JPS5861172A - Absorption refrigerant composition - Google Patents

Absorption refrigerant composition

Info

Publication number
JPS5861172A
JPS5861172A JP56160570A JP16057081A JPS5861172A JP S5861172 A JPS5861172 A JP S5861172A JP 56160570 A JP56160570 A JP 56160570A JP 16057081 A JP16057081 A JP 16057081A JP S5861172 A JPS5861172 A JP S5861172A
Authority
JP
Japan
Prior art keywords
composition
refrigerant composition
absorption
organic solvent
absorption refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56160570A
Other languages
Japanese (ja)
Other versions
JPS5942031B2 (en
Inventor
Yoshiki Goto
良樹 後藤
Eiji Ando
安藤 栄司
Isao Takeshita
功 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56160570A priority Critical patent/JPS5942031B2/en
Publication of JPS5861172A publication Critical patent/JPS5861172A/en
Publication of JPS5942031B2 publication Critical patent/JPS5942031B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To prepare an absorption refrigerant composition having excellent thermal stability at high temperature, and suitable for an absorption refrigerating machine, heat pump, etc., by adding a phosphonate compound to a mixture of a fluorohydrocarbon as a solvent and an amide-type organic solvent as an absorbent. CONSTITUTION:The objective composition is prepared by adding (A) a phosphonate compound[preferably an alkyl phosphonate of formula (R1-R3 are H, alkyl, phenyl, or alkylphenyl)]to (B) a fluorohydrocarbon (preferably dichloromonofluoromethane, monochlorotetrafluoroethane, etc.) as a solvent and (C) an amide-type organic solvent (preferably N,N-dimethyl-formamide, N,N-dimethylacetamide, etc.) as an absorbent. The amount of the component (A) is 0.05- 0.5wt% of the component (C) in terms of phosphorus concentration. EFFECT:There is little yellowing of the composition and no formation of tarry black solid even at a high temperature, and the life of the composition is longer than that of the conventional one by a factor of 3.

Description

【発明の詳細な説明】 本発明は、吸収式冷凍機およびヒートポンプなどに用い
る新規な熱安定性にすぐれた吸収冷媒組成物に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel absorption refrigerant composition with excellent thermal stability for use in absorption refrigerators, heat pumps, and the like.

一般K、例えば吸収式冷凍サイクルは吸収冷媒組成物を
内部に含んだ閉鎖回路で、その回路の一部である蒸発器
で、液化した冷媒を蒸発させることにより、外部から熱
を奪い冷凍する。蒸発器で気化した冷媒蒸気は吸収器で
低冷媒濃度溶液と接触し吸収される。冷媒を吸収した高
冷媒濃度溶液は外部熱源より熱を受けることにより、冷
媒蒸気?j、放出する。気化した冷媒蒸気は次に凝縮器
で凝縮され、液化冷媒として蒸発器へ送られる。冷媒蒸
気を放出した溶液は低冷媒濃度溶液として吸収器に戻り
、冷媒蒸気を再び吸収する。
For example, an absorption refrigeration cycle is a closed circuit that contains an absorption refrigerant composition, and an evaporator that is part of the circuit evaporates the liquefied refrigerant to remove heat from the outside and perform freezing. The refrigerant vapor vaporized in the evaporator comes into contact with a low refrigerant concentration solution in the absorber and is absorbed. The high refrigerant concentration solution that has absorbed the refrigerant receives heat from an external heat source, resulting in refrigerant vapor? j, release. The vaporized refrigerant vapor is then condensed in a condenser and sent as liquefied refrigerant to an evaporator. The solution that has released the refrigerant vapor returns to the absorber as a low refrigerant concentration solution and absorbs the refrigerant vapor again.

このような冷却および加熱に対して、最高の可能な効果
は発生器での高冷媒濃度溶液を高温にしなければ達成で
きない。
For such cooling and heating, the highest possible effectiveness can only be achieved at high temperatures of the refrigerant-rich solution in the generator.

どころが、従来、冷媒にモノクロロジフルオロエノン(
R22)、吸収剤にN、N−ジメチルホルトアミド(D
MF )を用いた吸収冷媒組成物が提案されてきたが、
これらの組成物を用いた吸収式冷凍機およびヒートポン
プはい捷だ実用化に至っていない。ぞの′原因の一つは
上記組成物を約120℃以上の高温に加熱すると、R2
2が分解して、塩酸や弗酸などの生成物が生じ、機器を
構成する金属等を腐食し、さらにDMFも同時に分解し
て機器の損傷ばか9でなく、R22とDMFの物理化学
的性質の劣化という致命的な問題をき/こし到底許容で
きなかったからである。R22Fi。
However, conventionally, monochlorodifluoroenone (
R22), N,N-dimethylformamide (D
Absorption refrigerant compositions using MF) have been proposed;
Absorption refrigerators and heat pumps using these compositions have not yet been put into practical use. One of the causes of this is that when the above composition is heated to a high temperature of about 120°C or higher, R2
2 decomposes, producing products such as hydrochloric acid and hydrofluoric acid, which corrode the metals that make up the equipment, and DMF also decomposes at the same time, damaging the equipment. This was because they could not tolerate the fatal problem of deterioration. R22Fi.

弗化炭化水素の中でも比較的安定であり、一方DMFは
金属との共存においてアミン等の分解物を生成すること
はよく知られているところであるが、吸収冷媒組成物と
して用いたとき、各々単独での熱安定性からは予期しえ
ないほど、速くかつ複雑な劣化分解反応が起る。このよ
うな劣化分解反応は構成成分および組みあわせによって
、極めて個別的でかつ複雑であるから高温における熱安
定化は非常に困難である。したがって、R22/DMF
のごとき吸収冷媒組成物は他の組成物とくらべてすぐれ
た物理化学的性質をもっているにもかかわらず、上記に
述べたような欠点の故にまだ実用化に至っていないので
ある。
It is relatively stable among fluorinated hydrocarbons, and it is well known that DMF produces decomposition products such as amines when coexisting with metals, but when used as an absorption refrigerant composition, each Degradation and decomposition reactions occur at a rate that is faster and more complex than expected from the thermal stability of the compound. Such deterioration and decomposition reactions are extremely individual and complicated depending on the constituent components and their combinations, so thermal stabilization at high temperatures is extremely difficult. Therefore, R22/DMF
Despite the fact that absorbent refrigerant compositions have superior physicochemical properties compared to other compositions, they have not yet been put into practical use due to the drawbacks mentioned above.

本発明は、このような吸収冷媒組成物の分解劣化に対し
、吸収式冷凍機およびヒートポン7′などで最高の効果
が充分達成できるような高温で安定性にすぐれた組成物
を提供することにある。
The object of the present invention is to provide a composition that is highly stable at high temperatures and can sufficiently achieve the best effect in absorption refrigerators, heat pumps, etc. against decomposition and deterioration of such absorption refrigerant compositions. be.

本発明はモノクロロジフノ叱−オロメタン(R21)、
ジクロロモノフルオロメタン(R22)、トリフルオロ
メタン(R23)、モノクロロテトラフルオロエタン(
、R124)、モノクロロトリフルオ[Jエタン(R1
33)、モノクロロジフルオロエノン(R142)およ
びそゎらの混合物などより【”1曹Jlllる冷媒どし
ての弗化炭化水素と、N 、 N −7′メチルホルム
アミド(DMF )、N、N−ンメチルアセ]・アミド
(DMA )、N 、N−ジメチルプロピオンアミド(
DMP)、N、N−ジエチル、]、)Lムアミド(DE
F)およびそれらの混合物よ!、1選ばねる吸収剤とし
てのアミド系有機溶媒と、アルキルホスホネー用・、ア
リルアルギルホスホ不−1・、アリルホスホ不一トおよ
びそれらの混合物1、り選はノするホスホネート化合物
とからなる安定11−6さ7I/(や「J:l、Lな吸
収冷媒組成物をJJIi洪することにある。
The present invention relates to monochlorodifuno-olomethane (R21),
Dichloromonofluoromethane (R22), trifluoromethane (R23), monochlorotetrafluoroethane (
, R124), monochlorotrifluoro[J ethane (R1
33), monochlorodifluoroenone (R142) and mixtures thereof, etc., and fluorinated hydrocarbons as refrigerants, N,N-7'methylformamide (DMF), N,N-methylacetic acid, etc. ]・Amide (DMA), N,N-dimethylpropionamide (
DMP), N,N-diethyl,],)Lmamide (DE
F) and mixtures thereof! , 1. A stable compound consisting of an amide organic solvent as an absorbent of choice, and a phosphonate compound of choice for alkylphosphonates, allylargylphosphomono-1, allylphosphomonate, and mixtures thereof1. 11-6S7I/(or "J:l, L" absorption refrigerant composition).

11 Re hi載の弗化炭化水素はメタン、エタン系
弗jl、’ i、i<’化水素に限定されるものではな
い。少くとも11l−i1以J−0の水素、少く古も1
個以−1−の弗素および)にりの塩素を有する弗化炭化
水素を庁む。もちろん、そJlらの)°4性体や混合物
を用いても良い。こ;lll’bi’、J:H畳で吸収
サイクルの動作条件によって選幻゛tするが、特に好ま
しいものは、実施例においても示されるように、R21
、R22,R23゜R124、R133、R142であ
る。特に好ましくはR22、R124である。これらの
弗化炭化水素は各々、分子内の1つの水素と吸収剤との
間に極めて優れた水素結合を示すと考えられている。こ
のような水素結合は冷媒の吸収溶解力を増加する。また
、これらの弗化炭化水素の他の物理化学的性質において
も、機器の適応性にすぐれている。
The fluorinated hydrocarbons listed in 11 Re hi are not limited to methane, ethane-based fluoride, and hydrogen. At least 11l-i1 or more J-0 hydrogen, at least 1
It contains a fluorinated hydrocarbon having more than one fluorine and one or more chlorine. Of course, it is also possible to use a 4-mer compound or a mixture. The choice is made depending on the operating conditions of the absorption cycle in this case, J:H, but particularly preferred is R21, as shown in the examples.
, R22, R23°R124, R133, R142. Particularly preferred are R22 and R124. Each of these fluorinated hydrocarbons is believed to exhibit excellent hydrogen bonding between one hydrogen within the molecule and the absorbent. Such hydrogen bonds increase the absorptive and dissolving power of the refrigerant. In addition, these fluorinated hydrocarbons have excellent equipment adaptability in terms of other physical and chemical properties.

また、上記記載のアミド系有機溶剤はDMF 。Further, the amide organic solvent described above is DMF.

DMA、DMPおよびDEFに限定されるものではなく
、少くとも1つ以」二〇〇〇N結合を有するものを含む
。したがって、ホルムアミド、アセトアミド、モノメチ
ルホルムアミド、モノメチルアセトアミド、テトラメチ
ルウレアおよびN−メチルピロリドンなどを含むことは
明らかである。もちろん、これらの混合物を用いても良
い。しかしながら、より好ましいものは実施例において
も示されるようにDMF 、DMA 、DMPおよびD
EF工ある。特に好ましくはDMFおよびDMAであろ
。と7Lらのアミド糸イf機溶媒は冷媒との水素紹介を
形成し易く冷媒の吸収溶解力が大きい。
It is not limited to DMA, DMP and DEF, but includes those having at least one 2000N bond. Therefore, it is clear that formamide, acetamide, monomethylformamide, monomethylacetamide, tetramethylurea, N-methylpyrrolidone, and the like are included. Of course, a mixture of these may also be used. However, more preferred ones are DMF, DMA, DMP and D
There is EF engineering. Particularly preferred are DMF and DMA. and 7L et al.'s amide yarns are easy to form hydrogen bonds with the refrigerant and have a large ability to absorb and dissolve the refrigerant.

また、前記に述べたホスホネート化合物Cよ化学式(R
IO)(R20)R5(0)Pで示さf+、人中のJ 
* R2およびR5は各々独立に水素基、アルギル基、
アルケニル基、フェニル基、アルキルツユニル基、アル
カレンフェニル基、アルカレンアルギルフ1ニル基、ア
ルキレンフェニル基おヨヒ゛ノ′ルキレンアルギルフェ
ニル基である。この場合、ホスホネートが安定化に関し
て活性基であると考えられているので、構成成分R,、
R2およびR5、)入きさ、および11F類に臨界的で
はない。沸点。
In addition, the phosphonate compound C mentioned above can be expressed by the chemical formula (R
IO) (R20) R5 (0) f+, denoted by P, J in philtrum
*R2 and R5 each independently represent a hydrogen group, an argyl group,
These include an alkenyl group, a phenyl group, an alkyltuunyl group, an alkenyl phenyl group, an alkylene argylphenyl group, an alkylene phenyl group, and an alkylene argylphenyl group. In this case, since the phosphonate is considered to be the active group with respect to stabilization, the constituents R,
R2 and R5,) are not critical to 11Fs. boiling point.

1、i!I! /、’、1 *アミド系治機溶媒に対す
る溶解性および毒性などを考慮(7さえすれば、R,、
R2およびR3、す、5−″てが同じ又は異なるものや
、2つが同じで残りが異なるようなものや、またはそれ
らを単独ま7′(−は複数で用いてもよい。しかしなが
らよりり1−ま(2〈は、実施例で示すように、ジー2
−エチルへギンルホスホ不−ト、ジラウリルホスホネー
ト。
1.i! I! /,',1 *Considering solubility and toxicity in amide-based solvents (as long as 7, R,,
R2 and R3, 5-'' are the same or different, two are the same and the rest are different, or they can be used singly or 7' (- may be used in the plural. However, more than 1 -ma(2〈 is, as shown in the example, G2
-Ethylheginyl phospho-nit, dilauryl phosphonate.

ノドデシルホスホネート。ジトリデシルホスホネート、
ドデンルトリデシルホスホネ−1・、オレイルホスホネ
ート、ジ−n−ブチルヘキシルホスボネート、ンエチル
フェニルホスホネート、ジメチルフェニルホスホネート
などのR,、R2の炭素数が4〜18であるアルキル基
を2つ有し、R3が水素基またはアルキル基であるとこ
ろのアルキルホスホネートと、ジフェニルホスホネート
、ジノニルフェニルホスホネート、フェニルノニルフェ
ニルホスホネート、ジフェニルホスホネートなどのR1
゜R2がフェニル基または炭素数1〜9であるアルキル
基ヲ有するアルキルフェニル基を2つ有し、R5が水素
基であるアリルホスホネートおよびジ−n−ブチルフェ
ニルホスホネート、ジヘキシルフェニルホスホネート、
ジノニルフェニルへキシルホスホネートなどのR,、R
12がアルキル基オヨびフェニル基またはアルキルフェ
ニル基ヲ各々1つ以上有し、R5が水素基であるアリル
アルキルホスホネートであるにもかかわらず、それ自身
熱分解も受けにくく、かつ、1戸ン濃度許容範囲あ一層
広いアルキルホスホネートが碌も好ましい。
Nododecylphosphonate. ditridecylphosphonate,
R, such as dodenrutridecylphosphonate-1, oleylphosphonate, di-n-butylhexylphosphonate, ethylphenylphosphonate, dimethylphenylphosphonate, and two alkyl groups in which R2 has 4 to 18 carbon atoms. and alkylphosphonates where R3 is a hydrogen group or an alkyl group, and R1 such as diphenylphosphonate, dinonylphenylphosphonate, phenylnonylphenylphosphonate, diphenylphosphonate, etc.
° Allylphosphonate, di-n-butylphenylphosphonate, dihexylphenylphosphonate, in which R2 has two alkylphenyl groups having a phenyl group or an alkyl group having 1 to 9 carbon atoms, and R5 is a hydrogen group;
R, , R such as dinonylphenylhexylphosphonate
Although it is an allyl alkylphosphonate in which 12 has at least one alkyl group, phenyl group, or alkylphenyl group, and R5 is a hydrogen group, it is not susceptible to thermal decomposition itself, and has a concentration of 1 unit per unit. Alkylphosphonates with wider tolerances are also preferred.

弗化炭化水素、アミド系有機溶媒およびホスホネート化
合物からなる本発明の吸収冷媒組成物の(Iiはお互い
に特に臨界的ではない。冷媒と吸収剤の量はよく知られ
ているように機器の目的とする動作条件で主に決定され
る。また、ホスホネ−1・化合物はこれら組成物の熱力
学的および物理化学的性質が損われない程度に決定され
つるべきものである。したがってリン濃度1重量%以上
では組IJe物に悪影響を及ぼし、添加量に見あった効
果が朋侍できないばかりでなく、価格が上昇するばかし
である。まグζ0,5〜1重世%のリンa度では、ホス
ホネート化合物の分子量および構造によってかなりの差
異があられれ、アリルホスホネートおJ: ヒフ ’J
アルルキルホスホネートの中には、むしろ悪い効果をも
たらすものもでてくる。したがって0.05〜0.6重
量%のリン濃度範囲が好ましく、これらの範囲では充分
な安定効果が期待できるにもかかわらず、0.06〜0
.2重量%のす/濃度でv1著しい安定効果を示す。
The absorption refrigerant composition of the present invention consisting of a fluorinated hydrocarbon, an amide organic solvent and a phosphonate compound (Ii are not particularly critical to each other. The amounts of refrigerant and absorbent are determined by the purpose of the equipment, as is well known. The phosphor concentration is mainly determined by the operating conditions used.The phosphone-1 compound should also be determined to such an extent that the thermodynamic and physicochemical properties of these compositions are not impaired.Thus, the phosphorus concentration should be 1% by weight. The above will have a negative effect on the IJe compound, not only will it not be possible to achieve an effect commensurate with the amount added, but will also increase the price.At a phosphorus a content of 0.5% to 1%, the phosphonate There are considerable differences depending on the molecular weight and structure of the compounds;
Some aralkyl phosphonates may even have negative effects. Therefore, a phosphorus concentration range of 0.05 to 0.6% by weight is preferable, and although a sufficient stabilizing effect can be expected in these ranges,
.. At a concentration of 2% by weight v1 shows a significant stabilizing effect.

本発明による新規な吸収冷媒組成物は、従来の組成物と
くらべて著しく安定化された組成物セある。2oo℃以
上の高温においても、弗化炭化水素およびアミド系有機
溶媒の劣化分解が抑制され、組成物の置薬も遅くて、か
つ少く、タール状黒色に固化することはない。さらに組
成物の寿命という観点からすれば、はぼ3倍安定化され
、機器に用いた時長期の寿命が期待できる。
The novel absorption refrigerant composition according to the present invention is a composition that is significantly more stabilized than conventional compositions. Even at high temperatures of 20°C or higher, the deterioration and decomposition of fluorinated hydrocarbons and amide-based organic solvents is suppressed, and the composition is slow and minimal in appearance, and does not solidify into a tar-like black color. Furthermore, from the viewpoint of the lifespan of the composition, it is approximately three times more stable, and a long lifespan can be expected when used in equipment.

このように本発明は化 炭化水素とアミド系有機溶媒独
特の劣化分解反応を、ホスホネート化合物を適量加える
ことによって克服し、新規な安定化された吸収冷媒組成
物を提供することができたのである。
As described above, the present invention was able to overcome the deterioration and decomposition reaction unique to hydrocarbon and amide organic solvents by adding an appropriate amount of a phosphonate compound, and was able to provide a novel stabilized absorption refrigerant composition. .

〔実施例1〕 R22およびDMFを1:1の割合に混合し、下記に示
す化合物をDMFに対し、15重量%加エテ、アルミニ
ウム、銅、ステンレス(SUS−304)を共存させバ
イレックス管に封入して140℃で耐熱試験をおこなっ
た。
[Example 1] R22 and DMF were mixed at a ratio of 1:1, and the following compounds were added to DMF by 15% by weight, and aluminum, copper, and stainless steel (SUS-304) were added to the coexistence of a Vilex tube. It was sealed and a heat resistance test was conducted at 140°C.

■ ドデシルトリデシルホスホネート 1■ 2,6.−ジ−t−ブチル−P−クレゾー■ ト
リエチレンテトラミン ■ 2−ニトロプロパン [株] ジ−シクロへヤシルアミンニトライト■ β−
ナフトール ■ ヘキサメチルテトラアミン ■〜■の番号は各試料番号で、以下実施例においても同
様である。■は主に極圧添加剤に使用さJLる化合物で
あり、■〜■は酸化防止剤、■〜■は防錆剤、■〜■は
DMF安定化剤としてよく知らitている。−!た、従
来のR22とDMFからのみなる試料を■とした。
■Dodecyltridecylphosphonate 1■ 2,6. -Di-t-butyl-P-creso■ Triethylenetetramine■ 2-Nitropropane [Co., Ltd.] Di-cyclohexylamine nitrite■ β-
Naphthol ■ Hexamethyltetraamine The numbers from ■ to ■ are each sample number, and the same applies to the following examples. (2) is a compound mainly used in extreme pressure additives, (2) to (2) are well known as antioxidants, (2) to (2) are rust preventives, and (2) to (4) are well known as DMF stabilizers. -! In addition, a sample consisting only of conventional R22 and DMF was designated as ■.

その結果、試料■は1日目ですでに褐色を呈し3 H目
にはタール状の黒色溶液となり、試料■〜■は試料■に
比較し同様の変色を示したり、劣化が力11速されてい
るものもあり、3日目には全て黒色化していたのに対し
、試料■では、褐色を呈しているのみであった。一方、
試料■〜■のアルミニウムは多孔形状の激しい腐食をし
てタール状物質に被覆され、銅およびステンレスも全体
が黒化していたが、試料■ではアルミニウムが黒化して
いたにすぎず、銅、ステンレスは何ら異常はなかった。
As a result, sample ■ already turned brown on the 1st day and turned into a tar-like black solution by the 3rd day, and samples ■ to ■ showed similar discoloration compared to sample ■, and the deterioration was 11 times faster. On the third day, all of the samples had turned black, whereas sample (2) had only a brown color. on the other hand,
The aluminum of samples ■ to ■ was severely corroded in a porous shape and covered with a tar-like substance, and the copper and stainless steel were also completely blackened, but in sample ■, only the aluminum was blackened, and the copper and stainless steel There was no abnormality.

このように、かかる吸収冷媒組成では、よく知られてい
る酸化防止剤や防錆剤およびDMF安定化剤の効果は全
く示されず、ドデシルトリデシルホスホネートのみが著
しい安定効果を生みだすことを見いだした。
Thus, it has been found that such absorption refrigerant compositions exhibit no effect of well-known antioxidants, rust inhibitors and DMF stabilizers, and that only dodecyltridecylphosphonate produces a significant stabilizing effect.

〔実施例2〕 R124およびDMAを1:2の割合で混合し下記に示
す化合物をDMAに対し、1.0重量%加えて、銅、ス
テンレスを共存させ、パイレックス管に充填して160
℃で耐熱試験をおこなった。
[Example 2] R124 and DMA were mixed at a ratio of 1:2, 1.0% by weight of the compound shown below was added to the DMA, copper and stainless steel were made to coexist, and the mixture was filled into a Pyrex tube and heated to 160
A heat resistance test was conducted at ℃.

■ ジラウリルホスホネート Oジラウリルホスホネート 0 ジ−n−ブチルフェニルホスホネート0 フェニル
−α−ナフチルアミン @2,2.4−)ジメチル−1,2−ンヒドロキノリン o 2.4−ジニトロトルエン Oメタフェニレンジアミン Om−ニドロア′ニリン o−o LIi酸化防止剤およびo−Oは脱ハロゲン抑
制剤として知られている。また、R124およびDMA
からのみなる試料をOとした。
■ Dilaurylphosphonate O Dilaurylphosphonate 0 Di-n-butylphenylphosphonate 0 Phenyl-α-naphthylamine@2,2.4-)dimethyl-1,2-enehydroquinoline o 2.4-Dinitrotoluene O Metaphenylenediamine Om-nidro'niline o-o LIi antioxidant and o-O are known as dehalogenation inhibitors. Also, R124 and DMA
A sample consisting only of

その結果、試料Oは、2週目に黄色を呈し、8週[1で
id完全に黒色となっており、銅、ステンレスも黒化し
ていた。試料O−Oは、試料Oとぐらべて同程度もしく
は加速さitで黒色へと劣(1: L 7’、T。一方
、試料■〜◎は8週[」においても銅、ステンレスに何
ら異常はなく、溶液の色も無色か、かすかに黄変してい
るのみであった。
As a result, sample O exhibited a yellow color at the second week, and became completely black at 8 weeks [1], and the copper and stainless steel were also blackened. Compared to sample O, samples O-O turned black at the same level or acceleration (1: L 7', T. On the other hand, samples There were no abnormalities, and the solution was colorless or only slightly yellowed.

したがって、酸化防止剤や、)・ロゲン脱離防止削は全
く効果がないばかりか、むしろ悪影響を及ぼすばかりで
あった。
Therefore, anti-oxidant and )-rogen desorption prevention methods were not only ineffective at all, but also had a negative effect.

このことは、こJlらの組成物を各々単独で用いl−゛
時安定効果を示すにもかかわらず、組成物とし、て7ノ
L合し/ζ時にはbt来とは違った劣化分解反応をJ(
構成しているからであろう。すなわち、構成成分および
組みあわせによって、極めて個別的でかつ複雑であるか
ら、それらに効果のある安定化剤の発見が困難だといえ
る。一方、酸化防止剤はその中でも実施例1と同様にホ
スホネート化合物が著しい効果を示しており、この時、
アルキルホスホネート、アリルホスホネートおよびアリ
ルアルキルホスホネートなどいずれの場合にもすぐれて
いた。
This means that although each of the compositions of Jl et al. shows a stabilizing effect when used alone, when the composition is combined with 7L/ζ, the deterioration and decomposition reaction is different from that of bt. J(
This is probably because it is configured. In other words, since the constituent components and combinations are extremely individual and complex, it can be said that it is difficult to find a stabilizer that is effective for them. On the other hand, among the antioxidants, phosphonate compounds showed remarkable effects as in Example 1, and at this time,
All of the alkyl phosphonates, allyl phosphonates and allyl alkyl phosphonates were excellent.

〔実施例3〕 R124およびDMAを1:3の割合で混合し、ホスホ
ネート化合物、銅およびステンレスを加えて2oO℃、
7日間耐熱試験をおこなった。ホスホネート化合物の種
類、量は第1表に示すとおりである。
[Example 3] R124 and DMA were mixed at a ratio of 1:3, a phosphonate compound, copper and stainless steel were added, and the mixture was heated at 200°C.
A heat resistance test was conducted for 7 days. The type and amount of the phosphonate compound are shown in Table 1.

その結果、ホスホネ−1・の加えられていない試料Oは
7日目で墨色化し、遊離・・ロゲンの定量分析からほぼ
16%のR124が分解していた。
As a result, sample O to which phosphone-1 was not added turned black on the 7th day, and quantitative analysis of free...logen revealed that approximately 16% of R124 had been decomposed.

また、試料o、o、o、o、o  などのように0,0
5重量%以下のリン濃度では全く添加・効果はなく、む
しろ試料Oより悪化していた。
Also, samples 0, 0, such as o, o, o, o, o, etc.
At a phosphorus concentration of 5% by weight or less, there was no addition or effect at all, and it was actually worse than Sample O.

−万、試料e−43,0−0,0〜[相]およびO〜@
などのように0.05〜0.2重桁%のリン濃度範囲で
は、組成物の色にわずかに着色しているか、あるいは黄
色味のある程度でR124の分解も1%以下であった。
-10,000, sample e-43,0-0,0~[phase] and O~@
In the phosphorus concentration range of 0.05 to 0.2 double digit %, the composition was slightly colored or yellowish, and the decomposition of R124 was 1% or less.

さらに試料O2O〜0およびO75:どのように0.2
〜0.5重:1:%のリン濃度では組成物の色が黄色あ
るいは褐色を示し、R124の分解は多少の変動はある
が10%前後であった。しかし、試料0.0゜0などの
ように、リン濃度がO,S重量%以上になると、ホスホ
ネート化合物の種類によってかなり差異があられれ、時
には好ましくない影響がでてきた。
Further samples O2O~0 and O75: how 0.2
At a phosphorus concentration of ~0.5 wt:1:%, the color of the composition was yellow or brown, and the decomposition of R124 was around 10%, although there was some variation. However, when the phosphorus concentration exceeds O, S weight %, as in sample 0.0°0, there are considerable differences depending on the type of phosphonate compound, and sometimes unfavorable effects occur.

したがって、組成物の影響や価格等を考慮すると、1重
量%以上のリン濃度では添加量に見あった安定効果は期
待できない。好ましくはo、05〜0.5重量%のリン
濃度の範囲で添加すれば充分な安定効果が期待できる。
Therefore, when considering the influence of the composition and the price, a stabilizing effect commensurate with the amount added cannot be expected with a phosphorus concentration of 1% by weight or more. A sufficient stabilizing effect can be expected if the phosphorus concentration is preferably 0.05 to 0.5% by weight.

にもかかわらず、0.05給−Q 、2重量%のリン濃
度では著しい安定効果を示した。
Nevertheless, a phosphorus concentration of 2% by weight at 0.05 Fe-Q showed a significant stabilizing effect.

第1表 ]実施例4〕 R124およびDMAを1=2の割合デ混合しホスホネ
ート化合物、銅およびステンレスを加えて耐熱試験をお
こなった。
Table 1] Example 4 R124 and DMA were demixed in a ratio of 1=2, a phosphonate compound, copper and stainless steel were added, and a heat resistance test was conducted.

その結果を第2表に示す。第2表の数字は試験を始めて
から組成物が黄色に変化するまでの日数を示し、これら
の色変化が組成物の劣加と対応し、ま/こ相対的な組成
物の寿命とよく一致することは当該研究者にはよく知ら
れているところである。
The results are shown in Table 2. The numbers in Table 2 indicate the number of days from the start of the test until the composition turns yellow, and these color changes correspond to deterioration of the composition and are in good agreement with the relative lifespan of the composition. This is well known to the researchers concerned.

したがって、数字の大きいほど熱安定性が向上し、組成
物の安定性を増加している。
Therefore, the larger the number, the better the thermal stability, increasing the stability of the composition.

あらゆる温度範囲で充分な安定効果が得られることが第
2表で示されたが、200℃以上の温度ではホスホネ−
1・化合物を加えてない試料O〜0の約3倍程向上し、
それ以下の温度では非常に長い期間安定である。
Table 2 shows that a sufficient stabilizing effect can be obtained in all temperature ranges, but at temperatures above 200°C
1. Approximately 3 times better than sample O~0 without adding any compound,
It is stable for very long periods at temperatures below that temperature.

1一実施例6〕 実施例1と同様にして、第3表に示されるような試料−
〜0を作成した。なお、ホスホネ−1・化合物を含む試
料O−Oに対応してホスホネート化合物を含まない試料
を0〜■とし、第3表から割合した。
11 Example 6] In the same manner as in Example 1, samples as shown in Table 3 were prepared.
~0 was created. In addition, samples not containing a phosphonate compound were designated as 0 to ■ corresponding to samples O-O containing the phosphonate-1 compound, and the ratios were determined from Table 3.

その結果、本発明による試料O−Oは試料0〜0に比べ
て、組成物の着色が遅いか、あるいは少く、十分な安定
効果を示していlこ。
As a result, compared to samples 0 to 0, samples O-O according to the present invention exhibited slower or less coloring of the composition, indicating a sufficient stabilizing effect.

同時に、ム12−FeおよびCuなどの定量分析をおこ
なったが、組成物中の金属イオンの増加は遊離ハロゲン
の定量分析およびクロマトグラフによる分解生成物の定
性、定量分析とよく対応していた。
At the same time, quantitative analysis of Mu-12-Fe, Cu, etc. was conducted, and the increase in metal ions in the composition corresponded well with the quantitative analysis of free halogen and the qualitative and quantitative analysis of decomposition products by chromatography.

したがって、弗化炭化水素、アミド系有機溶媒およびホ
スホネート化合物からなる新規な女史化された本発明に
よ2る組成物は金属の種類および弗化炭化水素とアミド
系有機溶媒との混合比率にかかわらず、十分な安定効果
を示した。
Therefore, the novel composition according to the present invention consisting of a fluorinated hydrocarbon, an amide organic solvent, and a phosphonate compound can be used regardless of the type of metal and the mixing ratio of the fluorinated hydrocarbon and the amide organic solvent. It showed a sufficient stabilizing effect.

Claims (5)

【特許請求の範囲】[Claims] (1)弗化炭化水素、アミド系有機溶媒およびホスホネ
ート化合物とからなる吸収冷媒組成物。
(1) An absorption refrigerant composition comprising a fluorinated hydrocarbon, an amide organic solvent, and a phosphonate compound.
(2)弗化炭化水素がモノクロロジフルオロメタン。 ジクロロモノフルオロメタン、トリフルオロメタン、モ
ノクロロテトラフルオロエタン、モノクロロトリフルオ
ロエタン、モノクロロンフルオロエタンまたはそれらの
混合物からなる特許請求の範囲第1項記載の吸収冷媒組
成物。
(2) The fluorinated hydrocarbon is monochlorodifluoromethane. The absorption refrigerant composition according to claim 1, comprising dichloromonofluoromethane, trifluoromethane, monochlorotetrafluoroethane, monochlorotrifluoroethane, monochlorofluoroethane, or a mixture thereof.
(3)アミド系有機溶媒がN、N−ツメチルホルムアミ
ド、N、N−ジメチルアセトアミド、N。 N−ジメテルグロビオンアミド、N、N−ジエチルホル
ムアミドおよびそれらの混合物からなる特許請求の範囲
第1項または第2項記載の吸収冷媒組成物。
(3) The amide organic solvent is N,N-trimethylformamide, N,N-dimethylacetamide, or N. 3. The absorption refrigerant composition according to claim 1 or 2, comprising N-dimethylglobionamide, N,N-diethylformamide and mixtures thereof.
(4)ホスホネート化合物が化学式 %式%(0) で示され、式中R4+ R2およびR3は各々独立に水
素基、アルキル基、フェニル基またはアルキルフェニル
基であるホスホネートおよびそれらの混合物などからな
る特許請求の範囲第1項。 第2項または第3項記載の吸収冷媒組成物。
(4) A patent in which the phosphonate compound is represented by the chemical formula % (0), in which R4+ R2 and R3 are each independently a hydrogen group, an alkyl group, a phenyl group, or an alkylphenyl group, and mixtures thereof. Claim 1. The absorption refrigerant composition according to item 2 or 3.
(5)アミド系有機溶媒に基づいてホスホネート化合物
をリン濃度で0.06〜0.5重量%からなる特許請求
の範囲第1項から第4項のいずれかに記載の吸収冷媒組
成物。
(5) The absorption refrigerant composition according to any one of claims 1 to 4, which comprises a phosphonate compound based on an amide organic solvent in a phosphorus concentration of 0.06 to 0.5% by weight.
JP56160570A 1981-10-07 1981-10-07 absorption refrigerant composition Expired JPS5942031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160570A JPS5942031B2 (en) 1981-10-07 1981-10-07 absorption refrigerant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160570A JPS5942031B2 (en) 1981-10-07 1981-10-07 absorption refrigerant composition

Publications (2)

Publication Number Publication Date
JPS5861172A true JPS5861172A (en) 1983-04-12
JPS5942031B2 JPS5942031B2 (en) 1984-10-12

Family

ID=15717820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160570A Expired JPS5942031B2 (en) 1981-10-07 1981-10-07 absorption refrigerant composition

Country Status (1)

Country Link
JP (1) JPS5942031B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4793940A (en) * 1984-11-28 1988-12-27 Ben Gurion Univ. Of The Negev Research And Development Authority Absorbent composition for refrigeration and heating systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4793940A (en) * 1984-11-28 1988-12-27 Ben Gurion Univ. Of The Negev Research And Development Authority Absorbent composition for refrigeration and heating systems

Also Published As

Publication number Publication date
JPS5942031B2 (en) 1984-10-12

Similar Documents

Publication Publication Date Title
EP0062516B1 (en) Composition for absorption refrigeration
CA2123000C (en) Vapour absorbent compositions
JPS6115979B2 (en)
US3541013A (en) Lithium bromide-lithium thiocyanatewater composition for an absorbentrefrigeration system
EP0184351B1 (en) Absorbent composition for refrigeration and heating systems
JPH0369956B2 (en)
JPS5861172A (en) Absorption refrigerant composition
JPS5861173A (en) Absorption refrigerant composition
US4985169A (en) Compositions based on chlorofluorinated ether and solvent and their application in absorption apparatus
JPS5861174A (en) Absorption refrigerant composition
JPS5861171A (en) Absorption refrigerant composition
JPS59166583A (en) Absorption refrigerant composition
JPS5851030B2 (en) absorption refrigerant composition
US4710312A (en) Stable mixtures of chlorofluorohydrocarbons and solvents and their use as heat transfer compositions for absorption heat pumps
JPS5844713B2 (en) absorption refrigerant composition
JPS6340460B2 (en)
JPS6340459B2 (en)
US6527974B1 (en) Monofunctional ether heat and mass transfer additives for aqueous absorption fluids
JPH033714B2 (en)
CA1272587A (en) Absorbent composition for refrigeration and heating systems
JPS6356918B2 (en)
JPS6356915B2 (en)
JPS6040186A (en) Refrigerant composition for absorption refrigerator
JPS6356917B2 (en)
JPS6111985B2 (en)