JPS586141B2 - How to install an acoustic waveguide - Google Patents

How to install an acoustic waveguide

Info

Publication number
JPS586141B2
JPS586141B2 JP53062547A JP6254778A JPS586141B2 JP S586141 B2 JPS586141 B2 JP S586141B2 JP 53062547 A JP53062547 A JP 53062547A JP 6254778 A JP6254778 A JP 6254778A JP S586141 B2 JPS586141 B2 JP S586141B2
Authority
JP
Japan
Prior art keywords
waveguide
acoustic
rods
rod
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53062547A
Other languages
Japanese (ja)
Other versions
JPS54154371A (en
Inventor
磯部正生
清野英昭
渡辺兼秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP53062547A priority Critical patent/JPS586141B2/en
Priority to CA324,795A priority patent/CA1123089A/en
Priority to IT22852/79A priority patent/IT1112898B/en
Publication of JPS54154371A publication Critical patent/JPS54154371A/en
Publication of JPS586141B2 publication Critical patent/JPS586141B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、音響振動検出点で得られる音響情報を音響一
電気変換奏子に伝播する導波棒の取付け方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of attaching a waveguide rod for propagating acoustic information obtained at an acoustic vibration detection point to an acoustic-electric transducer.

例えば、水冷却型原子炉運転中に冷却水の漏洩が生じた
場合、漏洩音の発生現象を利用してその漏洩が迅速かつ
正確に検出する原子炉冷却材漏洩検出装置や、アコース
テイク・エミツション(以下「AE」と略記する)現象
を利用した各種機器の健全性監視装置では、検出点で得
られる音響情報を効率よく電気信号に変換する必要があ
る。
For example, if a cooling water leak occurs during operation of a water-cooled nuclear reactor, a reactor coolant leak detection device that uses the phenomenon of leakage sound to quickly and accurately detect the leak, and an acoustic emission system. In a health monitoring device for various devices that utilizes the phenomenon (hereinafter abbreviated as "AE"), it is necessary to efficiently convert acoustic information obtained at a detection point into an electrical signal.

水冷却型原子炉の場合を例にとると、一次冷却水は、通
常、高温高圧状態でしかも高放射化された状態で一次冷
却系内を循環している。
Taking the case of a water-cooled nuclear reactor as an example, primary cooling water normally circulates within the primary cooling system in a high temperature, high pressure, and highly activated state.

それ故、原子炉の運転状態において、一次冷却系の圧力
バウンダリを構成している配管や容器等は200℃以上
である。
Therefore, in the operating state of the nuclear reactor, the temperature of the pipes, containers, etc. that constitute the pressure boundary of the primary cooling system is 200° C. or higher.

また、一次冷却水の漏洩や健全性を監視すべき箇所は、
極めて多く、圧力管型原子炉の上昇管や入口配管のよう
な場合には、同じ目的の配管だけでも数百本以上となる
In addition, the locations where leakage and health of primary cooling water should be monitored are as follows:
They are extremely common, and in cases such as the riser pipe and inlet pipe of a pressure tube reactor, the number of pipes for the same purpose alone is several hundred or more.

従って、配管1本毎に検出器を取付ければ、多数の検出
器とそれに付属する多数の電子回路が必要となり、装置
が複雑になり、また設備費も高価となる。
Therefore, if a detector is attached to each pipe, a large number of detectors and a large number of electronic circuits attached thereto will be required, making the device complex and increasing equipment costs.

そこで、このような環境下で使用する検出器は次のよう
な条件を満足する必要がある。
Therefore, a detector used in such an environment must satisfy the following conditions.

(1)圧電型の音響一電気変換素子(PZT)は使用限
界温度が約60℃程度であるから、この温度以下の場所
に設置すること、 (2)数百箇所の検出点を少ない装置で監視可能である
こと、 (3)高い放射線環境下からできるだけ離れた地点で検
出可能なこと、 である。
(1) Piezoelectric acoustic-electrical transducers (PZT) have a working temperature limit of approximately 60°C, so they must be installed in a location below this temperature. (2) Several hundred detection points can be detected using a small number of devices. (3) It must be detectable at a point as far away as possible from a high radiation environment.

かかる諸条件を満たすため、従来、1〜5mmφの金属
性導波棒が利用されてきた。
In order to satisfy these conditions, metal waveguide rods with a diameter of 1 to 5 mm have conventionally been used.

即ち、金属製導波棒の先端を音響振動検出点である配管
壁や機器壁に溶接し、基端に音響−電気変換素子を取付
ける。
That is, the tip of the metal waveguide rod is welded to the pipe wall or equipment wall, which is the acoustic vibration detection point, and the acoustic-electric conversion element is attached to the base end.

また、少数本の導波棒る使用する場合には、第1図に示
すように、音響−電気変換素子1と複数の導波棒との結
合が困難なため、1本のマスタ導波棒2aを他の導波棒
2b,2cより多少太い径にし、その途中で導波棒2b
,2cを溶接している。
In addition, when using a small number of waveguide rods, as shown in FIG. 2a has a slightly larger diameter than the other waveguide rods 2b and 2c, and the waveguide rod 2b
, 2c are welded.

各導波棒2a,2b,2cの先端はそれぞれ検出点であ
る配管3a,3b,3cの壁面に溶接される。
The tips of each waveguide rod 2a, 2b, 2c are welded to the wall surface of piping 3a, 3b, 3c, which is a detection point, respectively.

AE源や漏洩音源からの音響振動は、配管壁や機器壁を
伝播し、導波棒ヘエネルギーioを供給する。
Acoustic vibrations from the AE source and the leakage sound source propagate through piping walls and equipment walls, and supply energy io to the waveguide rod.

この種の導波棒の波動の減衰は、主として、検出点での
溶接部4、導波棒同志の溶接部5およびマスタ導波棒2
aと音響一電気変換素子1との結合部で生じる。
Attenuation of waves in this type of waveguide rod is mainly caused by the welds 4 at the detection point, the welds 5 between the waveguide rods, and the master waveguide 2.
This occurs at the junction between a and the acoustic-electric transducer element 1.

そして、減衰率は、検出点での溶接部4で2〜4dB(
100〜1000KHz)、導波棒同志の溶接部5で6
〜8dBと大きな値となってしまう。
The attenuation rate is 2 to 4 dB (
100-1000KHz), 6 at the welded part 5 of the waveguide rods
This results in a large value of ~8 dB.

なお、音響一電気変換素子1の結合部はシリコン系の音
響カプラントを使用することで波動の減衰を防ぐことが
でき、あまり問題はない。
Note that attenuation of waves can be prevented by using a silicon-based acoustic couplant at the coupling portion of the acoustic-electric transducer 1, so there is no problem.

更に、従来の方式で10〜20箇所の検出点を1個の音
響一電気変換素子で監視するとすれば、マスタ導波棒の
1点で他の全ての導波棒を溶接することは不可能となり
、機械的強度の関係から10mmφ程度の太いマスタ導
波棒8に、第2図に示す如く、各導波棒9a,9b,・
・・,9xを溶接位置をずらせて取付けなければならず
、多くの分岐点を有することになる。
Furthermore, if 10 to 20 detection points are monitored using one acoustic-electric transducer in the conventional method, it is impossible to weld all the other waveguide rods at one point of the master waveguide rod. Therefore, in terms of mechanical strength, each waveguide rod 9a, 9b, .
..., 9x must be installed at different welding positions, resulting in many branching points.

それ故、音響一電気変換素子1へのエネルギーの伝達が
悪くなり、減衰率が大きくなる。
Therefore, the transmission of energy to the acoustic-electric conversion element 1 becomes poor, and the attenuation rate increases.

また、導波棒の直径が10mmφ以上太くなると、周波
数分数式fc∝c/d(但し、foはハイパス遮断周波
数(Hz)、cは金属中の波の速度(cm/s)、dは
導波棒の直径(cm))から分るように、100KHz
以下の周波数成分(流動音やポンプ回転音の如き環境雑
音成分)を多く通すことになり、100KHz以下の周
波数成分に対する100〜1000KHzの周波数成分
の比率が5mmφ以下の導波棒の場合と比べて小さくな
るから適当でない。
In addition, when the diameter of the waveguide rod becomes thicker than 10 mmφ, the frequency fraction formula fc∝c/d (where fo is the high-pass cutoff frequency (Hz), c is the velocity of the wave in the metal (cm/s), and d is the waveguide As you can see from the diameter of the wave rod (cm), the frequency is 100KHz.
More of the following frequency components (environmental noise components such as flow sound and pump rotation sound) will pass through, and the ratio of frequency components of 100 to 1000 KHz to frequency components of 100 KHz or less is smaller than in the case of a waveguide rod with a diameter of 5 mm or less. It is not appropriate because it will be small.

更に、導波棒の直径が大きいと、容器や配管等へ取付け
るための曲げ加工の如き機械加工性能が悪くなる。
Furthermore, if the diameter of the waveguide rod is large, machining performance such as bending for attachment to a container, piping, etc. will deteriorate.

従って、従来のような導波棒の取付け方では、溶接や減
衰率の観点から、1本のマスタ導波棒に接合しうる導波
棒の数は5本程度が限度である。
Therefore, in the conventional way of attaching waveguide rods, from the viewpoint of welding and attenuation rate, the number of waveguide rods that can be joined to one master waveguide rod is limited to about five.

本発明の目的は、上記のような従来技術の欠点を解消し
、波動伝播特性が良く、1個の音響−電気変換素子に対
して多数の導波棒を接続することのできる音響導波棒の
取付け方法を提供することにある。
An object of the present invention is to provide an acoustic waveguide which eliminates the drawbacks of the prior art as described above, has good wave propagation characteristics, and can connect a large number of waveguide rods to one acoustic-electric conversion element. The purpose is to provide an installation method.

以下、本発明について更に詳しく説明する。The present invention will be explained in more detail below.

鉄、銅、真ちゅう、ステンレス鋼、アルミニウム、カド
ミウム等の金属製の導波棒の先端部を、角錐あるいは円
錐状の中実導波錐体の中心に設けた孔に、その頂部から
挿入し、即ち先太状とし、両者の間隙に銀ロウ等を流し
込んで結合させる。
Insert the tip of a waveguide rod made of metal such as iron, copper, brass, stainless steel, aluminum, cadmium, etc. into a hole provided at the center of a solid waveguide cone in the shape of a pyramid or cone from the top, i.e. The ends are made into a thick shape, and silver solder or the like is poured into the gap between the two to join them.

また、該導波錐体の底部を音響検出点である圧力容器や
配管等の壁に結合させる。
Further, the bottom of the waveguide cone is coupled to a wall of a pressure vessel, piping, etc., which is an acoustic detection point.

このようにすると、導波錐体と圧力容器や配管等の壁と
の結合面積が大きくなり、この結合部における伝播波動
の減衰を防ぐことができる。
In this way, the coupling area between the waveguide cone and the wall of the pressure vessel, piping, etc. becomes large, and it is possible to prevent the propagating waves from being attenuated at this coupling portion.

導波棒の基端部における音響一電気変換素子との結合は
、導波棒の取付けが1本であれば、円板を介して結合す
ればよい。
If only one waveguide rod is attached, the base end of the waveguide rod may be coupled to the acoustic-electric transducer through a disk.

また、円板の代りに円錐形にしてもよい。Moreover, a conical shape may be used instead of a disk.

多数本の導波棒を組合せる場合には、例えば第3図、第
4図に示すようにすればよい。
When a large number of waveguide rods are combined, the arrangement shown in FIGS. 3 and 4 may be used, for example.

各導波棒の先端部の取付け方は上記の場合とほとんど同
様である。
The method of attaching the tip of each waveguide rod is almost the same as in the above case.

各導波棒12a,12b,12c,・・・,12xの先
端部に、導波円錐体16a,16b,16c,・・・,
16xを取付ける。
At the tip of each waveguide rod 12a, 12b, 12c, . . . , 12x, a waveguide cone 16a, 16b, 16c, .
Install 16x.

音響振動検出点である所望の管壁や機器壁13a.13
b,13c,・・・,13xには、予め円筒17a.1
7b,17c,・・・,17Xを溶接しておき、その表
面に前記導波円錐体16a,16b.16c,・・・,
16xを溶接、銀ロウ付、あるいは適当な治具で接合す
る。
A desired pipe wall or equipment wall 13a, which is an acoustic vibration detection point. 13
b, 13c, . . . , 13x are provided with cylinders 17a. 1
7b, 17c, . . . , 17X are welded, and the waveguide cones 16a, 16b . 16c,...,
16x are joined by welding, silver soldering, or an appropriate jig.

各導波棒12a,12b.12c,・・・,12xの基
部は、そろえられて、蓮根状に多数の孔を有する束ね金
具19の各孔に挿通されて束ねられ、更に、束ね金具1
9側が小径である段付円管20で結束する。
Each waveguide bar 12a, 12b. The bases of the bundle fittings 12c, .
The tubes are tied together with a stepped circular tube 20 having a small diameter on the 9 side.

円管20の上端は導波棒12a,12b,12c,・・
・,12xの基端面より3〜5mm程度外方に突出する
ように設定する。
The upper end of the circular tube 20 is the waveguide bar 12a, 12b, 12c,...
・Set so that it protrudes outward by about 3 to 5 mm from the proximal end surface of , 12x.

次いで、この円管20の上部から銀ロウを流し込む。Next, silver solder is poured into the top of the circular tube 20.

この銀ロウは各導波棒間の空隙21を埋め、さらに円管
20の上端まで厚さ3〜5mmの金属領域22を作る。
This silver solder fills the gaps 21 between each waveguide rod, and further forms a metal region 22 with a thickness of 3 to 5 mm up to the upper end of the circular tube 20.

この金属領域22の音響一電気変換素子11と結合する
面には、6S程度の精密仕上げを施し、音響力プラント
を塗布する。
The surface of the metal region 22 that is coupled to the acoustic-electric conversion element 11 is finished with a precision finish of about 6S and coated with an acoustic force plant.

この音響カプラントは、従来同様のシリコン系グリスで
良い。
This acoustic couplant may be made of conventional silicone grease.

このようにすると、音響振動検出点で得られる音響信号
は、導波棒で減衰されることなく音響一電気変換素子へ
伝播され、マスタ導波棒が不要となる。
In this way, the acoustic signal obtained at the acoustic vibration detection point is propagated to the acoustic-electric transducer element without being attenuated by the waveguide, and a master waveguide becomes unnecessary.

第5図は、従来のマスタ導波棒方式と本発明の導波棒結
束方式の減衰率の比較例を示している。
FIG. 5 shows a comparison example of the attenuation factors of the conventional master waveguide method and the waveguide rod bundling method of the present invention.

同図×印aは、直径4mmφ3本の導波棒を結合し、円
錐状の接触部を用い、マスク導波棒に信号を入れた場合
の減衰率で約8dBである。
The symbol x in the figure a indicates an attenuation rate of approximately 8 dB when three waveguide rods each having a diameter of 4 mm are connected, a conical contact portion is used, and a signal is input to the mask waveguide rod.

同じ線径の同数本の導波棒を使用した本発明の結束方式
の場合b、約2dBで、黒丸印で表わした導波棒1本の
場合cと実験誤差内で一致し、結束部において減衰がほ
さんどないことが確認された。
In the case of the bundling method of the present invention using the same number of waveguide rods with the same wire diameter, b is approximately 2 dB, which coincides with c, the case of one waveguide rod represented by a black circle, within experimental error, and at the bundled part. It was confirmed that there was little attenuation.

第6図は、高温高圧水を大気中に放出させた場合に、本
発明方法に従い取付けた導波棒(直径4龍φ、長さ5m
)の出力の周波数スペクトルである。
Figure 6 shows a waveguide rod (diameter 4 mm, length 5 m) installed according to the method of the present invention when high-temperature, high-pressure water is released into the atmosphere.
) is the frequency spectrum of the output.

このスペクトル図から、周波数1000KHzの付近ま
で確実に伝播していることがわかる。
From this spectrum diagram, it can be seen that the signal propagates reliably up to a frequency of around 1000 KHz.

本発明は上記のように構成した導波棒の取付け方法であ
るから、検出点での音響振動を効率よく導波棒に伝達さ
せることができ、また1個の音響−電気変換素子に対し
て多数本の細い導波棒を、音響信号が減衰することなく
結合させることができ、従って、前記した三つの条件を
全て完全に満すことができるという極めてすぐれた効果
を奏しうるものである。
Since the present invention is a method for attaching a waveguide rod configured as described above, it is possible to efficiently transmit acoustic vibrations at a detection point to a waveguide rod, and also for one acoustic-electric conversion element. It is possible to couple a large number of thin waveguide rods without attenuating the acoustic signal, and therefore, it is possible to achieve an extremely excellent effect in that all of the above three conditions can be completely satisfied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来技術の説明図、第3図は本発明の
一実施例の説明図、第4図はその結束部の説明図、第5
図は本発明と従来技術の比較結果を示す図、第6図は本
発明方法により取付けた導波棒の出力の周波数スペクト
ルである。 11・・・・・・音響一電気変換素子、12a,12b
,12c,・・・,12x・・・・・・導波棒、13a
,13b,13c,・・・,13x・・・・・・検出点
、16a,16b,16c,・・・,16X・・・・・
・導波錐体、19・・・・・・束ね金具、20・・・・
・・円管。
1 and 2 are explanatory diagrams of the prior art, FIG. 3 is an explanatory diagram of an embodiment of the present invention, FIG. 4 is an explanatory diagram of the binding part, and FIG.
The figure shows the comparison results between the present invention and the prior art, and FIG. 6 shows the frequency spectrum of the output of the waveguide rod attached by the method of the present invention. 11...Acoustic-electric conversion element, 12a, 12b
, 12c,..., 12x... Waveguide rod, 13a
, 13b, 13c,..., 13x... detection point, 16a, 16b, 16c,..., 16X...
・Waveguide cone, 19... Bundling fittings, 20...
...Circular tube.

Claims (1)

【特許請求の範囲】 1 基部に音響−電気変換素子が取付けられる導波棒の
先端部に、導波錐体を先太状に接続し、該導波錐体の底
部を音響振動検出点である管壁または機器壁に固着する
音響導波棒の取付け方法。 2 多数の導波棒の各々の先端部に導波錐体を先太状に
接続し、各導波錐体の底部を音響振動検出点である管壁
または機器壁に接着すると共に、各導波棒の基部をそろ
えて束ね、互いにろう付け接着し、音響−電気変換素子
を取付ける音響導波棒の取付け方法。
[Claims] 1. A waveguide cone is connected in a tapered manner to the tip of a waveguide rod to which an acoustic-electric transducer is attached to the base, and the bottom of the waveguide cone is connected at an acoustic vibration detection point. A method of installing an acoustic waveguide that is fixed to a pipe wall or equipment wall. 2 A waveguide cone is connected to the tip of each of a large number of waveguide rods in a tapered shape, and the bottom of each waveguide cone is glued to the pipe wall or equipment wall that is the acoustic vibration detection point, and each waveguide is connected to the tip of each waveguide rod. A method of installing acoustic waveguide rods in which the bases of the wave rods are aligned, bundled, soldered together, and an acoustic-electric conversion element is attached.
JP53062547A 1978-05-25 1978-05-25 How to install an acoustic waveguide Expired JPS586141B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP53062547A JPS586141B2 (en) 1978-05-25 1978-05-25 How to install an acoustic waveguide
CA324,795A CA1123089A (en) 1978-05-25 1979-04-03 Method for mounting acoustic waveguide rod
IT22852/79A IT1112898B (en) 1978-05-25 1979-05-21 METHOD FOR THE ASSEMBLY OF A JUDGE OF ACOUSTIC WAVES AT AUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53062547A JPS586141B2 (en) 1978-05-25 1978-05-25 How to install an acoustic waveguide

Publications (2)

Publication Number Publication Date
JPS54154371A JPS54154371A (en) 1979-12-05
JPS586141B2 true JPS586141B2 (en) 1983-02-03

Family

ID=13203363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53062547A Expired JPS586141B2 (en) 1978-05-25 1978-05-25 How to install an acoustic waveguide

Country Status (3)

Country Link
JP (1) JPS586141B2 (en)
CA (1) CA1123089A (en)
IT (1) IT1112898B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455298B2 (en) * 2007-11-06 2014-03-26 オークマ株式会社 Bearing condition diagnosis device
US8800373B2 (en) * 2011-02-14 2014-08-12 Rosemount Inc. Acoustic transducer assembly for a pressure vessel
JP5409878B2 (en) * 2012-11-02 2014-02-05 オークマ株式会社 Bearing condition diagnosis device
GB2552780B (en) * 2016-07-29 2018-11-28 Fish Guidance Systems Ltd An acoustic device for forming a wall of sound underwater
CN108799846B (en) * 2018-07-06 2020-11-24 中国核动力研究设计院 Nuclear power station pressure pipeline acoustic emission detector and method
JP7305854B2 (en) * 2018-09-06 2023-07-10 株式会社東芝 Detection system and detection method
CN114754710A (en) * 2022-04-12 2022-07-15 西安热工研究院有限公司 Method for measuring corrosion of inner wall of fire facing side of water wall tube on fire back side

Also Published As

Publication number Publication date
JPS54154371A (en) 1979-12-05
IT7922852A0 (en) 1979-05-21
IT1112898B (en) 1986-01-20
CA1123089A (en) 1982-05-04

Similar Documents

Publication Publication Date Title
JP4688762B2 (en) Ultrasonic path bundle and system
CN103292160B (en) The ultrasonic detection device of pipe leakage and method
JPH08226865A (en) Method for determining position of leakage of conduit
JPS62115358A (en) Method and device for detecting bubble in liquid metal by ultrasonic wave
JPS6238355A (en) Method and device for measuring fluid characteristic by using capacity search signal of surface generation
JPS59131161A (en) Method of monitoring structure
JPS586141B2 (en) How to install an acoustic waveguide
CN113740434A (en) Method for detecting lead seal corrosion of high-voltage cable based on ultrasonic guided wave technology
CN109342565A (en) A kind of multi-transducer combined ultrasonic guided wave pipeline defect detection equipment
US12038242B2 (en) Heat exchanger assemblies having embedded sensors
JP5258683B2 (en) Material degradation diagnosis apparatus and method
JPS61280541A (en) Method for detecting leakage of liquid
WO2021057287A1 (en) Online high-temperature pipeline perimeter inspection system, and method
CN114910753B (en) Acoustic wave transmission device and detection method for GIL fault location
JP2623483B2 (en) Burst position locating method using solid-state transmission sound monitoring system
Price et al. Sources And Remedies Of High-Frequency Piping Vibration And Noise.
CN108799846B (en) Nuclear power station pressure pipeline acoustic emission detector and method
JPH11142280A (en) Pipe-line inspecting method
Junping et al. Research of non‐destructive testing for aluminium sheaths of HV cables using ultrasonic‐guided waves
JPS62297741A (en) Detecting method for leaking place of conduit system fluid
JPH0566172A (en) Method and device for detecting leakage acoustically
RU120276U1 (en) ACOUSTIC CONTROL SYSTEM FOR NPP PIPELINES
Morgan et al. The acoustic ranger, a new instrument for tube and pipe inspection
Pedrick et al. A novel technique with a magnetostrictive transducer for in situ length monitoring of a distant specimen
KR20010007201A (en) Apparatus for reactor vessel piping weld inspection using ultrasonic guided waves