JPS5860054A - Production of fibrous molded body - Google Patents

Production of fibrous molded body

Info

Publication number
JPS5860054A
JPS5860054A JP56155366A JP15536681A JPS5860054A JP S5860054 A JPS5860054 A JP S5860054A JP 56155366 A JP56155366 A JP 56155366A JP 15536681 A JP15536681 A JP 15536681A JP S5860054 A JPS5860054 A JP S5860054A
Authority
JP
Japan
Prior art keywords
fibers
fibrous
fiber
molded body
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56155366A
Other languages
Japanese (ja)
Other versions
JPS6320936B2 (en
Inventor
拓夫 藤井
奥山 和孝
稔 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Daiken Trade and Industry Co Ltd
Original Assignee
Daikin Industries Ltd
Daiken Trade and Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daiken Trade and Industry Co Ltd filed Critical Daikin Industries Ltd
Priority to JP56155366A priority Critical patent/JPS5860054A/en
Publication of JPS5860054A publication Critical patent/JPS5860054A/en
Publication of JPS6320936B2 publication Critical patent/JPS6320936B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は断熱材、吸音材、クッショシ材、下地材、畳床
等の建築用材或いは梱包用当て板、緩衝材もしくは自動
車のドア、壁、天井等の内張り材のような車輌用内装材
、更には靴の中敷きシート等として有用な弾力性、耐圧
縮性、寸法安定性、耐水性、軽量性、加工性等の諸性能
に優れた繊維質成型体の製造方法に関するものである。
[Detailed Description of the Invention] The present invention is applicable to insulation materials, sound absorbing materials, cushioning materials, base materials, construction materials such as tatami floors, packing plates, cushioning materials, and lining materials for automobile doors, walls, ceilings, etc. The present invention relates to a method for producing a fibrous molded product that has excellent properties such as elasticity, compression resistance, dimensional stability, water resistance, lightness, and workability, and is useful as interior material for vehicles, as well as insoles for shoes, etc. It is something.

従来から木材繊維、故紙パルプ、麻繊維、綿繊維等を単
独に、もしくはこれ等の繊維を混合した植物繊維スラリ
ーを脱水してボード状或いは所望の立方体状に成型した
繊維質成型体は、軒樋で、加工性、断熱性、吸音性、緩
衝性に優れていることから建築用資材をはじめ各種産業
用資材として多く利用されているが、この種の成型体は
、吸水性が高く、吸湿による強度低下や伸び等の寸法変
化が著しくて耐水性、寸法安定性に劣る欠点があった。
Conventionally, fibrous molded products made by dehydrating plant fiber slurries made of wood fibers, waste paper pulp, hemp fibers, cotton fibers, etc. or a mixture of these fibers and molding them into board shapes or desired cube shapes have been used for eaves. Gutters are widely used as construction materials and various other industrial materials due to their excellent workability, heat insulation, sound absorption, and cushioning properties. This has the drawback of poor water resistance and dimensional stability due to significant strength reduction and dimensional changes such as elongation.

一方、このような欠点をな(するために、これらの植物
繊維スラリーにポリオレフィシ系の合成繊維等の熱可塑
性合成樹脂の繊維状物を混合して脱水成型し、これを加
熱圧締して上記繊維状物を浴融させて繊維相互の結合を
行うことにより成型体の耐水性、寸法安定性、成形性等
を改善する方法が行われているが、この方法によると、
合成繊維が植物繊維に比べて親水性が少なく、植物繊維
との絡み合いが弱い上に繊維相互を結びつける水素結合
のような結合力が期待できないため、所望の強度を得る
には合成繊維が溶融して結合力が生じるまで高温で処理
する必要があり、合成繊維同士もしくは合成繊維と植物
繊維が完全に融着し合って成型体全体が硬化するために
、弾力性、クツシ3シ性、通気性、加工性等が低下Tる
という問題点があった。
On the other hand, in order to overcome these drawbacks, these plant fiber slurries are mixed with fibrous materials of thermoplastic synthetic resin such as polyolefinic synthetic fibers, dehydrated and molded, and this is heated and pressed to form the above-mentioned A method has been used to improve the water resistance, dimensional stability, moldability, etc. of a molded product by bath-melting fibrous materials and bonding the fibers to each other. According to this method,
Synthetic fibers have less hydrophilicity than plant fibers, are weakly entangled with plant fibers, and cannot be expected to have bonding forces such as hydrogen bonds that bind the fibers together, so synthetic fibers must be melted to obtain the desired strength. Synthetic fibers or synthetic fibers and plant fibers are completely fused together and the entire molded body is cured, resulting in improved elasticity, combability, and breathability. However, there was a problem that workability etc. deteriorated.

本発明は、このような従来の欠点及び問題点に鑑みてな
されたもので、熱可塑性合成樹脂の繊維状物をウレタシ
エ5ストマ或いはSDR等の弾性を有する高分子結合剤
により処理してなる繊維塊にバッフイシグ処理或いはカ
ーディジタ処理等の粉砕処理を施して短繊維の綿状体を
得、該綿状体と木材繊維或いは綿#&維等の植物繊維と
を混合してなる組成物を成型し、加熱もしくは加熱圧締
して耐水性、寸法安定性は勿論、弾力性に優れた紐維質
成型体を製造する方法を提供するものである。
The present invention has been made in view of the above-mentioned drawbacks and problems of the conventional art, and provides a fiber made by treating a fibrous material of thermoplastic synthetic resin with an elastic polymeric binder such as Uretasie 5 Stoma or SDR. The lump is subjected to a pulverization treatment such as buffing treatment or cardigator treatment to obtain a flocculent body of short fibers, and a composition is formed by mixing the flocculent body with wood fibers or vegetable fibers such as cotton & fiber. The object of the present invention is to provide a method for producing a string fibrous molded body having excellent elasticity as well as water resistance and dimensional stability by heating or heat pressing.

次に本発明の糾W質成型体の製造方法について詳述する
Next, the method for manufacturing the hardened W quality molded body of the present invention will be described in detail.

本発明において使用する植物繊維としては、木材繊維、
故級パルプ、クラフトパルプ、タラシトパルプ、麻繊維
、綿繊維等が単独に、又はこれらを混合して用いられる
The plant fibers used in the present invention include wood fibers,
Grain pulp, kraft pulp, taracito pulp, hemp fiber, cotton fiber, etc. may be used alone or in combination.

一方、熱可塑性合成樹脂の繊維状物としては、ティ0′
J続紛、ポリエステル繊維、ボリプ0ピレシ縁維、ポリ
鳴化ピニリヂシ織布、ポリエステル繊維、ポリ塩化ビニ
ル繊維、ポリビニルアルコール繊維、エチレシ・プ0ピ
レシ共重合体繊維、エチレシ・酢酸ビニル共重合体繊維
等の単独又はこれらの混合物が用いられる。これらの熱
可塑性合成樹脂のms状物は切断長がl〜IOCIm、
望ましくは2〜51のもので太さは5デニール以下、好
ましくは1.5デニール以下のものが粉砕処理により合
成繊維の短繊維の綿状体が得易く、又、該綿状体と植物
繊維との混合が均一に行われて好ましいものである。
On the other hand, as a fibrous material of thermoplastic synthetic resin, T0'
J continuous powder, polyester fiber, volupo-pileshi edge fiber, polysinged woven fabric, polyester fiber, polyvinyl chloride fiber, polyvinyl alcohol fiber, echyleshi-polyshi copolymer fiber, echyleshi-vinyl acetate copolymer fiber These may be used alone or in combination. These ms-shaped thermoplastic synthetic resins have a cutting length of l to IOCIm,
Desirably, the synthetic fibers have a diameter of 2 to 51 mm and have a thickness of 5 deniers or less, preferably 1.5 deniers or less, because they can be easily obtained by crushing into a floc-like body of short synthetic fibers, and the floc-like body and vegetable fibers can be easily obtained by crushing. This is preferable because it allows uniform mixing.

熱可塑性合成樹脂の繊維状物は植物繊維と混合するに先
立ち、予めウレタシエラストマ或いはSDR等の弾性を
有する高分子結合剤で処理して一旦繊維塊となし、該繊
維塊に粉砕処理を施すことによって得られる短繊維の綿
状体の状態のものを用いるもので、例えば、上記繊維状
物でウェッブを形成して該ウエツづにウレタシポリウレ
ア溶液を含浸させ、水分の存在下でエラストマを凝固さ
せることにより繊維を相互に結合させ、しかるのちこの
ウエッづV(ζ−サシヅイシジ処理又はバツフイシグ処
理或いはカーディジタ処理等の粉砕処理を施して得られ
る合成繊維の短繊維とウレタシエ5ストマが混在した屑
綿状の綿状体が用いられる。
Before mixing the thermoplastic synthetic resin fibrous material with plant fibers, it is treated in advance with an elastic polymeric binder such as uretaceastomer or SDR to form a fiber mass, and then the fiber mass is pulverized. For example, a web is formed from the above-mentioned fibrous material, the web is impregnated with a urethane polyurea solution, and an elastomer is formed in the presence of moisture. The fibers are mutually bonded by coagulation, and then the waste is a mixture of synthetic short fibers and uretashi 5 stoma obtained by subjecting the fibers to a pulverization process such as WedzuV (ζ-Sashizuishiji treatment, Batsufuishig treatment, Cardigita treatment, etc.) A flocculent body is used.

このような綿状体は図に示すように、熱可塑性合成樹脂
の繊維状物(1)が、バツフイシク等の粉砕処理によっ
てその交絡部分等でウレタシエラストマ等の弾性高分子
結合剤(2)で部分的に結合されたポー5スな三次元構
造をなした繊維塊(4)の集積物である。このようなポ
ーラスな三次元構造の繊維塊の集積物よりなる綿状体は
、繊維状物(1)の長さが0.5〜15m程度の短繊維
に破断されており、繊維相互の結合も弱められているこ
とから各繊維状物の自由度が高められていると共に上記
結合剤の弾性と相俟って、圧縮に対する復元性に優れて
おり、成型体に弾性を付与し、又、三次元交絡部分に木
材繊維等の植物繊維が絡み易くなって、繊維同志の結絡
力が高まり、成型体の曲げ強度をも向上させるものであ
る。
As shown in the figure, such a flocculent body consists of a fibrous material (1) of a thermoplastic synthetic resin that is crushed into an elastic polymer binder (2) such as uretaceastomer at its intertwined portions by crushing with a crusher or the like. It is an accumulation of fiber masses (4) that are partially bonded together to form a porous three-dimensional structure. A flocculent body made of an accumulation of fiber lumps with a porous three-dimensional structure is created by breaking the fibrous material (1) into short fibers with a length of about 0.5 to 15 m, and bonding the fibers together. Since the fibers are also weakened, the degree of freedom of each fibrous material is increased, and together with the elasticity of the binder, it has excellent resilience against compression, imparting elasticity to the molded product, and Plant fibers such as wood fibers are easily entangled in the three-dimensional entangled portion, increasing the binding force between the fibers and improving the bending strength of the molded product.

なお、上記の綿状体は、工場で特別に製造してもよいが
、ウレタシエラストマやSBR等をバイジターとして用
いて形成した熱可塑性合成繊維不織布を基布とする合成
皮革のパフ粉等の産業廃棄物を利用してもよ(、特にこ
れら合成皮革のパフ屑やサシター屑は再使用が困難であ
ることから止むおえず焼却処理されている現状に鑑み、
これらを有効に利用することにより資源の節約を計るこ
とができる。
The above-mentioned floc-like material may be specially manufactured in a factory, but it may be made of synthetic leather puff powder whose base fabric is a thermoplastic synthetic fiber non-woven fabric formed using uretashierastomer, SBR, etc. as a vigitator. It is also possible to use industrial waste (particularly in view of the current situation where these synthetic leather puff waste and sash tar waste are inevitably incinerated as they are difficult to reuse).
By using these effectively, it is possible to save resources.

次に上記綿状体を木材繊維或いは綿繊維等の植物繊維と
混合して湿式又は乾式法によってボード状又は所望の立
体形状等に抄造する。なお、上記の綿状体を植物繊維に
混合するに際して、綿状体の大きさや、はぐれ具合の状
態に応じてピータ−等で繊維塊を一旦叩解して分散性を
高めてから混合してもよい。
Next, the cotton-like material is mixed with plant fibers such as wood fibers or cotton fibers and formed into a board shape or a desired three-dimensional shape by a wet or dry method. In addition, when mixing the above-mentioned cotton-like material with plant fibers, depending on the size of the cotton-like material and the state of separation, it is also possible to beat the fiber mass with a Peter etc. to improve dispersibility before mixing. good.

抄造するに際して、上記綿状体と植物繊維の混合割合は
特に限定しないが、綿状体は植物縁##、に対して少な
(とも5%(重量部)以上の割合で混合するのが寸法安
定性、耐水性を改善する上で望ましく、床下地材や畳床
等の建築用材或いは自動車の内装材等のように弾力性と
共にある程度の強度、耐圧縮性が要求されるものについ
ては、綿状体と植物繊維の混合割合を5〜50850〜
95重量割合となるようにしてお(のが、植物繊維の水
素結合等の結合力によって充分な強度を保持することが
できて好ましく、又、靴の中敷やシート状りッシ3シ材
等に用いる場合には、綿状体と植物繊維の混合割合を5
0〜95:5〜50重量割合になるようにして形成する
のが、柔軟性を付与する上で好ましいものであり、又、
この場合、植物繊維として繊維長が長(絡み合いの良好
な綿繊維を主体として用いると柔軟性をさらに向上させ
ることができる。なお、抄造手段としては湿式、乾式の
何れでもよいが、湿式法の方がス5り一部にして水中で
攪拌する際に、綿状体と植物繊維との絡み合いが促進さ
れるため好ま・しい。
When making paper, there is no particular limitation on the mixing ratio of the above-mentioned cotton-like material and plant fibers, but it is recommended that the cotton-like material be mixed at a small ratio (both 5% (parts by weight) or more) to the plant edge ##. It is desirable to improve stability and water resistance, and for materials that require elasticity as well as a certain degree of strength and compression resistance, such as building materials such as flooring materials and tatami floors, and automobile interior materials, cotton is used. Mixing ratio of green body and plant fiber is 5~50850~
It is preferable to have a weight ratio of 95% because sufficient strength can be maintained due to the binding force such as hydrogen bonding of plant fibers, and it is also suitable for use in shoe insoles and sheet-like 3-sheet materials. etc., the mixing ratio of cotton and vegetable fibers should be
It is preferable to form the resin at a weight ratio of 0 to 95:5 to 50 in order to impart flexibility, and
In this case, the flexibility can be further improved by using mainly cotton fibers with long fiber length (good intertwining) as the plant fibers.The papermaking method may be either wet or dry, but the wet method This is preferable because the entanglement between the flocculent material and the plant fibers is promoted when the slurry is made into a portion and stirred in water.

一方、乾式法で抄造する場合には、綿状体と植物繊維を
混合堆積して、そのまま圧締すればよいが、厚さが厚い
ものを形成する場合はニード元バシチシタ等を施してお
いてもよい。
On the other hand, when making paper using the dry method, it is sufficient to mix and deposit flocculent material and vegetable fibers and press them as they are, but if a thick material is to be formed, it is necessary to perform a needle-forming process, etc. Good too.

このようにして綿状体と植物繊維を混合してなる組成物
をボード状或いは立体形状等の所望の形状に成型したの
ち、これを熱圧する。
The composition obtained by mixing the flocculent material and the plant fibers in this manner is molded into a desired shape such as a board shape or three-dimensional shape, and then hot-pressed.

熱圧の際の温度条件は熱可塑性合成樹脂の繊維状物を結
合している高分子結合剤が溶融或いは熱軟化する程度の
温度で熱圧すればよく、ウレタシ工5ストマの場合は1
60℃程度、81Rの場合は120℃程度で夫々熱圧す
る。又、このとき熱可塑性合成樹脂の繊維状物は熱収縮
を生じる場合がある。
The temperature conditions for hot pressing should be such that the polymer binder that binds the fibrous material of the thermoplastic synthetic resin melts or heat softens.
Hot pressure is applied at about 60°C, and in the case of 81R, about 120°C. Further, at this time, the fibrous material of the thermoplastic synthetic resin may undergo thermal contraction.

即ち、熱可塑性合成樹脂繊維状物の融点は、具体的には
、ナイOシ繊維215℃、ボリプ0ピレシ繊維170℃
、ポリエステル繊維130℃、ポリ塩化ピニリザシ繊維
180℃であるから、熱圧時の温度条件をウレタシエラ
ストマ等の結合剤の融点以上の温度で行うことにより、
上記熱可塑性合成樹脂の繊維状物は、その融点前後の温
度に加熱されることになり、軟化もしくは溶融して結合
剤の溶融と同時に熱収縮を生じるものである。
That is, specifically, the melting point of the thermoplastic synthetic resin fibrous material is 215°C for NiOshi fiber and 170°C for VOLIPON fiber.
, since the polyester fiber is 130°C and the polychlorinated Pinyliza fiber is 180°C, by performing the temperature condition during hot pressing at a temperature higher than the melting point of the binder such as Urethashielastomer,
The fibrous material of the thermoplastic synthetic resin is heated to a temperature around its melting point, so that it softens or melts, causing thermal contraction at the same time as the binder melts.

上記熱圧処理によって、熱可塑性合成樹脂の繊維状物は
植物繊維と絡み合った状態で固化し、弾性高分子結合剤
が一部植物繊維間に流動する等の現象が生じ、これによ
って成型体全体に結合力を与え、且つ弾力性を付与する
ものである。
Due to the heat and pressure treatment described above, the thermoplastic synthetic resin fibers solidify in a state entangled with the plant fibers, and phenomena such as some of the elastic polymer binder flowing between the plant fibers occur, which causes the entire molded body to It provides bonding strength and elasticity to the material.

即ち、単に合成繊維のみを植物繊維に混合して溶融した
場合には、合成繊維と木材繊維等の植物繊維との結合及
び合成繊維同志の結合力は生じるが、繊維が均一に分散
した状態のままで溶融しているに過ぎないため、弾力性
が発揮されないのに対し、本発明によれば、熱可塑性合
成樹脂の繊維状物は弾性を有する高分子結合剤で部分的
に結合し合っているので、成型体内部において植物繊維
との結合が生じているために弾力性を発揮し、成型体に
クッショシ性、緩衝性、弾力性等を付与Tるものである
In other words, if only synthetic fibers are mixed with plant fibers and melted, bonding between the synthetic fibers and the plant fibers such as wood fibers and bonding force between the synthetic fibers will occur, but the fibers will not be uniformly dispersed. However, according to the present invention, the thermoplastic synthetic resin fibers are partially bonded together using an elastic polymeric binder. Since it is bonded to the plant fibers inside the molded body, it exhibits elasticity, giving the molded body cushioning properties, cushioning properties, elasticity, etc.

以下本発明による繊維成型体の製造方法について数種の
実施例を示す。
Several examples of the method for producing a fiber molded article according to the present invention will be shown below.

実施例1 ポリエステル繊維とポリスチレシ縁雑の混合紡糸よりな
る合成繊維ウェッブに二一ドルバシチを施してなる三次
元交絡マットにポリウレタシのジメチル本ルムア!ド溶
液を含浸させたのち、水中に浸漬してウレタシエラスト
マを不縁マット中で凝結させ、しかるのちこれにカーデ
ィジタ処理を施して粉砕して、ウレタシエ5ストマで結
合されたポーラスな屑綿状の綿状体を形成し、該綿状体
をピータ−で叩解して木材繊維のスラリーに、木材繊維
と綿状体との割合が60 : 40重量部になるように
混合して混合スラリーとなし、これを抄造して脱水プレ
スで脱水し、そのまま140℃〜200℃のドライセ−
内を通して加熱乾燥し、厚さlO簡、比重0.28の板
状の繊維質成型体を得た。
Example 1 A three-dimensional entangled mat made of a synthetic fiber web made of a mixed spun yarn of polyester fibers and polystyrene fibers, and dimethyl dimethyl polyurethane! After being impregnated with the uretashira 5 stoma, the uretashiera 5 stoma is immersed in water to coagulate in the unbounded mat, which is then subjected to cardigator treatment and pulverized to form a porous waste fiber bonded by the uretashier 5 stoma. A flocculent body is formed, and the flocculent body is beaten with a piter and mixed into a slurry of wood fibers so that the ratio of wood fibers and flocculent body is 60:40 parts by weight, and a mixed slurry is prepared. None, this is made into a paper, dehydrated with a dehydration press, and then placed in a dry oven at 140°C to 200°C.
A plate-shaped fibrous molded body having a thickness of 100 mm and a specific gravity of 0.28 was obtained by heating and drying the mixture through the inside.

こうして得られた繊維質成型体の吸水線膨張率を測定し
た結果、30℃、50%冊、48時間→30℃、951
■、48時間の条件下で0.21であり、これに対して
木材繊維のみで形成した同一比重の繊維板は0.39で
あったのに比べて40%も小さく改善された。
As a result of measuring the coefficient of water absorption linear expansion of the fibrous molded product obtained in this way, 30°C, 50% volume, 48 hours → 30°C, 951
(2) Under the 48-hour condition, the specific gravity was 0.21, which was 40% smaller than the 0.39 for a fiberboard with the same specific gravity made only of wood fibers.

又、上記成型体に7 Y4/earの圧縮力を加えた状
態で24時間放置し、除荷後5時間の厚さの復元率を測
定したところ96%の復元が見られ、24時間で99%
に達することができたものであり、木材繊維のみで形成
した成型体においては、5時間で81%、24時間で8
5%の復元率であるのに比較して優れた弾性を有するも
のである。さらに、95%RJ(の湿度条件下で同様に
復元率を測定したものを比較すると、本発明の製造方法
によるものでは、殆んど復元率の低下が見られなかった
のに対し、木材繊維のみからなる成型体においては約1
0%の復元率低下が生じ、本発明によるものは耐水性も
著しく改善せられ、畳床或いは床張り用下地材等の断熱
下地材として優れた弾力性と耐圧縮性を有するものであ
った。
In addition, when the above molded body was left for 24 hours with a compressive force of 7 Y4/ear applied and the thickness recovery rate was measured 5 hours after unloading, 96% recovery was observed, and 99% in 24 hours. %
In the molded body made only of wood fibers, it was possible to reach 81% in 5 hours and 81% in 24 hours.
Although the recovery rate is only 5%, it has excellent elasticity. Furthermore, when the restoration rate was similarly measured under the humidity condition of 95% RJ, there was almost no decrease in the restoration rate with the production method of the present invention, whereas the wood fiber Approximately 1 for a molded body made of
There was a 0% reduction in recovery rate, and the product according to the present invention had significantly improved water resistance, and had excellent elasticity and compression resistance as a heat insulating base material for tatami floors or floor covering base materials. .

実施例2 ポリエステル・スチレシの複合紡糸を基布とするりしタ
シエラストマをバイシダーとした合成皮革にバッフイシ
タを施して得られる綿状体(パフ粉]を綿繊維(落綿)
に重量比で75 : 25の割合で混合し、これを同時
にピータ−にかけて水中で分散、叩解して混合スラリー
を造り、これを抄造して、脱水プレスで脱水し、前記実
施例1と同様に乾燥して比重0.3、厚さ1o■の板状
の成型体を得た。
Example 2 A flocculent material (puff powder) obtained by buffing a synthetic leather made of composite spun yarn of polyester/styrene as a base fabric and bi-cedar made of silicate sierastomer as a bi-cedar was made into cotton fibers (dropped cotton).
The mixture was mixed at a weight ratio of 75:25, and this was simultaneously dispersed and beaten in water using a peter to prepare a mixed slurry. After drying, a plate-shaped molded product having a specific gravity of 0.3 and a thickness of 1 0cm was obtained.

このようにして得た成型体は耐水性、弾性、寸法安定性
は勿論、可撓性に優れており、梱包相当て板や緩衝材と
して衝撃吸収力を有するものであった。
The molded product thus obtained was excellent in flexibility as well as water resistance, elasticity, and dimensional stability, and had shock absorbing power as a board or cushioning material equivalent to packaging.

実施例3 実施例2の方法で得た成型体を、さらに173℃、17
11/aJの条件下で90秒間加熱・圧締して比重0.
6厚さ5m1IIの可撓性に富んだ中密度のシート材を
得た。
Example 3 The molded body obtained by the method of Example 2 was further heated at 173°C and 17
Heating and pressing for 90 seconds under the conditions of 11/aJ until the specific gravity was 0.
A highly flexible, medium-density sheet material with a thickness of 5 m1 was obtained.

このシート状成型体はカバシ等の芯材や、サジタル、ス
リッパ等のコア材として充分な弾性、可撓性、耐水性を
有するものであった。
This sheet-like molded product had sufficient elasticity, flexibility, and water resistance to be used as a core material for covers, sagittals, slippers, and the like.

実施例4 実施例2の方法で得た成型体を、さらに190℃、50
’l/crlの条件下で120秒間加熱・圧締して比重
l、0、厚さ3mの硬質で可撓性を有する板を得た。
Example 4 The molded body obtained by the method of Example 2 was further heated at 190°C and 50°C.
The plate was heated and pressed for 120 seconds under the condition of 'l/crl to obtain a hard and flexible plate having a specific gravity of l, 0 and a thickness of 3 m.

この硬質成型体は靴の中履或いは中AMの弾性コア材等
に用いることができ、又防音、防振等の効果を有するた
めに、スピーカー、+セピネットの裏板等にも利用でき
るものであった。
This hard molded product can be used as an elastic core material for shoe insoles or mid-sized shoes, and can also be used as the back plate of speakers, +Sepinet, etc. because it has soundproofing and vibrationproofing effects. there were.

実施例5 実施例2に:よって得たボード状成型体を170”Cに
加熱した雌雄の金型間で熱圧成形し、絞り深さ5CIl
の皿状の立方成型体(比重0.6厚さ5 ms )を成
形したところ亀裂の発生もなく、又、適度の弾力性を有
しており、立体壁装材等の建築用材、或いは自動車のド
アトリム、トレイ状包装箱等に利用できるものであった
Example 5 According to Example 2: The board-like molded product obtained was hot-press molded between male and female molds heated to 170"C, and the drawing depth was 5 CIl.
When molded into a dish-shaped cubic molded body (specific gravity: 0.6, thickness: 5 ms), no cracks occurred, and it also had moderate elasticity, making it suitable for construction materials such as three-dimensional wall coverings, or for automobiles. It could be used for door trims, tray-shaped packaging boxes, etc.

上述のように本発明は、熱可塑性合成樹脂の繊維状物を
ウレタシエ5ストマ或いは8BR等の弾性を有する高分
子結合剤で処理してなる繊維塊にバッフイシタ処理或い
はカーディジグ処理等の粉砕処理を施して短繊維の綿状
体を得、該綿状体と木材繊維或いは綿繊維等の植物繊維
とを適宜割合で混合してなる組成物を、湿式又は乾式法
により所望形状に成型し、しかるのち加熱もしくは加熱
圧締して高分子結合+3を溶融して比重0.2〜1.2
の成型体を形成することを特徴とする繊維質成型体の製
造方法に係るものであるから、熱可塑性合成樹脂の繊維
、状物が成型体内部に散在するようになり、成形体内部
にウレタシエ5ストマや81R等の高分子材料による弾
性体の小塊を多数形成するようになり、従って弾力性を
付与され且つ寸法安定性、耐水性は勿論、優れた弾性、
クッシ3シ性、耐圧縮性及び復元性を発揮する繊維質成
型体を得ることができるものである。
As described above, in the present invention, a fiber mass obtained by treating a fibrous material of a thermoplastic synthetic resin with an elastic polymeric binder such as Uretashi 5 Stoma or 8BR is subjected to a pulverization treatment such as a buffing treatment or a carding treatment. A composition obtained by mixing the floc-like body with plant fibers such as wood fibers or cotton fibers in an appropriate ratio is formed into a desired shape by a wet or dry method, and then Heat or heat press to melt polymer bond +3 and make specific gravity 0.2-1.2
Since this method relates to a method for manufacturing a fibrous molded body characterized by forming a molded body, fibers and shaped objects of thermoplastic synthetic resin are scattered inside the molded body, and uretaceous material is formed inside the molded body. A large number of small elastic bodies made of polymer materials such as 5-stoma and 81R are formed, which gives it elasticity, dimensional stability, water resistance, and excellent elasticity.
It is possible to obtain a fibrous molded body that exhibits cushioning properties, compression resistance, and restorability.

又、成型体を高密度に圧縮した場合においてもwII#
状物の交絡部に弾性高分子結合剤が存在しているため、
加熱により溶融、緻密化しても、該弾性高分子結合剤が
合成樹脂繊維同志の完全耐滑を防止してN直往が防止さ
れ可撓性が付与せられるものであり、単に合成繊維のみ
を植物wA維と混合した従来品のような剛直性がなく、
加工性、クッショシ性を有する成型体を形成することが
できるものである。
Also, even when the molded body is compressed to a high density, wII#
Because the elastic polymer binder is present in the intertwined parts of the
Even if the synthetic resin fibers are melted and densified by heating, the elastic polymer binder prevents the synthetic resin fibers from completely slipping, preventing N-crossing and imparting flexibility. It does not have the rigidity of conventional products mixed with wA fibers,
It is possible to form a molded body having workability and cushioning properties.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の製造方法にお+jる綿状体を構成Tる繊
維塊の交絡状態を示す説明図である。 (1)・・・熱可塑性合成樹脂の繊維状物、(2)・・
・弾性高分子結合剤、(4)・・・繊維塊。 特許出願人   大建工業株式会社
The drawing is an explanatory view showing the intertwined state of the fiber mass T constituting the flocculent body according to the manufacturing method of the present invention. (1)... Fibrous material of thermoplastic synthetic resin, (2)...
- Elastic polymer binder, (4)... fiber mass. Patent applicant: Daiken Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 ■ 熱可塑性合成樹脂の繊維状物をウレタシェラストマ
或いはSBR等の弾性を有する高分子結゛合剤で処理し
てなる繊維塊にバッフィシク処理或いはカーヂイシジ処
理等の粉砕処理を施して短繊維の綿状体を得、該綿状体
と木材繊維或いは綿繊維等の植物繊維とを適宜割合に混
合してなる組成物を湿式又は乾式法により所望形状に成
型7し、しかるのち加熱もしくは加熱圧締して高分子結
合剤を溶融し、比重0.20〜1.2の成型体を形成す
ることを特徴とする繊維質成型体の製造方法。 ■ 前記繊維塊として、ウレタシェラストマやSDR等
を結合剤として形成された熱可塑性合成繊維不織布を基
布とする合成皮革の1〜フ粉を利用することを特徴とす
る特許請求の範囲!J1項記載の棒維質成型体の製造方
法。
[Claims] ■ A fibrous mass obtained by treating a fibrous material of a thermoplastic synthetic resin with an elastic polymer binder such as uretacelastomer or SBR is subjected to a crushing treatment such as a buffing treatment or a carding treatment. A composition obtained by mixing the floc-like body and plant fibers such as wood fibers or cotton fibers in an appropriate ratio is molded into a desired shape by a wet or dry method (7). A method for producing a fibrous molded article, which comprises subsequently heating or hot pressing to melt the polymer binder to form a molded article having a specific gravity of 0.20 to 1.2. (1) The scope of claims characterized in that the fiber mass is made of powder of synthetic leather whose base fabric is a thermoplastic synthetic fiber nonwoven fabric formed using uretacelastomer, SDR, etc. as a binder! A method for producing a rod fibrous molded body according to Section J1.
JP56155366A 1981-09-30 1981-09-30 Production of fibrous molded body Granted JPS5860054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56155366A JPS5860054A (en) 1981-09-30 1981-09-30 Production of fibrous molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155366A JPS5860054A (en) 1981-09-30 1981-09-30 Production of fibrous molded body

Publications (2)

Publication Number Publication Date
JPS5860054A true JPS5860054A (en) 1983-04-09
JPS6320936B2 JPS6320936B2 (en) 1988-05-02

Family

ID=15604346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155366A Granted JPS5860054A (en) 1981-09-30 1981-09-30 Production of fibrous molded body

Country Status (1)

Country Link
JP (1) JPS5860054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020052300A (en) * 2018-09-27 2020-04-02 富士紡ホールディングス株式会社 Sound absorbing material and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931909A (en) * 1972-08-04 1974-03-23
JPS5140477A (en) * 1974-09-30 1976-04-05 Daiwa Spinning Co Ltd Senishiito no seizohoho
JPS51127273A (en) * 1975-04-22 1976-11-05 Nitto Tire Waste fiber molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931909A (en) * 1972-08-04 1974-03-23
JPS5140477A (en) * 1974-09-30 1976-04-05 Daiwa Spinning Co Ltd Senishiito no seizohoho
JPS51127273A (en) * 1975-04-22 1976-11-05 Nitto Tire Waste fiber molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020052300A (en) * 2018-09-27 2020-04-02 富士紡ホールディングス株式会社 Sound absorbing material and its manufacturing method

Also Published As

Publication number Publication date
JPS6320936B2 (en) 1988-05-02

Similar Documents

Publication Publication Date Title
US4818604A (en) Composite board and method
US7816001B2 (en) Insulation board made of a mixture of wood base material and binding fibers
US2544019A (en) Manufacture of plastic-fiber composition
KR101263960B1 (en) Composite thermoplastic sheets including natural fibers
US4734231A (en) Process for the preparation of fiberboards
KR102611294B1 (en) acoustic ceiling tiles
HU223262B1 (en) Process for producing workpieces and molded pieces out of cellulose and/or cellulose-containing fiber material
US20110262733A1 (en) Fibrous plasticized gypsum composition
KR920001561B1 (en) High density composition based on discontinuous mineral fibers
JP2603905B2 (en) Manufacturing method of molded products
US3004293A (en) Method of treating a foamy material having a high water content and product obtained thereby
JPS5860054A (en) Production of fibrous molded body
US1812969A (en) Process of making integral insulating board with hard welded surfaces
KR102009811B1 (en) Composite material preform board and method for preparing the same
US1970426A (en) Paper making process
WO2003103912A1 (en) Method of manufacturing woody formed body and woody formed body
JPS5860055A (en) Production of fibrous molded body
JP4216571B2 (en) INORGANIC MOLDED BODY AND PROCESS FOR PRODUCING THE SAME
US20060151906A1 (en) Method of producing woody formed-body and woody formed-body
US3490969A (en) Method of making wood chipboard
JPH11226919A (en) Palm fiber board and its production
KR102679327B1 (en) Porous fiber reinforced composite material and method of preparing the same
KR102203946B1 (en) Heat insulation material composition, Heat insulation panel prepared using this
JP3635806B2 (en) Manufacturing method of mineral fiberboard
KR102028516B1 (en) Manufacturing method of functionality park deck utilizing polyester among waste fiber and park deck produced thereby