JPS5860203A - Method for identifying circular body - Google Patents

Method for identifying circular body

Info

Publication number
JPS5860203A
JPS5860203A JP15897281A JP15897281A JPS5860203A JP S5860203 A JPS5860203 A JP S5860203A JP 15897281 A JP15897281 A JP 15897281A JP 15897281 A JP15897281 A JP 15897281A JP S5860203 A JPS5860203 A JP S5860203A
Authority
JP
Japan
Prior art keywords
magnetic flux
coin
output
voltage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15897281A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nitta
博之 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP15897281A priority Critical patent/JPS5860203A/en
Publication of JPS5860203A publication Critical patent/JPS5860203A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Of Coins (AREA)

Abstract

PURPOSE:To identify a circular body, with regard to the identification of the circular body such as a coin, by altenately energizing a magnetic flux generator by a plurality of sine wave currents whose frequencies are different, converting the output of the magnetic flux generotor into the peak level of the signal component of each frequency, and individually obtaining the attenuating rate of respective signal component. CONSTITUTION:A signal switching device 7 sequentially switches the output of oscillators 5 and 6 of 20 and 4 kHz. A voltage-current converter 8 converts the voltage to the current, and supplies the signals having a current waveform analogous to the voltage waveform of a signal source to an exciting coil 22. The output of a magnetism-electricity converter 3, which is the magnetic flux detector in a coin detector 1, is amplified to an appropriate level by an amplifier 9. The output of a peak holder 10 is converted into a digital quantity by an A/D converter 11, and sent to a microcomputer 12, where the attenuation rate of the signal component of each frequency (20kHz and 4kHz) is individually obained. The result is applied to the corresponding tape wherein the kind of the coin 4 and the attenuation rate are stored in advance, and the passed coin is identified.

Description

【発明の詳細な説明】 本発明は硬貨等の円形物体を識別する方法に関し、詳細
には通路内を円形物体が通過した時に生じる磁束変化を
読み取ることによってその物体の種類等を識別する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for identifying circular objects such as coins, and more particularly to a method for identifying the type of circular object by reading the change in magnetic flux that occurs when the circular object passes through a passage. It is something.

自動販売機や両替機等における硬貨の識別方法は、実用
化されている多くのものが機械的或いは光学的な検出器
を用いるものである。ところがこの様な識別方式は硬貨
の外形は測定できてもその質的な測定、一定性的な測定
は出来ないため、正規硬貨と疑似硬貨の識別が出来ない
という欠点がある。そζで、硬貨の種類および質(正規
と疑似)の識別が同時に行い得る様、硬貨の通過を磁気
的に検出する様にした識別方法が提案される様になった
。幾つかの磁気的な識別方法の中で有用な方法の一つは
、硬貨内部で生ずるうず電流損を利用する方法である0
即ち、交番磁界中に導体を置く時に生ずるうず電流損が
、その導体の大きさや電磁的特性(特に導電率)、およ
び交番周波数の2乗に比例するという特質に基づき、大
きさや導電率が各々異なっている各種の硬貨を識別しよ
うとするものである0うず電流損の大きさによって識別
が可能であるという理由は、そのうず電流によって生ず
る磁束が、磁束発生器の主磁束の変化に対する抑止力と
して作用する電磁気的な原理から明らかである。
Many of the coin identification methods in vending machines, currency exchange machines, etc. that have been put into practical use use mechanical or optical detectors. However, although this type of identification method can measure the external shape of a coin, it cannot qualitatively or consistently measure it, so it has the disadvantage that it cannot distinguish between genuine coins and fake coins. Therefore, an identification method that magnetically detects the passage of a coin has been proposed so that the type and quality of the coin (regular and pseudo) can be identified at the same time. One of the useful magnetic identification methods is to utilize the eddy current loss that occurs inside the coin.
That is, based on the property that the eddy current loss that occurs when a conductor is placed in an alternating magnetic field is proportional to the size of the conductor, its electromagnetic properties (especially conductivity), and the square of the alternating frequency, the size and conductivity are proportional to each other. The reason why it is possible to identify different types of coins by the magnitude of the eddy current loss is that the magnetic flux generated by the eddy current has a deterrent effect against changes in the main magnetic flux of the magnetic flux generator. This is clear from the electromagnetic principle that acts as

しかしこの様な特性を利用した磁気的な識別方法であっ
ても、識別対象が硬貨である場合今日の硬貨の種類では
不都合なことがある。これを第1図を参照して説明する
。同図(イ)は材質が銅である硬貨(10円硬貨)の減
衰率−周波数特性を示し、同図(ロ)は材質が白銅であ
る硬貨(100円硬貨)の減衰率−周波数特性を示して
いる。なおこの特性を得るための硬貨検出器と硬貨の位
置関係を第2図に示す。同図において、硬貨検出器1は
ポット型コ(ア21にコイル22を巻層し、磁束を発生
させる磁束発生器2と、この磁束発生器2に対向配置さ
れ前記磁束の皆什量を電圧レベルに変換する磁電変換器
3とで構成され、硬貨4は前記磁束発生器2と磁電変換
器3の間に置かれる。第1図の特性曲線は、この位置関
係で、3種類の各、厚さく d、−、d3)毎にコイル
22に流す励磁電流の周波数を変えた場合の磁電変換器
3の出力電圧を減衰率に変換して表したものである。
However, even with magnetic identification methods that utilize such characteristics, when the object to be identified is a coin, it may be inconvenient with today's coin types. This will be explained with reference to FIG. Figure (a) shows the attenuation rate-frequency characteristics of a coin made of copper (10 yen coin), and figure (b) shows the attenuation rate-frequency characteristic of a coin made of cupronickel (100 yen coin). It shows. The positional relationship between the coin detector and the coin to obtain this characteristic is shown in FIG. In the same figure, a coin detector 1 includes a pot-shaped core (A 21) with a coil 22 wound thereon, a magnetic flux generator 2 for generating magnetic flux, and a magnetic flux generator 2 which is arranged opposite to this magnetic flux generator 2 and converts the entire amount of the magnetic flux into a voltage. The coin 4 is placed between the magnetic flux generator 2 and the magnetoelectric converter 3.The characteristic curves in FIG. The output voltage of the magnetoelectric converter 3 is converted into an attenuation rate when the frequency of the excitation current applied to the coil 22 is changed for each thickness (d, -, d3).

この図から、銅硬貨を識別しやすい(厚さdの識別)周
波数帯域は低域部にあ5,10KHz程度以上の高域部
では殆んど識別は出来ない一方、白銅硬貨を識別しやす
い(厚さdの識別)周波数帯域は10KHz程度の高域
部にあって低域部においては識別が困難であることがわ
かる。この様な特性曲線を描くのは、前述した様に硬貨
の導電率が異なることからそれに対してうず電流損も異
なってくるからである。従って、今日の硬貨の種類では
複数の周波数の励磁電流を利用しなければ全ての硬貨を
高精度に識別することは困難であることがわかる。
From this figure, we can see that the frequency band where it is easy to identify copper coins (identification of thickness d) is in the low frequency range, while it is almost impossible to identify in the high frequency range above about 5.10 KHz, while it is easy to identify cupronickel coins. (Identification of thickness d) It can be seen that the frequency band is in the high range of about 10 KHz and is difficult to identify in the low range. The reason for drawing such a characteristic curve is that, as mentioned above, since the conductivity of the coins differs, the eddy current loss also differs. Therefore, it can be seen that with today's coin types, it is difficult to identify all coins with high precision without using excitation currents of multiple frequencies.

そこでその様な不都合な面を解決する方法の一つとして
、励磁電流波形を矩形波等の高調波成分を有する非正弦
波とし、磁束検出器の出力を基本波と高調波の信号成分
に分離して各々の減衰率を求め、実質的に複数の周波数
の励磁電流で硬貨識別を行う様にした識別方法が提案さ
れている。この識別方法は高調波成分を高域の周波数の
励磁電流として利用するため、理論上1つの非正弦波電
流で、等制約に複数の周波数帯域の励磁電流で識別する
のと同等な結果を得ることが出来、しかも励磁コイルが
1個で済むという利点がある。
One way to solve this problem is to make the excitation current waveform a non-sinusoidal wave with harmonic components, such as a rectangular wave, and separate the output of the magnetic flux detector into fundamental wave and harmonic signal components. An identification method has been proposed in which the attenuation rate of each coin is determined and the coin identification is substantially performed using excitation currents of a plurality of frequencies. This identification method uses harmonic components as excitation currents at high frequencies, so in theory, with one non-sinusoidal current, it is possible to obtain results equivalent to identification using excitation currents in multiple frequency bands with equal constraints. This has the advantage that only one excitation coil is required.

しかしながら、斯る識別方法は基本波と高調波の周波数
が一定の関係にあるので、識別するのに最も適した周波
数を選択することが出来なく、更に、高調波の振幅レベ
ルは基本波のそれに比べて数分の1以下であるとともに
、周波数の高い高調波はど、うず電流損が大きくなるか
ら、磁束検出器における高調波成分の出力レベルが非常
に小さくなってし驚うという欠点があった0pJ1ち、
上記識別方緋は識別に適した複数の周波数の選択に本質
的な制約があるとともに、磁束検出器における基本波成
分と高調波成分の信号レベルに大きなギャップがあシ、
そのため検出器自体のダイナミックレンジを大きくする
必要が生じたシ、高利得の増幅器を必要としたシする等
、効率的識別を行うことが出来なかった。
However, in this identification method, since the frequencies of the fundamental wave and harmonics are in a fixed relationship, it is not possible to select the most suitable frequency for identification, and furthermore, the amplitude level of the harmonics is higher than that of the fundamental wave. It has the disadvantage that the output level of the harmonic component in the magnetic flux detector becomes extremely small, which is surprising because the eddy current loss is large for high-frequency harmonics. ta0pJ1chi,
The above identification method has inherent limitations in selecting multiple frequencies suitable for identification, and there is a large gap between the signal levels of the fundamental wave component and harmonic components in the magnetic flux detector.
Therefore, it was necessary to increase the dynamic range of the detector itself, and a high gain amplifier was required, making it impossible to perform efficient identification.

本出願人は以上の欠点を除去するために、特願昭55−
180750号「円形物体識別方法」に於いて、励磁コ
イルが単一で良く、また複数の、任意の周波数とレベル
の信号成分を有する励磁電流を使用し、高精度且つ高効
率な識別を実現する方法を提案した。
In order to eliminate the above-mentioned drawbacks, the present applicant has filed a patent application filed in
No. 180750 "Circular object identification method" uses a single excitation coil and uses multiple excitation currents having signal components of arbitrary frequencies and levels to achieve highly accurate and highly efficient identification. proposed a method.

この識別方法を要約すれば、 磁束発生器の励磁電流を、周波数がそれぞれ異なる複数
の正弦波電流を合成した合成電流とし、磁束検出器の出
力をフィルターを通して元の複数の周波数の信号成分に
分離し、更にそれぞれの信号成分の減衰率を個別的に求
めてそれらの結果に基づいて硬貨等円形物体の識別を行
う様にj−たものである。従ってこの方法によれば、合
成電流を形成する前段階で、当該合成電流の構成電流で
ある複数の正弦波電流の各々に訃いて、個別的に周波数
、信号レベルを任意に選択出来ることになる。
To summarize this identification method, the excitation current of the magnetic flux generator is a composite current that combines multiple sinusoidal currents with different frequencies, and the output of the magnetic flux detector is separated into the original signal components of multiple frequencies through a filter. Furthermore, the attenuation rate of each signal component is determined individually, and circular objects such as coins are identified based on the results. Therefore, according to this method, before forming the composite current, it is possible to arbitrarily select the frequency and signal level for each of the plurality of sinusoidal currents that are the constituent currents of the composite current. .

しかしながら、この提案に係る識別方法では、磁束検出
器の出力をフィルターを通して元の複数の周波数の信号
成分に分離する必要があるため、少くとも各周波数の信
号処理系が必要であシ、更にそれらの処理系の信号を選
択的に取入れるには一般にマルチプレクサが必要となシ
、そのため装置全体の回路構成を複雑化し、またコスト
アップとなる不都合があった。
However, in the identification method according to this proposal, it is necessary to separate the output of the magnetic flux detector into the original signal components of multiple frequencies through a filter, so at least a signal processing system for each frequency is required. In general, a multiplexer is required to selectively take in the signals of the processing system, which inconveniently complicates the circuit configuration of the entire device and increases cost.

本発明の目的は、信号源である複数の正弦波信号の各々
の周波数、レベルを任意に選択出来る様にして、高精度
且つ高効率な識別を可能にするのはもちろん、回路の構
成が簡単になシ、低価格にして小型の装置が得られる円
形物体識別方法を提供することにある。
The purpose of the present invention is to enable the frequency and level of each of a plurality of sine wave signals that are signal sources to be arbitrarily selected, and to enable highly accurate and highly efficient identification, as well as to simplify the circuit configuration. Another object of the present invention is to provide a method for identifying a circular object, which is inexpensive and can provide a compact device.

本発明を要約すれば、 磁束発生器を、周波数がそれぞれ異なる複数の正弦波電
流で交互に付勢すると七もに、磁束検出器の出力を各周
波数の信号成分のピークレベルに変換し、更にそれぞれ
の信号成分の減衰率を個別的に求めてそれらの結果に基
づいて円形物体の識別を行う様にしたものである〇 以下本発明の好ましい実施例を図面を参照して説明する
To summarize the invention, energizing the magnetic flux generator with a plurality of sinusoidal currents, each having a different frequency, converts the output of the magnetic flux detector to the peak level of the signal component at each frequency; The attenuation rate of each signal component is determined individually and circular objects are identified based on the results. Preferred embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の実施例である硬貨識別方法を適用した
硬貨識別装置のブロック図を示す。また第4図は第3図
に於ける要部の信号波形を示し、各信号の抽出位置と波
形との対応関係は、第3図と第4図双方に付された符号
(−1〜(C)によって示される。
FIG. 3 shows a block diagram of a coin identification device to which a coin identification method according to an embodiment of the present invention is applied. Moreover, FIG. 4 shows the signal waveforms of the main parts in FIG. C).

第3図に於いて、5は20KHzの正弦波発振器、6は
4KHzの正弦波発振器である。なお、この例において
は信号源として二つの正弦波発振器を用いることにし、
またそれらの周波数は白銅硬貨の識別に適する20KH
zと、他の硬貨の識別に適する2KHzに選ぶ。
In FIG. 3, 5 is a 20 KHz sine wave oscillator, and 6 is a 4 KHz sine wave oscillator. In this example, we will use two sine wave oscillators as signal sources,
Also, their frequency is 20KH, which is suitable for identifying cupronickel coins.
z and 2KHz, which is suitable for identifying other coins.

信号切換器7は、上記発振器5と6の出方を順次切換え
ることによって時系列的に交互に周波数を異にした信号
を形成する回路で、後述のマイクロコンピュータからの
スイッチング信号を受けて、発振器出力を切換えていく
The signal switch 7 is a circuit that sequentially switches the outputs of the oscillators 5 and 6 to form signals with different frequencies alternately in time series. Switch the output.

電圧−電流変換器8は、上記信号切換器7の出力信号を
電圧−電流変換して磁束発生器2の励磁コイル22に供
給する。電圧〜電流変換器8を磁束発生器2の前段に置
くのは、発振器5.6の出力切換時に生じる励磁コイル
22のはねかえり電圧の影響を無くすためである。即ち
、一般にこの電圧−電流変換器の代わシに通常の電圧増
幅器を用いると、切換器7による発振器切換時の不連続
状態に於いて励磁コイル22にはねかえシミ圧が生じ、
その励磁電流は当該はねかえb電圧の影響を受けて正弦
波とならず、励磁コイル22のインピーダンスに蓄えら
れるエネルギー放出が作用して過渡的な非対称波となり
、結局(C1の増幅器出力にその影響が現われてく4か
らである。この様な磁束変化分を検出する識別方法に必
要なことは、励磁コイルから発生する磁束が信号源に比
例すること、つまり励磁電流波形が、信号源電圧波形に
相関することである。従って、電圧−電圧変換をする通
常の電圧増幅器を用いず、この例に示す電圧−電流変換
器を用いれば、信号源の電圧波形と相似の電流波形を有
する信号を励磁コイル22に供給出来ることになる。
The voltage-current converter 8 performs voltage-current conversion on the output signal of the signal switch 7 and supplies the converted signal to the excitation coil 22 of the magnetic flux generator 2 . The reason why the voltage-to-current converter 8 is placed before the magnetic flux generator 2 is to eliminate the influence of the rebound voltage of the excitation coil 22 that occurs when switching the output of the oscillator 5.6. That is, when a normal voltage amplifier is generally used in place of this voltage-current converter, rebound stain pressure is generated in the excitation coil 22 in the discontinuous state when the oscillator is switched by the switch 7.
The excitation current does not become a sine wave due to the influence of the rebound b voltage, but becomes a transient asymmetric wave due to the release of energy stored in the impedance of the excitation coil 22. The effect begins to appear in step 4.The identification method for detecting such changes in magnetic flux requires that the magnetic flux generated from the excitation coil be proportional to the signal source, that is, the excitation current waveform should be similar to the signal source voltage waveform. Therefore, if you use the voltage-to-current converter shown in this example instead of a normal voltage amplifier that performs voltage-to-voltage conversion, you can generate a signal with a current waveform similar to the voltage waveform of the signal source. This means that it can be supplied to the excitation coil 22.

磁束検出器である磁電変換器3の出力は増幅器9で適当
なレベルに増幅され、ピークホルダ1゜に入力する。ピ
ークホルダ1oは切換器7へのスイッチング信号に同期
したリセット信号で遂次リセットされながら、若干の遅
れ時間をとシっつその間の信号(e)のピーク値をホー
ルドする。このピークホルダ10の出力はA/D変換器
11でディジタル量に変換されマイクロコンピュータ1
2に送られる。マイクロフンピユータ12は、A/D変
換器11の出力が、硬貨4の存在する時と存在しない時
とでどの程度変化するかを判定し、即ち、各周波数(2
0KHzと4KHz)の信号成分の減衰率を個別的に求
めて、それらの結果を予め記憶している硬貨の種類と減
衰率の対応テーブルにあてはめて通過した硬貨の識別を
行う。
The output of the magnetoelectric converter 3, which is a magnetic flux detector, is amplified to an appropriate level by an amplifier 9 and input to a peak holder 1°. The peak holder 1o is successively reset by a reset signal synchronized with the switching signal to the switch 7, and holds the peak value of the signal (e) during a certain delay time. The output of this peak holder 10 is converted into a digital quantity by an A/D converter 11 and then sent to a microcomputer 1.
Sent to 2. The microcomputer 12 determines how much the output of the A/D converter 11 changes between when the coin 4 is present and when the coin 4 is not present.
The attenuation rates of the signal components (0 KHz and 4 KHz) are individually determined, and the results are applied to a pre-stored correspondence table of coin types and attenuation rates to identify passing coins.

なお、20K)Tzと4KHzの2周波を使用した場合
、実験によると、厚さdの変化に対しては先ず、高周波
畿成分(20KHz)で白銅(50円、100円硬貨)
が最も減衰率の大きな変動をし、順に真ちゅう(5円硬
貨)、アルミニウム(1円硬貨)と続き、銅(10円硬
貨)では殆んどdに無関係に大きく減衰する。また低周
波成分(4KITz)では反対に銅が最も大きく減衰率
の変動をし、順にアルミニウム、真ちゅう、白銅と続き
、白銅ではdに無関係に殆んど減衰しない。
In addition, when two frequencies of 20K) Tz and 4KHz are used, according to experiments, the change in thickness d is first affected by the high frequency edge component (20KHz).
has the largest change in attenuation rate, followed by brass (5 yen coin), aluminum (1 yen coin), and copper (10 yen coin), which exhibits large attenuation almost independently of d. In contrast, for low frequency components (4KITz), copper exhibits the largest variation in attenuation rate, followed by aluminum, brass, and cupronickel, with cupronickel having almost no attenuation regardless of d.

従って、材質と厚さが決まればその硬貨での減衰率が2
0KHz成分と4KHz成分で一義的に定まることにな
シ、この減衰率と硬貨の種類の対応関係を表すマイクロ
コンピュータ12に予め記憶されるテーブルの作成は極
めて容易となる。
Therefore, once the material and thickness are determined, the attenuation rate for that coin is 2.
Since it is uniquely determined by the 0 KHz component and the 4 KHz component, it is extremely easy to create a table stored in advance in the microcomputer 12 that represents the correspondence between the attenuation rate and the type of coin.

なお、信号(a) 、 (b)の振幅レベルを任意に調
整し得るのけいうまでもなく、減衰率の度合い、増幅器
9のダイナミックレンジ等を考慮して適当な値に設定す
れば良い0また、上記の実施例では、電圧−電流変換器
を用いたが、励磁コイルのはねかえり電圧による過渡時
間を撞く短時間にし得るなら、或いは同電圧を無視し得
る程度に小さくし得るなら、通常の電圧増幅器を用いて
も良い。
Note that it goes without saying that the amplitude levels of the signals (a) and (b) can be adjusted arbitrarily, and may be set to an appropriate value taking into consideration the degree of attenuation rate, the dynamic range of the amplifier 9, etc. In the above embodiments, a voltage-to-current converter is used, but if the transient time due to the bounce voltage of the exciting coil can be made short enough, or if the voltage can be made small enough to be ignored, a normal voltage can be used. An amplifier may also be used.

以上の様に、本発明の識別方法によれば、磁束検出後の
信号処理系が信号源の数に無関係に唯一つで良く、シか
もフィルタ等を全く不要とするため回路構成が非常に簡
単になる。また、励磁コイルが一つで良い利点を有する
とともに、硬貨を識別するのに最適な周波数を選択出来
、更に各正弦波発振器の発振レベルも最も効率の良い識
別を行い得る大きさに設定することが出来る。従って、
本発明を適用する識別装置の小型化、低価格化、高精度
化をより促進出来るという効果がある。
As described above, according to the identification method of the present invention, there is only one signal processing system after magnetic flux detection regardless of the number of signal sources, and the circuit configuration is extremely simple since no filters or the like are required. become. In addition, it has the advantage of having only one excitation coil, and the optimum frequency for identifying coins can be selected, and the oscillation level of each sine wave oscillator is also set to a level that allows for the most efficient identification. I can do it. Therefore,
This has the effect of further promoting miniaturization, lower cost, and higher precision of identification devices to which the present invention is applied.

なお、上記の実施例に挙げた磁電変換素子としては例え
ばホール素子や磁気抵抗素子、或いは磁気ダイオードが
用いられる。また、本発明に係る識別方法の適用領域は
、硬貨の他鉄棒や鉄管の識別装置をも含むものである。
Note that as the magnetoelectric transducer mentioned in the above embodiments, for example, a Hall element, a magnetoresistive element, or a magnetic diode is used. Further, the application area of the identification method according to the present invention includes identification devices for iron bars and iron pipes in addition to coins.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)はそれぞれ硬貨材質を異にした場
合の減衰率−周波数特性を示し、第2図は前回の特性を
得るのに用いた硬貨検出器および同検出器と硬貨の位置
関係を示す。また、第3図は本発明の実施例である硬貨
識別方法を適用した硬貨識別装置のブロック図を示し、
第4図は同装置の要部信号波形図を示している。 1・・・硬貨検出器、    2・・・磁束発生器、3
・・・磁電変換素子(磁束検出器)、4・・・硬貨、5
.6・・・正弦波発振器、7・・・切換器、     
 8・・・電圧−電流変換器、10・・・ピークホルダ
、 12・・・マイクロコンピュータ。 出願人  久保田鉄工株式会社 代理人 弁理士 小森久夫
Figures 1 (a) and (b) show the attenuation rate-frequency characteristics for different coin materials, and Figure 2 shows the coin detector used to obtain the previous characteristics and the same detector and coins. Indicates the positional relationship between Further, FIG. 3 shows a block diagram of a coin identification device to which a coin identification method according to an embodiment of the present invention is applied,
FIG. 4 shows a signal waveform diagram of the main parts of the device. 1... Coin detector, 2... Magnetic flux generator, 3
... Magnetoelectric conversion element (magnetic flux detector), 4... Coin, 5
.. 6...Sine wave oscillator, 7...Switcher,
8... Voltage-current converter, 10... Peak holder, 12... Microcomputer. Applicant Kubota Iron Works Co., Ltd. Agent Patent Attorney Hisao Komori

Claims (2)

【特許請求の範囲】[Claims] (1)円形物体の通路を横切る磁束を形成する磁束発生
器と、 前記磁束が通る磁路の一部に介在する磁束検出器とを有
し、 前記円形物体が前記磁束を横切ったときの磁束変化分を
前記磁束検出器で検出することによ)円形物体の識別を
行う様にした円形物体識別方法に於いて。 前記磁束発生器を、周波数がそれぞれ異なる複数の正弦
波電流で交互に付勢するとともに、前記磁束検出器の出
力をピークホルダを介して各周波数の信号成分のピーク
レベルに変換し、更にそれぞれの信号成分の減衰率を個
別的に求めてそれらの結巣に基づいて円形物体の識別を
行う様にした円形物体識別方法0
(1) A magnetic flux generator that forms a magnetic flux that crosses a path of a circular object, and a magnetic flux detector that is interposed in a part of the magnetic path through which the magnetic flux passes, and the magnetic flux that is generated when the circular object crosses the magnetic flux. In a method for identifying a circular object, the circular object is identified by detecting the amount of change with the magnetic flux detector. The magnetic flux generator is alternately energized with a plurality of sinusoidal currents having different frequencies, and the output of the magnetic flux detector is converted to the peak level of the signal component of each frequency via a peak holder. Circular object identification method 0 in which the attenuation rate of signal components is individually determined and circular objects are identified based on their convergence.
(2)  前記複数の正弦波電流は、正弦波発振器の出
力信号を電圧−電流変換して得る様にした、特許請求の
範囲第1項記載の円形物体識別方法。
(2) The circular object identification method according to claim 1, wherein the plurality of sine wave currents are obtained by voltage-current conversion of an output signal of a sine wave oscillator.
JP15897281A 1981-10-05 1981-10-05 Method for identifying circular body Pending JPS5860203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15897281A JPS5860203A (en) 1981-10-05 1981-10-05 Method for identifying circular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15897281A JPS5860203A (en) 1981-10-05 1981-10-05 Method for identifying circular body

Publications (1)

Publication Number Publication Date
JPS5860203A true JPS5860203A (en) 1983-04-09

Family

ID=15683392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15897281A Pending JPS5860203A (en) 1981-10-05 1981-10-05 Method for identifying circular body

Country Status (1)

Country Link
JP (1) JPS5860203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0336018A2 (en) * 1988-03-31 1989-10-11 Nippon Conlux Co., Ltd. Method and apparatus for sorting coins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0336018A2 (en) * 1988-03-31 1989-10-11 Nippon Conlux Co., Ltd. Method and apparatus for sorting coins

Similar Documents

Publication Publication Date Title
US4971187A (en) Method and apparatus for sorting coins utilizing coin-derived signals containing different harmonic components
US4188577A (en) Pulse eddy current testing apparatus for magnetic materials, particularly tubes
US5537038A (en) Magnetic flux measuring method and apparatus for detecting high frequency components of magnetic flux with high speed orientation
US7132825B2 (en) Detection device
US3621382A (en) Anistropic thin ferromagnetic film magnetometer
US2855464A (en) Electromagnetic head
Palmer A small sensitive magnetometer
JPS5860203A (en) Method for identifying circular body
US4321539A (en) Digital BFO metal detecting device with improved sensitivity at near-zero beat frequencies
SE9502528D0 (en) Inductive measurement
US6078172A (en) Current-compensated current sensor for hysteresis-independent and temperature-independent current measurement
JPS6267484A (en) Method and apparatus for selectively detecting metal
JP3271865B2 (en) Safety protection paper and its authenticity judgment device
US2929985A (en) Method and a device for measuring the wall thickness of articles made of ferromagnetic materials
TW219973B (en)
JPH0428059Y2 (en)
SU974240A1 (en) Device for checking ferromagnetic articles
JPH0854452A (en) Method and apparatus for measuring magnetic field
JPH0445110B2 (en)
SU1120234A1 (en) Device for measuring mechanical stresses in ferromagnetic articles
JPH05108920A (en) Coin sensor
JPH0589319A (en) Coin sensor
RU2026566C1 (en) Magnetic characteristic measuring device
JPH0589318A (en) Coin sensor
JP2002333467A (en) Magnetic field detector