JPS586118A - Electret element and method of producing same - Google Patents

Electret element and method of producing same

Info

Publication number
JPS586118A
JPS586118A JP10325281A JP10325281A JPS586118A JP S586118 A JPS586118 A JP S586118A JP 10325281 A JP10325281 A JP 10325281A JP 10325281 A JP10325281 A JP 10325281A JP S586118 A JPS586118 A JP S586118A
Authority
JP
Japan
Prior art keywords
temperature
electret
surface potential
film
electret element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10325281A
Other languages
Japanese (ja)
Inventor
藤本 定司
榎本 皓平
永島 哲輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatsu Electric Co Ltd
Iwasaki Tsushinki KK
Original Assignee
Iwatsu Electric Co Ltd
Iwasaki Tsushinki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatsu Electric Co Ltd, Iwasaki Tsushinki KK filed Critical Iwatsu Electric Co Ltd
Priority to JP10325281A priority Critical patent/JPS586118A/en
Publication of JPS586118A publication Critical patent/JPS586118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明性、小型かつ軽量で高感度のエレクトレシトコン
デンf−マイク四ホン等に使用するのに好適なエレクト
レット素子に関する0本発明は、★九、このようなエレ
クトレット素子會、信頼性が高く、かつ、簡単に製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electret element suitable for use in a compact, lightweight, and highly sensitive electret condenser f-microphone, etc. The present invention relates to a reliable and easy manufacturing method.

従来、エレクトレット素子を製造する方法としては、(
1)熱エレクトレツト法、(2)電子線照射エレクトレ
ット法等が知られているが、熱エレクトレ、ト法はガラ
ス転移点以上融点以下の高置tK保ち、一定の圧力下に
高電圧をかけながら室温になるまで冷却する方法で作業
時間が1#間以上もかかるという欠点を有する。また、
電子線照射エレクトレット法は低エネルギー電子me照
射してエレクトレツトにする方法で、この方法に轄装置
が量産向きに適しておらず高価であるという欠点がある
。上記し九従来公知の二つのエレクトレット法によるエ
レクトレット素子は、高分子フィルムには1〜2Kv/
aII2の高v!I縦O表面電荷が帯電するが、これを
エレクトレットコンデンサ!づり菓子として実用化する
ためKは、経時変化の少ない安定な表面電位になるよう
安定住処mを行なわなければならない。一般に初期表面
電位の1000位の値の所が最も一時的に安定し九表面
電位といわれ、70℃〜80℃の高温で処理し初期表面
電位を減衰させ、安定化させている。しかし初期表面電
位の1/1o位までKするのにSOO〜SOa時間もの
長時間kilL量産上のネックとなっている。
Conventionally, the method for manufacturing electret elements is (
1) Thermal electret method, (2) Electron beam irradiation electret method, etc. are known, but the thermal electret method maintains the temperature at a high temperature above the glass transition point and below the melting point, and applies a high voltage under a constant pressure. However, the method of cooling to room temperature has the disadvantage that it takes more than 1 hour to work. Also,
The electron beam irradiation electret method is a method of producing electrets by irradiating them with low-energy electrons, and this method has the disadvantage that the equipment required for this method is not suitable for mass production and is expensive. The electret elements based on the two conventionally known electret methods described above have a polymer film with a power of 1 to 2 Kv/
aII2 high v! I vertical O surface charge is charged, but this is an electret capacitor! In order to put it into practical use as a confectionery, K must be placed in a stable habitat so that it has a stable surface potential with little change over time. Generally, a value of about 1000 of the initial surface potential is the most temporarily stable and is called the nine surface potential, and is treated at a high temperature of 70° C. to 80° C. to attenuate and stabilize the initial surface potential. However, it takes a long time from SOO to SOa to reduce the K to about 1/10 of the initial surface potential, which is a bottleneck in mass production.

また、表面電位を利用したエレクトレット素子は耐湿性
が劣り、信頼性が嵐くないため湿度に対する保護処理t
miす必要がめっ友。
In addition, electret elements that use surface potential have poor moisture resistance and are not reliable, so they must be protected against humidity.
I need a friend.

従って、本発明は、上記した従来のエレクトレット素子
及びその製造方法の欠点を解決し、短時間で経時変化の
少ない安定なエレクトレット素子及びその製造方法を提
供することt目的とする。
Therefore, an object of the present invention is to solve the above-described drawbacks of the conventional electret element and method of manufacturing the same, and to provide a stable electret element and method of manufacturing the same in a short time and with little change over time.

本発明Kl!り九エレクトレット嵩子は、フッ素系樹脂
74ルムから成り、水、アルコール又は水蒸気中に浸漬
した後、フッ素系樹脂のガラス転移点以下の温度で加温
し九場合に、帯電量が実質上繍持されるような表面電位
特性を有することt″轡黴する。
This invention Kl! The electret material is made of fluorine-based resin, and when it is immersed in water, alcohol, or steam and then heated at a temperature below the glass transition point of the fluorine-based resin, the amount of charge becomes substantially lower. It has surface potential characteristics such that it is moldy.

本発明に従り九エレタトレット素子の製造方法は、80
℃以上の温度に加熱し良状態でコロナ放電方式によって
分極し帯電させ九フッ素系樹脂フィルムを水、フルコー
ル又は水蒸気中に浸漬して鋏帯電フィルムの不安定な電
荷を除去し良後、前記7y素系樹脂のガラス転移点以下
の温度で熱処理することから成る。
According to the present invention, the method for manufacturing a nine-element totlet element comprises:
℃ or higher, polarized and charged by a corona discharge method in a good state, and immersed the nine-fluorine resin film in water, Flucor, or steam to remove the unstable charge of the scissors-charged film. It consists of heat treatment at a temperature below the glass transition point of the base resin.

本発明に従った一エレクトレtト素子及びその#遣方法
に使用されるフッ素樹脂フィルムは、四ツ、化エチレン
六弗化プロピレンポリマー(FMP)、ボリフ、化ビニ
リデン(PVF’1)、ポリ四弗化エチレン(TFE)
等のフッ素系樹脂フィルムなどである。ポリエチレンテ
レフタレー) (P112T)フィルム等も使用できる
が、吸水率が少ない前記フッ素系樹脂フィルムが、経時
的に安定していて好ましい、このようなフッ素系樹脂7
4ルムは80℃以上の温度でコロナ放電方式によりて分
極帯電させる。
The fluororesin films used in the electret element and the method for using the same according to the present invention are fluoroethylene, ethylene hexafluoropropylene polymer (FMP), boroph, vinylidene chloride (PVF'1), polytetrafluoropropylene, Fluorinated ethylene (TFE)
and other fluororesin films. Polyethylene terephthalate) (P112T) film can also be used, but the fluororesin film with low water absorption is preferred because it is stable over time.
4lum is polarized and charged by a corona discharge method at a temperature of 80° C. or higher.

コロナ放電方式による分極化装置の概略gt−第1図に
示す、即ち、金属製電極板4上にポリエステルフィルム
、ポリイ(ドフィル^等の絶縁フィルム5を張り(コロ
ナ電流が過大に流れるのtuI止する)、その上にエレ
クトレット化するフvpH4系樹脂フィルム2を蓋き、
その1約1O−C)WrKタングステンワイヤー1tけ
る。W極I[4はアル(榎、鉄板、銅板などt使用し、
高圧電源7のアース側と直結すると共に、エレクトレy
)X子を搭載し、かつ、タングステンワイヤー下の距離
を一定に保つ役割も果す。この装f!Itt所定の温度
の恒温槽に入れるか、又は電極板4の下にホットプレー
)51fきエレクトレット化するフッ素系樹脂フィルA
2が所定の温度になるようにする。第1図において、6
は移動車を示し、7はコロナ放電を起させる高圧電源を
示す。なお、移動車6#ま、一定時間で一定距離を移動
することによりエレクトレット素子がタングステンワイ
ヤー下を通過する時間、即ちコロナ放電時間をコントロ
ールする役割を負っている。
A schematic diagram of a polarization device using a corona discharge method is shown in FIG. ), cover it with a fuvpH4 resin film 2 to be converted into an electret,
Part 1: Approximately 1O-C) Cut 1 ton of WrK tungsten wire. W pole I [4 uses aluminum (enoki, iron plate, copper plate, etc.),
Directly connected to the ground side of the high voltage power supply 7, and
) It also carries the X-element and also plays the role of keeping the distance under the tungsten wire constant. This outfit f! Fluorine resin film A to be converted into electret by placing it in a constant temperature bath at a predetermined temperature or by hot spraying it under the electrode plate 4.
2 to a predetermined temperature. In Figure 1, 6
indicates a moving vehicle, and 7 indicates a high-voltage power source that causes corona discharge. The moving vehicle 6 # has the role of controlling the time for the electret element to pass under the tungsten wire, that is, the corona discharge time, by moving a certain distance in a certain time.

分極条件は温度、印加電圧、及び時間に関係する。フッ
素系樹脂フィルムとしてFIFを用い、分極時間20秒
で、印加電圧と温度を下記#11のように変動させて試
料を作成した。
Polarization conditions are related to temperature, applied voltage, and time. Samples were prepared using FIF as the fluororesin film, with a polarization time of 20 seconds, and by varying the applied voltage and temperature as shown in #11 below.

獣  1 次に1各試料【エチルアルコール中に数秒浸漬しフィル
ムの表面電位を零ボルトにした後、80℃の恒温槽で3
0分間処理すると表面電位があられれてくる。
Beast 1 Next, each sample was immersed in ethyl alcohol for a few seconds to bring the surface potential of the film to zero volts, and then heated in a constant temperature bath at 80°C for 3 seconds.
After processing for 0 minutes, the surface potential becomes low.

処理後の各試料の表面電位の測定値(V)tjllz図
のグラフに示す、この結果から−わかる様に、分極温度
が80℃以上の場合、表面電位は回復するが60℃以下
で分極しえものは回復現象がみられない。また、・O℃
以上O楊舎、印加電圧が高い方が回復する表面電位は大
きくなる。
Measured value of surface potential of each sample after treatment (V) As can be seen from the results shown in the graph, the surface potential recovers when the polarization temperature is 80°C or higher, but polarization occurs below 60°C. No recovery phenomenon was observed for the animals. Also, ・O℃
As stated above, the higher the applied voltage, the greater the recovered surface potential.

更に% FiilPフィルムに代えてポリフV化ビ具リ
デン(PVP2)yイルムを用−で試験した場合にもほ
ぼ同様な結果が得られた。
Furthermore, almost similar results were obtained when a polyvinyl vinylidene (PVP2) film was tested in place of the %FiilP film.

温度80℃及び印加電圧6KVで分極させた場合も印加
時間を長くすればする程、エレクトレット素子の回復表
面電位は高くなる。なお、分極温度が80℃で印加電圧
t4KV未満としても長時間印加さえすれば実用しうる
工Vり)L/ット票子を得ることができる。を九、12
0℃を越えた温度で分極し走時も素子表面電位の回復現
象が認められる。シ喪がって、使用するフッ素系樹脂の
融点以下でTo妙さえすれば、高い温度の方が短時間で
分極させることができる。
Even when polarization is performed at a temperature of 80° C. and an applied voltage of 6 KV, the longer the application time, the higher the recovered surface potential of the electret element. Incidentally, even if the polarization temperature is 80° C. and the applied voltage is less than t4 KV, it is possible to obtain a practical L/t tag as long as the application is applied for a long time. 9, 12
A recovery phenomenon of the element surface potential is observed even during polarization and travel time at temperatures exceeding 0°C. However, as long as the temperature is below the melting point of the fluororesin used, polarization can be achieved in a shorter time at a higher temperature.

なお、前記した安定化処理においてエチルアルロールに
代えてメチルアルコール、水、水蒸気中のような高温高
温下(70℃、100に)等で処理した場合も、いずれ
も上記エチルアルコールの場合の結果と変らなか−)喪
、又、これらに浸漬後の熱処理は、PIPフィルムの場
合、処理時間を一定とし走時熱処理温度を高くすれば回
復する表面電位の値は徐々に高くなり、100℃tこえ
ると急に低くなってくる。
In addition, in the above-mentioned stabilization treatment, even when treated at high temperature (70 ° C., 100 °C) etc. in methyl alcohol, water, steam, etc. instead of ethyl allol, the results obtained in the case of ethyl alcohol are the same. In the case of PIP film, if the treatment time is kept constant and the travel heat treatment temperature is increased, the value of the recovered surface potential will gradually increase. Once it reaches that level, it suddenly becomes lower.

これは使用フッ素系樹脂のガラス転移点を超えたために
かかる現象の変化が起龜九ものであ勤、従ってガラス転
移点を超える温度でO熱処理は好ましくない、勿論、熱
処理温度が低i場合には所定の表面電位までチャージ1
wA復させるのに長時間t!!するので、例えば、Fl
iFフィルムの場合、ガラス転移点に近い温度範囲80
℃〜・SCが熱処理温度としては最適の条件といえる。
This is because the change in this phenomenon is often caused by exceeding the glass transition point of the fluororesin used. Therefore, O heat treatment at a temperature exceeding the glass transition point is not preferable.Of course, when the heat treatment temperature is low, is charged 1 to a predetermined surface potential.
It took a long time to recover! ! So, for example, Fl
In the case of iF film, the temperature range close to the glass transition point is 80
℃~·SC can be said to be the optimum condition for the heat treatment temperature.

一般に使用されている熱エレクトレット素子で製造した
エレクトレット素子は使用温度範囲(−sO〜60℃)
で経時的に帯電量が減衰傾向を示し、その九め信頼性の
点でも問題がある。これに対し、本発明に係ゐエレクト
レット素子は使用温度範囲で経時的に帯電量が上昇傾向
を示し、そのため信頼性的にも安定しているといえる。
Electret elements manufactured using commonly used thermal electret elements have an operating temperature range (-sO to 60°C).
The amount of charge shows a tendency to attenuate over time, and there is also a problem in terms of reliability. On the other hand, in the electret element according to the present invention, the amount of charge tends to increase over time within the operating temperature range, and therefore it can be said that it is reliable and stable.

以下余白 以上l!明し走通に、本尭1!に従えば、711素系樹
麿ツイルムを用い、S・℃以上0@度で=−す放電方式
によ)分極を行い(印加電圧が低い場合には長時間分極
す為必要がある)、次いでアルコール、水、水蒸気等で
74ルム上の不安定な表面的な電荷を除去し、更にフッ
素系樹脂のガラス転移点以下の温度で熱@iiすること
により儒II性0高いエレクトレット素子を簡単な方淡
で調造する仁とができる。このようKして得られたエレ
クトレット素子(PMPフィルム厚さxspS分極条件
1@0CX10KV印加×20秒;安定化鶏珊エチルア
ル冨−ル浸漬;熱処瑠aocxio分)の帯電量(II
画電位)の経時変化を温湿度ナイタル試験(70℃X?
@%R,H,Xt5H〜−5ec×tlH)で評価した
。その結果を第S図(dのダツラ:に示す。
More than a margin below! Tomorrow, Mototaka 1! According to the method, polarization is performed using 711-element-based tree-maro twillum at 0°C or higher by the discharge method (if the applied voltage is low, it is necessary to polarize for a long time), Next, by removing unstable surface charges on the 74 lum with alcohol, water, steam, etc., and further heating at a temperature below the glass transition point of the fluororesin, an electret element with high Confucian properties can be easily produced. It is possible to prepare jin in the same way. The charge amount (II
Temperature and humidity nital test (70℃X?
@%R,H,Xt5H~-5ec×tlH). The results are shown in Figure S (Datura:).

試験条件としては第111i(ロ)に示すように高温7
・CX?・%R,H,Xt1時間〜低温−墨O℃×t1
時間Oナイタルで、1日Sナイクル(Itイクル・時間
)として連続縁ヤ返して試験した。
The test conditions are high temperature 7 as shown in No. 111i (b).
・CX?・%R, H, Xt 1 hour ~ Low temperature - Black O℃ x t1
The test was carried out by continuously turning the edges at a time of O nital and a day of S nite (It cycle/time).

第S図(荀中ムは本発明のエレクトレット素子、Xおよ
びYはそれぞれX社およびY社製のエレクトレット素子
である。こO第S図(荀でも明らかなように、Xおよび
Yの素子とも5tイタル薯度ですでに表面電位が5%以
上低下しはじめ、10ナイクルでは約10%、sOナイ
クルで約2s%%101)ナイクルでは約SO%、と大
巾に低下し、素子自体の性能劣化蝙象が極端に見られる
。したがりて、これらXおよびYの如自素子をマイク謬
ホンに使用し九場合には経時的Kll用上の不^合が生
じゐ。
FIG. The surface potential has already begun to drop by more than 5% at 5t ital density, about 10% at 10 nite, and about 2s0% at SO nite. Extreme deterioration is seen.Therefore, if these X and Y elements are used in a microphone/phone, a problem will occur over time in terms of KII performance.

これに対して、零発1mKよるエレクトレット素子人は
、SOナイタルS*會では、むしろ表面電位が最大で約
5%橿度上昇する傾向が見られ、性能が向上する方向と
なっていゐ、10Gナイクルまでの変化率も±5%以内
であ)、従乗例に比べ極めて安定し走時性を有している
。ちなみに1温湿度ナイクル試験におけゐ50ナイクル
は、通常の時間に換算すると約S〜10年に椙轟し、1
00サイクルでは約1s〜20年@変と見られている。
On the other hand, in the case of electret devices using 1mK zero-fire, in SO Nital S*, the surface potential tends to increase by about 5% at most, indicating an improvement in performance. The rate of change up to Nycle is also within ±5%), and has extremely stable time running performance compared to the secondary example. By the way, 50 Nykles in the 1 temperature/humidity Nykles test, when converted to normal time, will rise from about S to 10 years, and 1
In the 00 cycle, it is expected to vary from about 1 s to 20 years.

し九がって、本発明のエレクトレット素子ムは、実用的
に約15年1度は十分安定した特性が得られることにな
ゐ。
Therefore, the electret element of the present invention can practically provide sufficiently stable characteristics for about 15 years.

この結果からも本発明の製造方法によって製造し九エレ
タトレット素子が高い信頼性を有するものであることが
明らかである。
It is clear from this result that the nine-element totlet element manufactured by the manufacturing method of the present invention has high reliability.

更に、第211に示した回復現象を有するエレクトレッ
ト素子を再度エチルアル;−ル中に浸漬し*W電位を零
ボルトにし九場合にも再度80℃の恒温槽でSO仕分間
熱処運をほどこすことによシ表面電位があられれてくる
ことを認め九、この処運後の各試料の表面電位の測定値
を第4EK示す。
Furthermore, the electret element having the recovery phenomenon shown in No. 211 is immersed in ethyl alcohol again, and the W potential is set to zero volts, and then heat treatment is performed again for SO sorting in a constant temperature bath at 80°C. Recognizing that the surface potential in particular decreases, the measured values of the surface potential of each sample after this treatment are shown in the 4th EK.

このことから安電なチャージが7ツ素系樹脂フイルム内
にトラップされていることがよく分る。
This clearly shows that low-voltage charges are trapped within the heptadium-based resin film.

以上11ijl!したように、本発明に従えば、信頼性
の高いエレクトレット素子を簡単にかつ短時間で製造す
ることができ、エレクトレット;ンデンナマイタ用エレ
タトレフト素子として好適に使用すゐことが出来る。
That’s 11ijl! As described above, according to the present invention, a highly reliable electret element can be manufactured easily and in a short time, and can be suitably used as an electret element for an electret; ndenna miter.

ILWJ面の簡単な1IIWA 第11illは、本尭明方織に従ってフッ素系樹脂フィ
ルムをコロナ放電方式によ)分極帯電させゐ装置の一例
を示す概略説明図であ〉、 第2図はFEPフィルムをいくつかの条件で分極書せ、
次にエチルアルツール中に浸漬してフィルムの表面電位
を零ボルトにし九後、an℃で50分間熱処理した時の
回復表面電位を示すグツ7図であシ、 M5図(荀は本発明に従うて製造しえFIP74ルムか
ら成るエレクトレット素子の帯電量(表面電位)の経時
変化を示す湿温度ナイタル試験の結果を示すグラフであ
)、第51I(bl)はその試験条件を示す温湿度ナイ
クル図であ為。
Figure 2 is a schematic explanatory diagram showing an example of a device for polarizing and charging a fluororesin film (by a corona discharge method) in accordance with Hon'ei Meikan Ori. Write the polarization under some conditions,
Next, the surface potential of the film was brought to zero volts by immersion in ethyl alcohol, and after that, it was heat-treated at 10°C for 50 minutes to show the recovered surface potential. 51I (bl) is a graph showing the results of a humidity and temperature nital test showing the change over time in the amount of charge (surface potential) of an electret element made of FIP74 lume manufactured by FIP74), and No. 51I (bl) is a temperature and humidity Nycl diagram showing the test conditions. For a reason.

第41mは本発@Kl!りて製造し九FIPフィルムか
ら成るエレクトレット素子を再度エチルアルコール中に
浸漬してフィルム表面の電位を零ボルトにし死後41a
o℃でSO分間熱躯履した時の回復表面電位を示すグラ
フ閣である。
The 41st meter is the main departure @Kl! The electret element made of nine FIP films was immersed in ethyl alcohol again to bring the potential of the film surface to zero volts, and the electret element was heated at 41a after death.
This is a graph showing the recovered surface potential when exposed to heat for SO minutes at 0°C.

第1図において、1はタンダステンワイヤー、2はエレ
クトレット化する7シ素系樹脂フイルム、墨は絶縁フィ
ルム、4は電Ii家、纂はホットプレー)、4a移動車
、アは高圧電源を示す。
In Figure 1, 1 is a tundsten wire, 2 is a 7-silicon resin film to be converted into an electret, black is an insulating film, 4 is an electrical appliance, the bottom line is a hot play), 4a is a moving vehicle, and A is a high-voltage power source. .

特許出願人 岩崎過信機株式会社 特許出願代理人 弁理士 青 木   網 弁理士 画 舘 和 之 弁理土石1)敬 弁理士 山 口 晒 之patent applicant Iwasaki Sushinki Co., Ltd. patent application agent Patent attorney Aoki Ami Patent Attorney Painter Kazuyuki Tate Benri Doseki 1) Kei Patent attorney Sarayuki Yamaguchi

Claims (1)

【特許請求の範囲】 1、 水、アルコール又は水蒸気中に浸漬した後7v票
系樹脂のガラス転移点以下の温度で加温した場合に、帯
電量が実質上維持されるようなam電位特性を有するこ
と1*黴とするフッ素系樹脂フィルムから成るエレクト
レット素子。 L 80℃以上の温度に加熱し良状態でコロナ放電方式
によって分極し帯電させ友フッ素系樹脂フィルAj水、
アルコール又は水蒸気中に浸漬して鋏帯電フィルムの不
安定な電荷を除去した後、鋺記7シ素系樹脂Oカラス転
移点以下の温度で熱−「聰することを特徴とするエレク
トレット素子の製造方法。
[Scope of Claims] 1. Am potential characteristics such that the amount of charge is substantially maintained when heated at a temperature below the glass transition point of the 7V resin after being immersed in water, alcohol or steam. Possessing 1*Electret element made of moldy fluororesin film. L Heated to a temperature of 80°C or higher and polarized and charged by a corona discharge method in good condition to form a fluorine-based resin filter Aj water,
Production of an electret element characterized by removing the unstable charge of the scissor-charged film by immersing it in alcohol or water vapor, and then heating it at a temperature below the glass transition point of silicon-based resin 7. Method.
JP10325281A 1981-07-03 1981-07-03 Electret element and method of producing same Pending JPS586118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10325281A JPS586118A (en) 1981-07-03 1981-07-03 Electret element and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10325281A JPS586118A (en) 1981-07-03 1981-07-03 Electret element and method of producing same

Publications (1)

Publication Number Publication Date
JPS586118A true JPS586118A (en) 1983-01-13

Family

ID=14349246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10325281A Pending JPS586118A (en) 1981-07-03 1981-07-03 Electret element and method of producing same

Country Status (1)

Country Link
JP (1) JPS586118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252599A (en) * 1988-08-16 1990-02-22 Agency Of Ind Science & Technol Ultrasonic transducer and its manufacture
JP2006180450A (en) * 2004-11-26 2006-07-06 Univ Of Tokyo Electrostatic induction conversion device
US7449811B2 (en) 2004-11-26 2008-11-11 The University Of Tokyo Electrostatic induction conversion device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252599A (en) * 1988-08-16 1990-02-22 Agency Of Ind Science & Technol Ultrasonic transducer and its manufacture
JP2006180450A (en) * 2004-11-26 2006-07-06 Univ Of Tokyo Electrostatic induction conversion device
US7449811B2 (en) 2004-11-26 2008-11-11 The University Of Tokyo Electrostatic induction conversion device
JP4670050B2 (en) * 2004-11-26 2011-04-13 国立大学法人 東京大学 Electret and electrostatic induction type conversion element
US8053948B2 (en) 2004-11-26 2011-11-08 The University Of Tokyo Electrostatic induction conversion device

Similar Documents

Publication Publication Date Title
Rose Space-charge-limited currents in solids
Szmytkowski et al. Electron scattering from isoelectronic, Ne= 18, CH3X molecules (X= F, OH, NH2 and CH3)
Islam et al. Effect of different factors on the leakage current behavior of silicon photovoltaic modules at high voltage stress
EP0054420A2 (en) Functional electric devices
US4271425A (en) Encapsulated electronic devices and encapsulating compositions having crown ethers
US4527218A (en) Stable positively charged Teflon electrets
Bamji et al. Polymer electrets corona charged at high temperature
JPS586118A (en) Electret element and method of producing same
US4604144A (en) Process for cleaning a circuit board
JPS6133279B2 (en)
US3405440A (en) Ferroelectric material and method of making it
US2386750A (en) Selenium cell
US2471898A (en) Reclamation of selenium rectifier cells
US3238062A (en) Photoconductor preparation
US3861031A (en) Method of making a moisture-sensitive element
Raschke et al. Polyparaxylylene electrets usable at high temperatures
US2871423A (en) Electrolytic capacitor
US4248808A (en) Technique for removing surface and volume charges from thin high polymer films
Adamec The volume resistivity of electrical insulating organic materials under irradiation
Shinyama et al. Dielectric properties of electron beam irradiated polymer insulating material
Mullen et al. Wet tracking and erosion evaluation of non-ceramic insulation for outdoor use
JPH11111565A (en) Manufacture of electret element and apparatus thereof
Chand et al. Space-charge distributed relaxations in vacuum-deposited polyvinyl fluoride films
Anderson et al. Electret Stability in the Presence of Ions
Borisova et al. Features of Space Charge Relaxation in a Polyimide Printed Circuit Board