JPS5861227A - Manufacture of prefabricated member from high alloy ferritic work material - Google Patents

Manufacture of prefabricated member from high alloy ferritic work material

Info

Publication number
JPS5861227A
JPS5861227A JP57159686A JP15968682A JPS5861227A JP S5861227 A JPS5861227 A JP S5861227A JP 57159686 A JP57159686 A JP 57159686A JP 15968682 A JP15968682 A JP 15968682A JP S5861227 A JPS5861227 A JP S5861227A
Authority
JP
Japan
Prior art keywords
maximum
prefabricated member
workpiece
chemical composition
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57159686A
Other languages
Japanese (ja)
Other versions
JPH027366B2 (en
Inventor
ハンス−ヨ−ゼフ・ラウデンベルク
リツヒアルト・ヴアインツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teves Thompson and Co GmbH
Original Assignee
Teves Thompson and Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teves Thompson and Co GmbH filed Critical Teves Thompson and Co GmbH
Publication of JPS5861227A publication Critical patent/JPS5861227A/en
Publication of JPH027366B2 publication Critical patent/JPH027366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、無削屑形成によって誦合金フェライト性の
被加工材からプレハブ部材、特に内燃機関用弁を製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing prefabricated parts, in particular valves for internal combustion engines, from ferritic alloy workpieces by chip-less formation.

プレハブ部材、たとえば内燃機関用弁を特別の冷開成形
、所謂「冷間圧造機」で何段階かで据込みと冷間押出し
によって冷却状態で低合金被加工材から製造することが
知られている。据込みと冷間押出しの前提は、大きな変
形可能性を有し、亀裂のない変形を可能にする低合金の
被加工材の低い剛性値と高い伸び値である。
It is known to produce prefabricated parts, for example valves for internal combustion engines, from low-alloy workpieces in the cooled state by upsetting and cold extrusion in several stages in special cold-open forming, so-called "cold heading machines". There is. The prerequisites for upsetting and cold extrusion are low stiffness values and high elongation values of low-alloy workpieces, which have large deformability and allow crack-free deformation.

フェライト性、マルテンサイト性、又はオーステナイト
性でもある高合金被加工材料の弁は令息は前記の変形機
では製造することができなの・つた。
Valves of high-alloy workpiece materials that are also ferritic, martensitic, or austenitic cannot be manufactured using the above-mentioned deforming machines.

何となれば極めて強い変形力が必要であるし、亀裂の生
じる危険が大きいためにこの被加工材の変形性は極めて
小さいからである。従ってそのような被加工材料製のプ
レハブ部材はタップで据え込みと打ち出しを同時に行な
うときに熱間打出し或いは電気抵抗加熱によって製造さ
れる。変形は950°〜1200℃で行なわれる。この
場合には変形度は太き(−亀裂の危険は小さい。
This is because an extremely strong deforming force is required and the deformability of this workpiece is extremely low since there is a high risk of cracking. Prefabricated parts of such workpiece materials are therefore produced by hot stamping or electrical resistance heating during simultaneous upsetting and stamping in a tap. Deformation is carried out at 950° to 1200°C. In this case, the degree of deformation is large (- the risk of cracking is small).

冷間加工による製造には製造技術上の利点がある。同時
的な製造精度が高い場合には単位時間当りの個数を多(
し、工具の耐久時間を長くすることが可能である。こう
して製造は極めて経済的に行なわれる。その場合の欠点
は、より扁い合金の被加工材料は変形抵抗が極めて太き
(且つ亀裂が生じ易いために所望する根深(は冷間変形
できないことである。限定された枠内での手段は鍛造温
度に高合金被加工材料を加熱することである。加熱後高
合金材料は熱間押出しと据込みによって変形されて完成
品に仕上げられる。しかしこれは単位時間当りの製造個
数が少な(て不経済である。
Manufacturing by cold working has manufacturing technology advantages. If the simultaneous manufacturing accuracy is high, the number of pieces per unit time can be increased (
However, it is possible to extend the durability of the tool. The production is thus extremely economical. The disadvantage in this case is that the thinner alloy workpiece material cannot be cold deformed to the desired depth because it is extremely resistant to deformation (and cracks easily). is to heat the high-alloy workpiece material to the forging temperature. After heating, the high-alloy material is deformed into a finished product by hot extrusion and upsetting. However, this method requires only a small number of pieces to be produced per unit time ( It is uneconomical.

即ち純粋な冷間加工では毎分60個に対して近代的な据
込ユニットによって毎分約30個、熱間押出しでは毎分
約15個である。その上量産積置も低い。
That is, about 30 pieces per minute with modern upsetting units, compared to 60 pieces per minute with pure cold working, and about 15 pieces per minute with hot extrusion. Furthermore, mass production storage capacity is also low.

変形抵抗の弱化を図るために、材料を特に200〜50
0℃に加熱し、個々の場合にもその後半加熱変形を行な
うためになお加熱することが知られている。その場合製
造精度に関する冷間加工の利点は可成り維持されろ。し
かし特に内燃機関用の弁を製造する場合に使われろよう
な高合金被加工材料を使った実験は、それで変形抵抗が
僅かしか弱まらず、変形に際して亀裂形成の回避のため
の伸び値を高めることができないことを示した。
In order to weaken the deformation resistance, the material is particularly
It is known to heat the material to 0° C. and, in individual cases, further heat it in order to carry out the heating deformation in the latter half. In that case, the advantages of cold working with respect to manufacturing accuracy would be maintained to a large extent. However, experiments with high-alloy workpieces, such as those used in the manufacture of valves for internal combustion engines, have shown that the resistance to deformation is only slightly reduced, and that elongation values to avoid crack formation during deformation are lower. It has been shown that it cannot be improved.

この発明の基本的課題は、初めて記載した加工機で高合
金フェライト性被加工材料から半加熱状態で部材を製造
できる方法の開発にある。従ってこの方法の前記の利点
を生かすことができる。特にこの方法によって変形力が
弱められ、変形の際の亀裂生成を防止するための伸び値
を高め、冷間加工或いは半加熱加工の製造11fiを維
持し、冷間加工法に対応して単位時間当りの製造個数を
多(することができる。この発明による方法の特徴は次
の点にある。即ち出発材料を先づオーステナイト化し、
続いて、オーステナイトがまだ安定している範囲迄温度
を下げるために冷却し1.続いてこの降下した温度で出
発材料を完成部材に変形する。
The basic task of the invention is to develop a method that allows the production of components in a semi-heated state from high-alloy ferritic workpiece materials using a processing machine described for the first time. Therefore, the above-mentioned advantages of this method can be taken advantage of. In particular, this method weakens the deformation force, increases the elongation value to prevent crack formation during deformation, maintains the production 11fi of cold working or semi-heat working, and reduces the unit time corresponding to the cold working method. The method according to the present invention is characterized by the following points: the starting material is first austenitized;
Next, cooling is performed to lower the temperature to a range where the austenite is still stable.1. The starting material is subsequently transformed into the finished part at this reduced temperature.

オーステナイト化された状態では被加工材料は冷間圧造
機で同時に亀裂の危険が除かれた場合の非常に低い変形
抵抗のために問題な(弁に変形される。パーライト形成
とマルテンサイト形成の間の温度範囲でオーステナイト
は長時間安定しており、従って転移は生じない。そのた
めにこの温度範囲ではそののちオーステナイト化した状
態で変形が可能になる。高合金フェライト的マルテンサ
イト性鋼の場合のマルテンサイト転移の上位の転位態様
が極めて不活発であることによって、被加工材料の冷却
と生産工学的尺度での完成品への加工を行なうのに充分
な時間がある。
In the austenitized state, the workpiece material is transformed into a valve (valve) which is problematic due to its very low deformation resistance in the cold heading machine, which simultaneously eliminates the risk of cracking. Austenite is stable for long periods of time in the temperature range of Due to the extremely inactive nature of the dislocation regime above the site transition, there is sufficient time for the workpiece material to cool down and be processed into finished products on a production engineering scale.

この発明による方法の利点は次の表によって明らかであ
る。この表には連続実験で判明した剛性値と伸び値を挙
げてあり、比較試験の中間値を示しである。即ち ム)室温で値が測定され且つ出発状態を100%で示し
、 b)400℃で予熱されて測定され、 C)この発明の方法でオーステナイト化し、冷却し、4
00℃で測定した。
The advantages of the method according to the invention are evident from the following table. This table lists the stiffness and elongation values found in continuous experiments, and shows the intermediate values of comparative tests. b) measured preheated to 400° C.; c) austenitized and cooled in accordance with the method of the invention;
Measured at 00°C.

この発明の方法で処理した試料の伸び力3同時をこ署し
い上昇を示す場合の剛性値が下るのは明白である。これ
は極めて遅延した転移の他に、次のことに対する達成が
意外な必要な前提である。即ちたとえば次”のような化
学的組成、即ちCO,40−0,50 St    2.70− 3.30 Mn   最大限 0.8 p    tt   O,040 S    //   0.030 Cr   8.0 10.O Ni   最大限 Fe残 の高合金鋼を通常の冷間加工機で製造することができる
ための前提である。
It is clear that when the elongation force of the sample treated by the method of the present invention shows a significant increase, the stiffness value decreases. This, in addition to the extremely delayed transition, is an unexpectedly necessary prerequisite for the achievement of: That is, for example, a chemical composition such as "CO,40-0,50 St 2.70-3.30 Mn maximum 0.8 p tt O,040 S // 0.030 Cr 8.0 10. O Ni This is the premise for producing high-alloy steel with the maximum amount of Fe remaining using a normal cold working machine.

次表では上位降伏点(ReH)、引張強さく RM )
The following table shows upper yield point (ReH) and tensile strength (RM)
.

伸び率(A)、絞り率(Z)に対するドイツ工業規格5
0145号による記号をつけた。
German industrial standard 5 for elongation rate (A) and reduction rate (Z)
A symbol according to No. 0145 was attached.

ReHRM          A         
Z22 N/mm     N/mm      %     
 %a)  596(100%)  823(100%
)  23.9(10ff%)  52(10(7%)
b)  390(65%)   570(6gyo) 
 26.0(109%)  58(112%)c)  
 225(38%)   586(71%)   64
.4(26g%)  69(133%)特に有利な結果
は次のようにして得られる。
ReHRM A
Z22 N/mm N/mm %
%a) 596 (100%) 823 (100%
) 23.9 (10ff%) 52 (10 (7%)
b) 390 (65%) 570 (6gyo)
26.0 (109%) 58 (112%) c)
225 (38%) 586 (71%) 64
.. 4 (26 g%) 69 (133%) Particularly advantageous results are obtained as follows.

即ち前記の出発材料で弁を造るために先づ約1100℃
というオーステナイト化温度に加熱し、続いて200〜
500℃に冷却する。このように処理された材料は従来
の方法で冷間加工機で据込みと押出しによって変形する
ことができる。
That is, in order to make the valve with the above starting material, it is first heated to about 1100°C.
heated to an austenitizing temperature of 200~
Cool to 500°C. The material thus treated can be deformed in a conventional manner by upsetting and extrusion in a cold working machine.

Claims (1)

【特許請求の範囲】 1)削屑のない形成によって高合金フェライト性の被加
工材料からプレ/)プ部材、特に内燃機関用の弁を製造
する方法において、 a)出発材料のオーステナイト化 b)オーステナイトがなお安定している温度迄下げるこ
と C)降下した温度で出発材料を完成した部材に変形する
ことの工程を特徴とする方法。 2)出発材料なオーステナイト化するために約1100
℃迄加熱する。特許請求の範囲1)記載の方法。 3)降下温度がオーステナイト化後で且つ変形開始時に
200〜500℃になる、特許請求の範囲l)又は2)
記載の方法。 4)200〜500℃に冷却された材料を据え込みによ
って変形する、特許請求の範囲1)〜4)の何れか−に
記載の方法。 5)2oo〜500℃に冷却された材料を押出しによっ
て変形する、特許請求の範囲1)〜4)ノ何れか−に記
載の方法。 6)特許請求の範囲1)〜5)の何れか−に記載の方法
によって製造されたプレハブ部材において、次のような
重量パーセントの化学的組成、即ちG  O,20−1
,00 Si   O,50−4,00 Mn  0.5 0− 3.0 0 P 最大限−0,045 S 最大限−0,030 Cr  4.00−20.00 Mo   0.5 0− 4.0  ONi 最大限−
2,OO V 最大限−2,00 W 最大限−2,00 Fe残 の範囲から成る被加工材を特徴とするゾレハプ部材。 7)%許請求の範囲1)〜5)の倒れか−に記載の方法
によって製造されたプレハブ部材において、次のような
重量パーセントの化学的組成、即ち−C0,40 Si     2.50 Mn   O,80(最大限) P   0.04(y  ) S   O,03(tt  ) cyxo、o。 Mo   1.05 Fe残 の被加工材を特徴とするプレハブ部材。 8)特許請求の範囲l)〜5)の倒れが−に記載の方法
によって製造されたプレハブ部材において、次のような
重量パーセントの化学的組成、即ちc     o、s
。 St    2.00 Mn   1. OO(最大限) Cr14.75 Mo    1.0O Ni    O,75 w     t、o。 Fe残 の被加工材を4?徴とするプレハブ部材09)特許請求
の範囲1)〜5)の何れか−に記載の方法によって製造
されたプレ/’%ブ部材において、次のような重量・ζ
−セントの化学的組成、即ちCO,85 Si   1.00(最大限) Mn   1.50(tt  ) P   O,04(tt  ) S   O,03(p  ) Cr17.50 Mo    2.25 V     O,45 Fe残 の被加工材を特徴とするプレハブ部材。 10)特許請求の範囲1)〜5)の何れか−に記載の方
法によって製造されたプレハブ部材において、次のよう
な重量パーセントの化学的組成、即ちCO,45 Si     3.00 Mn   0.80(最大限) P   0.04(tt  ) S   O,03(tt  ) Cr     9.0O Ni   0.50(最t1M’@  )Fe残 の被加工材を特徴とするプレハブ部材。 11)特許請求の範囲l)〜5)の何れが−に記載の方
法によって製造されたプレハブ部材において。 次のような重量パーセントの化学的組成、即ちCO,4
6 Si  最大限1.0 Mn      I   l、Q P       #0.045 S       〃o、030 Cr13.50 Fe残 の被加工材を特徴とするプレハブ部材
[Claims] 1) A method for manufacturing a pre-/)-pull member, in particular a valve for an internal combustion engine, from a highly alloyed ferritic workpiece material by chip-free formation, comprising: a) austenitizing the starting material; b) A method characterized by the following steps: C) deforming the starting material into a finished part at the reduced temperature to a temperature at which the austenite is still stable. 2) The starting material is about 1100 to austenitize
Heat to ℃. A method according to claim 1). 3) Claim l) or 2) in which the temperature drop is 200 to 500°C after austenitization and at the start of deformation.
Method described. 4) The method according to any one of claims 1) to 4), wherein the material cooled to 200 to 500°C is deformed by upsetting. 5) The method according to any one of claims 1) to 4), wherein the material cooled to 200°C to 500°C is deformed by extrusion. 6) A prefabricated member manufactured by the method according to any one of claims 1) to 5), which has the following weight percent chemical composition, namely, G O, 20-1.
,00 Si O,50-4,00 Mn 0.5 0- 3.0 0 P Maximum -0,045 S Maximum -0,030 Cr 4.00-20.00 Mo 0.5 0- 4. 0 ONi Maximum -
2,OO V Maximum -2,00 W Maximum -2,00 A Zorehap member characterized by a workpiece consisting of a range of Fe remaining. 7) In the prefabricated member manufactured by the method described in claims 1) to 5), the chemical composition is as follows in weight percent: -C0,40Si2.50MnO ,80 (maximum) P 0.04(y) S O,03(tt) cyxo,o. A prefabricated member characterized by a workpiece with Mo 1.05 Fe remaining. 8) In the prefabricated member manufactured by the method according to claims 1) to 5), the prefabricated member has the following weight percent chemical composition: co, s.
. St 2.00 Mn 1. OO (maximum) Cr14.75 Mo 1.0O Ni O,75 w t, o. 4 for the workpiece material with Fe residue? 09) In the prefabricated member manufactured by the method described in any one of claims 1) to 5), the following weight and ζ
- chemical composition of cents, namely CO,85 Si 1.00 (maximum) Mn 1.50 (tt) P O,04 (tt) SO,03 (p) Cr17.50 Mo 2.25 V O, 45 A prefabricated member characterized by a workpiece material with Fe residue. 10) In a prefabricated member manufactured by the method according to any one of claims 1) to 5), the chemical composition has the following weight percentage: CO, 45 Si 3.00 Mn 0.80 (Maximum) P 0.04 (tt) S O,03 (tt) Cr 9.0O Ni 0.50 (maximum t1M'@) A prefabricated member characterized by a workpiece with Fe remaining. 11) A prefabricated member manufactured by the method according to any one of claims 1) to 5). Chemical composition in weight percent as follows: CO,4
6 Si Maximum 1.0 Mn I l, Q P #0.045 S 〃o, 030 Cr13.50 Prefabricated member characterized by workpiece material with residual Fe
JP57159686A 1981-09-16 1982-09-16 Manufacture of prefabricated member from high alloy ferritic work material Granted JPS5861227A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3136722.4 1981-09-16
DE3136722A DE3136722C2 (en) 1981-09-16 1981-09-16 Process for the production of valves for internal combustion engines

Publications (2)

Publication Number Publication Date
JPS5861227A true JPS5861227A (en) 1983-04-12
JPH027366B2 JPH027366B2 (en) 1990-02-16

Family

ID=6141796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57159686A Granted JPS5861227A (en) 1981-09-16 1982-09-16 Manufacture of prefabricated member from high alloy ferritic work material

Country Status (7)

Country Link
JP (1) JPS5861227A (en)
DE (1) DE3136722C2 (en)
ES (1) ES8306186A1 (en)
FR (1) FR2512834B1 (en)
GB (1) GB2109276B (en)
IT (1) IT1210934B (en)
PT (1) PT75560B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW304906B (en) * 1994-11-11 1997-05-11 Honda Motor Co Ltd
CN102021484A (en) * 2010-12-15 2011-04-20 中国铝业股份有限公司 Material for aluminum electrolysis crust-breaking hammer
DE102014209645A1 (en) * 2014-05-21 2015-11-26 Mahle International Gmbh Method for producing a valve for an internal combustion engine
DE102015105448A1 (en) * 2015-04-09 2016-10-13 Gesenkschmiede Schneider Gmbh Alloy steel and components manufactured therewith
CN104789873A (en) * 2015-04-24 2015-07-22 合肥东方节能科技股份有限公司 Rolling mill segmentation wheel and regeneration manufacturing process thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926685A (en) * 1969-06-03 1975-12-16 Andre Gueussier Semi-ferritic stainless manganese steel

Also Published As

Publication number Publication date
PT75560B (en) 1984-08-10
GB2109276A (en) 1983-06-02
DE3136722A1 (en) 1983-03-31
ES515717A0 (en) 1983-06-01
JPH027366B2 (en) 1990-02-16
IT8223280A0 (en) 1982-09-15
IT1210934B (en) 1989-09-29
ES8306186A1 (en) 1983-06-01
FR2512834A1 (en) 1983-03-18
GB2109276B (en) 1985-02-13
PT75560A (en) 1982-10-01
FR2512834B1 (en) 1986-05-09
DE3136722C2 (en) 1986-06-12

Similar Documents

Publication Publication Date Title
CN106435353B (en) A kind of Cr5 series hot die steel
KR100767834B1 (en) Method for the manufacture of steel products of a precipitation hardened martensitic steel, steel products obtained with such method
JP2002256397A (en) High hardness martensitic stainless steel having excellent corrosion resistance
JP2006152427A (en) Hot-pressed steel sheet member, manufacturing method therefor and steel sheet to be hot-pressed
CA2260231A1 (en) Hot-rolled steel strip and method of making it
JPH0250910A (en) Production of steel plate for die having good heat fatigue characteristic
EP3168319B1 (en) Microalloyed steel for heat-forming high-resistance and high-yield-strength parts
JP4321974B2 (en) Steel for high strength screws and high strength screws
JP2001234238A (en) Producing method for highly wear resistant and high toughness rail
JPS5853709B2 (en) As-forged high-strength forging steel
JPS5861227A (en) Manufacture of prefabricated member from high alloy ferritic work material
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
JPH0382741A (en) Shape memory staiinless steel excellent in stress corrosion cracking resistance and shape memory method therefor
US4563222A (en) High strength bolt and method of producing same
JPS6128742B2 (en)
JPH08170146A (en) Nitrided and non-heattreated steel for forming and nitrided and non-heattreated forged product
JP4026228B2 (en) Martensitic heat resistant steel
JP3751707B2 (en) High-strength bolt wire excellent in strength and ductility and its manufacturing method
JPH10265841A (en) Production of high strength cold forging parts
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
US20180258504A1 (en) Method of producing a tool steel
JP2004197213A (en) Steel sheet to be hot-formed superior in hardenability after high-temperature forming
JP2004018993A (en) Low alloy non-heat-treated heat resistant steel having reduced variation in strength under high temperature environment and method of producing the same
JPS61204353A (en) Steel material having superior strength and toughness in as warm forged state
JP2003293095A (en) High-strength martensitic stainless steel material