.3)であり、それゆえ通常の同軸ケ
ーブルの絶縁体層とほぼ同じ厚さで開部な低静電容量お
よび高特性インピーダンスがえられ、また減衰量におい
ても工業用テレビに用いられる程度の距離であれば充分
へ満足しうるちのである。したがって、本発明における
ぎジオレフィン系熱可塑性ニーラストマーは絶縁体材料
として用いるうえで、可撓性に加えてすぐれた電気特性
を有するので、きわめて好ましいものといえるのである
Thermoplastic elastomers generally exhibit rubber elasticity at room temperature,
It is plasticized and behaves at high temperatures, and can be used as a material for extrusion molding in the same way as ordinary thermoplastic resins, and has the advantage of not requiring a vulcanization process. Diolefin-based thermoplastic elastomers have the advantages of such thermoplastic elastomers, and have superior electrical properties (insulating properties) compared to other thermoplastic elastomers (e.g., polystyrene-based, polyurethane-based, polyester-based, etc.). Combined with its high bending resistance and flexibility, it is suitable for use as an insulator material for mobile coaxial cables. In other words, the dielectric constant of polyolefin thermoplastic elastomer is almost the same as that of polyethylene, which is conventionally used as an insulator material (A8TM D 15G, 1kl).
ls of 2.1 to 2.3), and therefore has a low open capacitance and high characteristic impedance with approximately the same thickness as the insulating layer of a normal coaxial cable, and also has an attenuation level that is comparable to that of the industrial industry. The distance used for commercial televisions is sufficient. Therefore, the diolefin-based thermoplastic neelastomer of the present invention can be said to be extremely preferable for use as an insulating material, since it has excellent electrical properties in addition to flexibility.

かかるポリオレフィン系熱可塑性エラスシマーハ、りと
えばエチレンープリピレンゴムのごときポリオレフィン
系のゴムにプリエチレン、ボリプ四ピレンなどの熱可塑
性樹脂を混合し、必要に応じて部分的に架橋するなどし
て製造されるものである1゜通常市販のぎジオレフィン
系熱可塑性エラストマーとしては、たとえば住友化学工
業■製の「住友TPIJ、エエ胃イヤル社の「TPR」
、デュポン社の「TFI Jなどがあげられる。
Such a polyolefin-based thermoplastic elastomer is manufactured by mixing a polyolefin-based rubber such as ethylene-propylene rubber with a thermoplastic resin such as polyethylene or polypyrene, and partially crosslinking the mixture as necessary. Examples of commercially available diolefin thermoplastic elastomers include "Sumitomo TPIJ" manufactured by Sumitomo Chemical Co., Ltd., and "TPR" manufactured by Eisato Iyal Co., Ltd.
, and DuPont's ``TFI J.''

本発明におけるポリオレフィン熱可塑性エラスト!−と
してはいずれのものでも好適に使用しうるが、いうまで
もなくam率や#4電正接、さらに曲げ剛性度や捩り剛
性度が小さければ小さいけどよい。
Polyolefin thermoplastic elastomer in the present invention! - may be suitably used, but it goes without saying that the am ratio, #4 electric loss tangent, bending rigidity, and torsional rigidity may be as small as possible.

メリオレフイン系熱可塑性工□ラストマーを用いてえら
れる′絶縁体層の肉厚はIXB O!$501に規定さ
れる高周波同軸ケーブルの内外導体径比(7611系は
6.0〜6.3,500系は6.25〜3.45)に準
じた径比になるように決宇すればよい。
The thickness of the insulator layer obtained using meliolefin thermoplastic □lastomer is IXB O! If you make sure that the diameter ratio is in accordance with the diameter ratio of the inner and outer conductors of high frequency coaxial cables specified in $501 (6.0 to 6.3,500 series for 7611 series and 6.25 to 3.45 for 3,500 series). good.

前記外部導体(8)としては通常の軟鋼細線または錫め
っき軟鋼細線の編組(IXB 03501に規定される
同軸ケーブルに準する)が用いられ、このものは絶縁体
層(2)上に密接して均一に施される。前記編組の素線
も錫めっき軟銅素線を用いるのが好ましいととは内部導
体のばあいと同様である。
As the outer conductor (8), a braid of ordinary fine mild steel wire or tin-plated fine mild steel wire (according to the coaxial cable specified in IXB 03501) is used, and this wire is closely spaced on the insulating layer (2). Applied evenly. Similarly to the case of the internal conductor, it is preferable to use tin-plated annealed copper wire for the braided wire.

また前記シース(4)としては、たとえばりviaプレ
ン、クロルスルホン化ポリエチレンなどの合成ゴムが前
記外部導体(8)上に均一に密接して施され、該シース
(4)の肉厚はIXB O3501に規定される同軸ケ
ーブルに準じてきめられる。このよづな合成ゴムシース
を用いれば、プリ塩化ビニルのシースに比して可撓性が
よくなるばかりでなく、可塑剤の絶縁体への移行による
減衰特性の劣化のような問題もない。
The sheath (4) is made of synthetic rubber such as viaprene or chlorosulfonated polyethylene, which is applied uniformly and closely on the outer conductor (8), and the sheath (4) has a wall thickness of IXB O3501. It is determined according to the coaxial cable stipulated in . If this synthetic rubber sheath is used, it not only has better flexibility than a pre-vinyl chloride sheath, but also eliminates problems such as deterioration of damping characteristics due to migration of plasticizer to the insulator.

つぎに実施例および比較例をあげて本発明の同軸ケーブ
ルを説明する。
Next, the coaxial cable of the present invention will be explained with reference to Examples and Comparative Examples.

実施例1〜4 内部導体として次表に示されるようにスズメッキ軟鋼細
線をステンレス鋼撚線の″まわりに撚り合わせるか、あ
るいはそれ単独の撚線を用いた。
Examples 1-4 Tin-plated mild steel fine wires were stranded around stainless steel strands, as shown in the following table, or stranded alone as internal conductors.

絶縁体層として住友化学工業■製の「住友l!lpx 
5260 Jを用い、これを内部導体上に押出して被覆
した。さらに次表に示されるように外部導体およびシー
スを施して各同軸ケーブルをえたO その際、シースとしてり1212プレンを外部導体上に
押出し、りいで140’Oで60分間加硫したが、絶縁
体に異常(へたりなどの熱爽形)はまったく認められな
かった。
As an insulating layer, "Sumitomo l!lpx" manufactured by Sumitomo Chemical Co., Ltd.
5260 J was used to extrude and coat the inner conductor. Furthermore, each coaxial cable was obtained by applying an outer conductor and a sheath as shown in the following table. At that time, 1212 prene was extruded as a sheath onto the outer conductor and vulcanized at 140'O for 60 minutes, but the insulation No physical abnormalities (fever symptoms such as fatigue) were observed.

比較例1〜4 J工805501に規定される同軸ケーブルの100−
27および5D −2Vにおいて、内部導体として次表
に示されるように軟鋼細線を撚り合わせたものまたは軟
鋼細線をステンレスaSSのまわりに撚り合わせたもの
を用いて各同軸ケーブルをえた。
Comparative Examples 1 to 4 100- of coaxial cable specified in J Engineering 805501
In 27 and 5D-2V, each coaxial cable was obtained by using as an inner conductor a thin mild steel wire twisted together or a thin mild steel wire twisted around stainless steel aSS as shown in the following table.

比較例5〜6 ;JXB O5501に規定される同軸ケーブルの10
0−2Vおよび5D −2Vにおいて、絶縁体としてポ
リエチレンのかわりに[住友rpm 5260 Jを施
して各同軸ケーブルをえた。
Comparative Examples 5 to 6; 10 of coaxial cables specified in JXB O5501
At 0-2V and 5D-2V, each coaxial cable was obtained by applying [Sumitomo rpm 5260 J] instead of polyethylene as the insulator.

比較例7 rXS O5501に規定される同軸ケーブルの100
−27を作成した。
Comparative Example 7 100 of coaxial cable specified in rXS O5501
-27 was created.

これらの実施例1〜4および比較例1〜7で見られた各
同軸ケーブルの耐屈曲性、特性インピーダンスおよび減
衰量を調べた。その結果を次表に示す。
The bending resistance, characteristic impedance, and attenuation of each coaxial cable found in Examples 1 to 4 and Comparative Examples 1 to 7 were examined. The results are shown in the table below.

耐腐性試験は第2図に示されるように試料の同軸ケーブ
ル(長さ約400mm ) (+5)の一端を固定し、
他端にバネ(6)を取りつけ、6klの張力を与える。
For the corrosion resistance test, one end of the sample coaxial cable (length approximately 400 mm) (+5) was fixed as shown in Figure 2.
Attach a spring (6) to the other end and apply a tension of 6kl.

ついで直径25mmのガイド俸(1)を支点に試料を左
右に90°の角度で振り、1往復したときを1回として
50回/分の速度で試料を繰り返し屈曲させ、試料が断
線したときの回数を測定した。
Next, the sample was swung left and right at an angle of 90° using the guide handle (1) with a diameter of 25 mm as a fulcrum, and the sample was bent repeatedly at a speed of 50 times/minute, with one reciprocation being counted as one reciprocation, and the sample was bent repeatedly at a rate of 50 times/min. The number of times was measured.

特性インピーダンスは共振法によって測定し、減衰量は
置換法によって測定した。
The characteristic impedance was measured by the resonance method, and the attenuation was measured by the substitution method.

また実施例1および比較例5でえられた同軸ケーブルの
可撓性を調べた。試験は試料の同軸ケーブル(長さ20
0111111 )の一端を固定して水平に保持し、室
温下で他端に200gの重りをつるしたときの同軸ケー
ブルの撓み量(111111)を測定した。その結果実
施例1の同軸ケーブルは撓み量が118mmであるのに
対し、比較例5のものでは721111であった。
Furthermore, the flexibility of the coaxial cables obtained in Example 1 and Comparative Example 5 was investigated. The test was conducted using the sample coaxial cable (length 20
The amount of deflection (111111) of the coaxial cable was measured when one end of the coaxial cable (0111111) was fixed and held horizontally and a 200 g weight was suspended from the other end at room temperature. As a result, the coaxial cable of Example 1 had a deflection amount of 118 mm, while that of Comparative Example 5 had a deflection amount of 721111 mm.

以上の結果から、実施例1〜4は比較例1〜4と内部導
体や外部導体の構成は同じであるが、実施例1〜4のも
のは比較例1〜4のものに比して絶縁体とシースの材質
のちがいから耐屈曲性において4000〜−8000回
以上もよく耐えることがわかる。
From the above results, Examples 1 to 4 have the same structure of internal conductor and external conductor as Comparative Examples 1 to 4, but Examples 1 to 4 have better insulation than Comparative Examples 1 to 4. It can be seen that due to the difference in the materials of the body and the sheath, it can withstand bending resistance of 4,000 to -8,000 times or more.

内部導体が可撓撚線でない比較例5〜7のばあいとくら
べると、耐屈曲性の向上はさらに顕著であり、可撓性の
目安となる撓み量においても、実施例1は比較例5に比
して1.64倍の撓みを示した。
When compared with Comparative Examples 5 to 7 in which the internal conductor is not a flexible twisted wire, the improvement in bending resistance is even more remarkable, and even in terms of the amount of deflection, which is a measure of flexibility, Example 1 is better than Comparative Example 5. The deflection was 1.64 times that of the previous model.

各実施例の特性インピーダンスはいずれもIXBに規定
される規格を充分満足しており、減衰量はポリエチレン
絶縁の同軸ケーブル(比較例1〜4および7)にくらべ
てやや劣るが、工業用テレビに用いられる程度の短距離
であればまったく問題のない程度であり、前述のように
シースが合成ゴムであるため、ビニルシースのばあいの
ように可塑剤の移行による劣化がなく、却って長期的に
安宇する。
The characteristic impedance of each example fully satisfies the standard specified by IXB, and the attenuation is slightly inferior to that of polyethylene-insulated coaxial cables (Comparative Examples 1 to 4 and 7), but it is suitable for industrial televisions. There is no problem at all if it is used for short distances, and as mentioned above, since the sheath is made of synthetic rubber, there is no deterioration due to plasticizer migration like in the case of vinyl sheaths, and on the contrary, it will not deteriorate over the long term. do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の同軸ケーブルの一実施例を示す横断面
図、第2図は同軸ケーブルの耐屈曲性試験を示す概略説
明図である。 (図面の主要符号) (l):内部導体 (2)!絶縁体 (3):外部導体 (4)ニジ −゛ス 特許出願−人 中国1j1線工業株式★社代理人弁理士
 朝  日  奈  宗  a。 !1図 7,1 72叉 昭和56年11月18F!4 特許庁長官  島 1)春 樹  殿 ■事件゛の表示 昭和56年特許願第 16目60 号 2発明の名称 移動用高周波同軸ケーブル 3補正をする者 事件との関係  特許出願人 5補正の対象 (1)明細・書の「発明の詳細な説明」の橢6補正の内
容 (1)明細書5頁1〜2行の「すべく完成」ミ「すべく
鋭意検討の結果、完成Jと補正」(2)同6頁10行の
「それ自体加硫」を「そ1体の加硫」と補正する。 (8)  同7頁19行の「腐食」を「化学的腐食」補
正する。 (4)同10頁2行の「が小さければ」を「はへければ
」と補正する。 (6)同11頁8〜9行の「スズメッキJを「二つきJ
と補正する。 (6)同12頁末行の「約400!11nJを「約40
0二と補正する。 (7)同14頁の表の「減衰量」の欄における「(ta
s/br) Jを「Iシー)」と補正する。 以」
FIG. 1 is a cross-sectional view showing an embodiment of the coaxial cable of the present invention, and FIG. 2 is a schematic explanatory view showing a bending resistance test of the coaxial cable. (Main symbols in the drawing) (l): Internal conductor (2)! Insulator (3): Outer conductor (4) Nissin patent application - Person: Chugoku 1J1 Line Industry Co., Ltd. Patent attorney So Asahina A. ! 1 Figure 7, 1 72 18F November 1982! 4 Commissioner of the Japan Patent Office Shima 1) Mr. Haruki ■ Indication of the case 1982 Patent Application No. 16 No. 60 2 Name of the invention Mobile high frequency coaxial cable 3 Person making the amendment Relationship with the case Patent applicant 5 Subject of the amendment (1) Contents of the amendment to the "Detailed Description of the Invention" in the specification/book (1) As a result of intensive study, the amendment to "Completion J" in lines 1 and 2 of page 5 of the specification has been made. (2) "Vulcanization itself" on page 6, line 10 is corrected to "vulcanization of itself." (8) Correct "corrosion" on page 7, line 19 to "chemical corrosion". (4) On page 10, line 2, amend "If it is small" to "If it is fast." (6) On page 11, lines 8-9, “Tin plated J” is
and correct it. (6) “About 400!11nJ” at the end of page 12 of the same page.
Correct it to 02. (7) "(ta
s/br) J is corrected to "I C)". I”

Claims (1)

【特許請求の範囲】 1 内部導体のまわりに、絶縁体層、外部導体層および
シース層を順次設けた高周波同軸ケーブルにおいて、内
部導体が可撓m線、絶縁体層がポリオレアイン系熱可塑
性エツストマー、外部導体層が金属線編組、ざらにシー
ス層が合成ゴムからそれぞれなることを特徴とする耐屈
曲性、可撓性にすぐれた移動用高周波同軸ケーブル。 2 内部導体が補強線のまわりに軟鋼lI纏または錫め
っき軟鋼細線を撚り合わすた可撓撚線からなる特許請求
の範囲第1項記載の移動用高周波同軸ケー゛プル。
[Claims] 1. A high-frequency coaxial cable in which an insulator layer, an outer conductor layer, and a sheath layer are sequentially provided around an inner conductor, wherein the inner conductor is a flexible m-wire, the insulator layer is a polyolein thermoplastic elastomer, A high-frequency coaxial cable for transportation with excellent bending resistance and flexibility, characterized by an outer conductor layer made of braided metal wire and a rough sheath layer made of synthetic rubber. 2. The high-frequency coaxial cable for transportation according to claim 1, wherein the internal conductor is made of a flexible stranded wire in which mild steel II or tin-plated mild steel thin wires are twisted around a reinforcing wire.
JP16116081A 1981-10-09 1981-10-09 Movable high frequency coaxial cable Granted JPS5861512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16116081A JPS5861512A (en) 1981-10-09 1981-10-09 Movable high frequency coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16116081A JPS5861512A (en) 1981-10-09 1981-10-09 Movable high frequency coaxial cable

Publications (2)

Publication Number Publication Date
JPS5861512A true JPS5861512A (en) 1983-04-12
JPH0145683B2 JPH0145683B2 (en) 1989-10-04

Family

ID=15729730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16116081A Granted JPS5861512A (en) 1981-10-09 1981-10-09 Movable high frequency coaxial cable

Country Status (1)

Country Link
JP (1) JPS5861512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195304A (en) * 2012-07-02 2012-10-11 Sony Corp Shield cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195304A (en) * 2012-07-02 2012-10-11 Sony Corp Shield cable

Also Published As

Publication number Publication date
JPH0145683B2 (en) 1989-10-04

Similar Documents

Publication Publication Date Title
KR101972015B1 (en) Coaxial cable
JP3645337B2 (en) Fireproof cable for local area network
JP5740817B2 (en) High voltage cabtyre cable
US10340058B2 (en) Cable with braided shield
JP6691672B2 (en) coaxial cable
US3459877A (en) Electric cable
US20200075196A1 (en) Electrical cable and methods of making the same
JP2012248310A (en) Twisted pair wire using a stranded conductor with humidity resistance and twisted pair cable
US10269468B1 (en) Cable with braided shield
JPH11260150A (en) Electric wire for high tension circuit of stationary equipment
JPS5861512A (en) Movable high frequency coaxial cable
WO2020228288A1 (en) High-reliability flexible torsion-resistant low-voltage cable and manufacturing method therefor
JP2017033738A (en) Jumper cable
JP3444941B2 (en) Heat-resistant and radiation-resistant cable and furnace internal structure inspection device for fast breeder reactor using the same
CN101335103A (en) Electric cable with silicon rubber sheath and manufacturing method
JP2000030539A (en) Cable for high-voltage circuit of installation type equipment and manufacture of said cable
JP2000030535A (en) Wire and cable covered with fluorine containing elastomer and manufacture thereof
JP2003051219A (en) Ultra superfine coaxial cable
JP5924381B2 (en) Twisted wire
JP2018181861A (en) Coaxial cable
JPH0757559A (en) Heat-resistant covered electric wire
CN219512851U (en) Industrial coaxial cable
US20240145129A1 (en) Cable
JPS645404B2 (en)
WO2021021037A1 (en) Cable production system