JPS5859933A - Preparation of aldehyde or ketone - Google Patents

Preparation of aldehyde or ketone

Info

Publication number
JPS5859933A
JPS5859933A JP56158169A JP15816981A JPS5859933A JP S5859933 A JPS5859933 A JP S5859933A JP 56158169 A JP56158169 A JP 56158169A JP 15816981 A JP15816981 A JP 15816981A JP S5859933 A JPS5859933 A JP S5859933A
Authority
JP
Japan
Prior art keywords
catalyst
phosphorus
alcohol
silver
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56158169A
Other languages
Japanese (ja)
Inventor
Tadamitsu Kiyoura
清浦 忠光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56158169A priority Critical patent/JPS5859933A/en
Publication of JPS5859933A publication Critical patent/JPS5859933A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To prepare the titled compound useful as a raw material of textile processing and paper processing resin, synthetic intermediate of pesticides and pharmaceuticals, etc., in high yield, by the oxidative dehydrogenation of an alcohol in the presence of a P-containing silver catalyst capable of keeping its catalytic activity for a long period by the presence of P. CONSTITUTION:An aldehyde or ketone such as glyoxal, etc. is prepared by the oxidative dehydrogenation of an alcohol such as ethylene glycol, etc. with oxygen in the presence of a P-containing silver catalyst at 300-600 deg.C for 0.01-2sec under atmospheric pressure. The amount of oxygen is between the stoichiometric amount and 1.5 times thereof. The reaction is carried out either by feeding P or a P compound together with the raw materials to the catalyst bed, or interrupting the reaction at a stage when the catalytic activity is lowered, and feeding P or a P compound to the catalyst bed to reactivate the catalyst. The amount of P added to silver is <=500ppm and >=5-10ppm in terms of elementary P.

Description

【発明の詳細な説明】 本発明は、アルデヒドまたはケトンの製造方法に関する
。より詳細には、アルコールを酸化脱水素してアルデヒ
ドまたは、ケトンを製造する際に用いる燐を添加した銀
触媒の活性を長期間に互り維持しながら製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing aldehydes or ketones. More specifically, the present invention relates to a method for producing aldehydes or ketones by oxidative dehydrogenation of alcohols while maintaining the activity of a phosphorous-added silver catalyst for a long period of time.

銀触媒を用いてアルコールを酸化脱水素してアルデヒド
またけケトンを製造する方法は、古くからよく知られ、
メタノールからは定歇的に近い収率でホルムアルデヒド
が大規模に製造されている。
The method of producing aldehyde-covered ketones by oxidative dehydrogenation of alcohol using a silver catalyst has been well known for a long time.
Formaldehyde is produced on a large scale from methanol in near constant yields.

しかしながら、用いるアルコールが、エチレングリコー
ル、プロピレングリコールまたはブタンジオール等の多
価アルコールの場合には、通常の鍜触媒を用いても、メ
タノールからホルムアルデヒドを得る場合のように高い
収率では得られないことも知られている。本兜明者は、
これらの問題を解決する目的で鋭意検討した結果、銀に
対して、元素状の燐に換算して500 p pm以下の
燐を添加した銀触媒が多価アルコールの酸化脱水素に対
して、画状率を示めし、しかも、触媒床にリン化合物を
微量供給することにより触媒活性を長期間に互り維持し
得名ことを見出し、本発明を完成するに至った。
However, when the alcohol used is a polyhydric alcohol such as ethylene glycol, propylene glycol, or butanediol, even if a normal cold catalyst is used, formaldehyde cannot be obtained in a high yield as when formaldehyde is obtained from methanol. is also known. Honkabuto Meisha is
As a result of intensive studies aimed at solving these problems, we found that a silver catalyst containing 500 ppm or less of phosphorus in terms of elemental phosphorus has a significant effect on the oxidative dehydrogenation of polyhydric alcohols. The present inventors have discovered that it is possible to maintain the catalytic activity for a long period of time by supplying a small amount of a phosphorus compound to the catalyst bed, and have completed the present invention.

すなわち、本発明は、アルコールを酸化脱水素してアル
デヒドまたはケトンを製造するに際し、リンを添加した
銀触媒を用い、かつ反応原料と共に微量のリンまたはリ
ン化合物を触媒床に供給しながら、アルコールの酸化脱
水素を実施する方法または触媒活性が低下した際に、反
応原料の供給を一時中断し、その間にリン葦たはリン化
合物を触媒床に供給して触媒を再ひ賦活1〜、反応原料
を書び供給して製造を継続する方法である。
That is, when producing an aldehyde or ketone by oxidative dehydrogenation of alcohol, the present invention uses a silver catalyst to which phosphorus is added, and supplies a trace amount of phosphorus or a phosphorus compound to the catalyst bed together with the reaction raw material. In the method of carrying out oxidative dehydrogenation or when the catalyst activity decreases, the supply of the reaction raw material is temporarily interrupted, and during that time, phosphorus reed or a phosphorus compound is supplied to the catalyst bed to reactivate the catalyst. This is a method to continue manufacturing by writing and supplying.

本発明の方法によれば触媒の活性を反応系にリンまたは
リン化合物を添加して持続させながら長期間に互って反
応を実施することができるうえに、工業的に南利にアル
コール類の酸化脱水素を実施することができる。
According to the method of the present invention, the reaction can be carried out for a long period of time while maintaining the activity of the catalyst by adding phosphorus or a phosphorus compound to the reaction system. Oxidative dehydrogenation can be carried out.

本発明の方法に用いるリンを添加した銀触媒は、元素状
のリンに換算して銀に対するリンの添加能が500 p
 pm以下のものである。
The phosphorus-added silver catalyst used in the method of the present invention has an ability to add phosphorus to silver of 500 p in terms of elemental phosphorus.
pm or less.

リンの添加量が500ppmを越えると、副反応が増加
し、目的とするアルデヒドの収率が低下するばかシでな
く、反応生成物が黄色または黄褐色を帯びる等の好まし
くない結果を与える。リンの添加量の下限は、反応させ
るアルコール、反応条件等により一様ではないが5〜1
0ppm以上の1直が必要となる。
If the amount of phosphorus added exceeds 500 ppm, side reactions increase, which not only reduces the yield of the desired aldehyde but also gives unfavorable results such as the reaction product becoming yellow or yellowish brown. The lower limit of the amount of phosphorus added varies depending on the alcohol to be reacted, reaction conditions, etc., but is between 5 and 1.
One shift with 0 ppm or more is required.

リンを添加した銀触媒は通常の方法、例えば、銀に所定
−喰のリンを混合、不活性雰囲気下に熔、@し合金とす
る方法、または銀の粒状触媒に、す/またはリン化合物
を適当な溶媒に溶解させた溶液全浸漬、乾燥、焼成する
ことにより調製する。
The silver catalyst to which phosphorus has been added can be prepared by a conventional method, for example, by mixing silver with a predetermined amount of phosphorus, melting it in an inert atmosphere, forming an alloy, or by adding a phosphorus compound to a granular silver catalyst. It is prepared by immersing the entire body in a solution dissolved in an appropriate solvent, drying, and baking.

元素状のリンの場合は、例えば、アルコールに赤燐を溶
解させ、これを、銀触媒に浸漬する。りこれを銀触媒に
浸漬する。トリフェニルホスフィン等の有IN IJン
化合物の場合には、アルコールやアセトン等の有機溶媒
に溶解しこれを銀触媒に浸漬後、同様に乾燥、焼成して
調製する。浸漬するリンの箪は銀に対し500p1)m
以下に保つことは前述の通りである。リンまたはリン化
合物を溶解した溶液を浸漬させる銀触媒は、銀単味の粒
状または金網状触媒でもよいし、アルミナ、炭化硅素等
の担体に担持した銀触媒であってもよい。
In the case of elemental phosphorus, for example, red phosphorus is dissolved in alcohol and immersed in a silver catalyst. This is then immersed in a silver catalyst. In the case of an organic compound such as triphenylphosphine, it is prepared by dissolving it in an organic solvent such as alcohol or acetone and immersing it in a silver catalyst, followed by drying and firing in the same manner. The phosphorus cabinet to be immersed is 500 p1) m for silver.
As mentioned above, the following should be maintained. The silver catalyst in which the solution containing phosphorus or a phosphorus compound is immersed may be a granular or wire-mesh catalyst made of pure silver, or a silver catalyst supported on a carrier such as alumina or silicon carbide.

既に調製されている銀触媒に、リンまたはリン化合物の
溶液を浸漬する上述の方法以外に、銀塩の水溶液にリン
化合物の水溶液を混合し、これを、アルミナ、炭化硅素
等の担体上に担持せしめ、乾燥、焼成することによって
も本発明の方法で用いる触媒を調製することができる。
In addition to the above-mentioned method of immersing an already prepared silver catalyst in a solution of phosphorus or a phosphorus compound, it is also possible to mix an aqueous solution of a phosphorus compound with an aqueous solution of a silver salt and support this on a carrier such as alumina or silicon carbide. The catalyst used in the method of the present invention can also be prepared by soaking, drying, and calcining.

銀塩としては、硝酸銀、酢酸銀等が、リン化合物として
は、リン酸アンモニウム等が多用される。銀塩およびυ
ノ化合物水溶液を担体に担持するには、これらの溶液を
担体に浸漬またはスプレー等の常法による。
As the silver salt, silver nitrate, silver acetate, etc. are often used, and as the phosphorus compound, ammonium phosphate, etc. are often used. silver salt and υ
In order to support the aqueous solution of the compound on the carrier, a conventional method such as dipping or spraying the solution onto the carrier is used.

乾燥は50〜150℃の空気または窒素雰囲気で行ない
、焼成は、空気流通下350〜600℃で数時間実施す
る。用いる担体は、通常、表面積が1m’/gr以下の
ものが多用される。
Drying is carried out in air or nitrogen atmosphere at 50 to 150°C, and calcination is carried out at 350 to 600°C under air circulation for several hours. The carrier used usually has a surface area of 1 m'/gr or less.

本発明の方法に用いられるアルコールは、メタノール、
エタノール等の一価アルコール、エチレングリコール、
プロピレングリコール、1.4−ブタンジオール、スチ
レングリコール等のグライコールである。
Alcohols used in the method of the present invention include methanol,
Monohydric alcohols such as ethanol, ethylene glycol,
Glycols such as propylene glycol, 1,4-butanediol, and styrene glycol.

酸化脱水素により得られる生成物として、例えば、グリ
オキザール、メチルグリオキザール、1゜4−ブタンジ
アール、およびフェニルグリオキザール等がある。
Examples of products obtained by oxidative dehydrogenation include glyoxal, methylglyoxal, 1°4-butanedial, and phenylglyoxal.

本発明の方法を実施するには、供給原料のアルコールま
たはアルコールと水(スチーム)とを予熱気化させて触
媒床に供給する。スチームを共存させる場合のアルコー
ルとスチームの供給比1は、スチームを液体の水に換算
して厭世比で示めせば、アルコール/水=110.1〜
1/1.0.特に110.5〜1/2の範囲が多用され
る。
To carry out the process of the invention, the feed alcohol or alcohol and water (steam) are preheated and vaporized and fed to the catalyst bed. The supply ratio 1 of alcohol and steam in the case of coexistence of steam is expressed as a ratio of steam to liquid water, alcohol/water = 110.1 ~
1/1.0. In particular, the range of 110.5 to 1/2 is often used.

アルコールに対する酸素量は、アルコール化脱水素して
アルデヒドまたはケトンにするに要する化学量論量乃至
化字覧論黄の1.5倍の範囲が好ましい。酸素源として
は、通常空気が多用される。
The amount of oxygen relative to the alcohol is preferably in the range of the stoichiometric amount to 1.5 times the stoichiometric amount required for alcoholic dehydrogenation to form an aldehyde or ketone. Air is usually used as the oxygen source.

反応混合物の触媒床への接触時間は0.01〜2秒設定
する。反応を実施する除の触媒床の温度は、300〜6
00℃、特に350〜550℃の範囲が好ましい。反応
圧力は通常、常圧が多用される。触媒床を流出した生成
物は、冷却補集し、イオン交換樹脂処理等の常法に依っ
て精製し、製品とする。
The contact time of the reaction mixture to the catalyst bed is set to 0.01 to 2 seconds. The temperature of the catalyst bed in which the reaction is carried out is between 300 and 6
00°C, particularly preferably in the range of 350 to 550°C. Normal pressure is usually used as the reaction pressure. The products flowing out of the catalyst bed are collected by cooling and purified by a conventional method such as treatment with an ion exchange resin to form a product.

本発明の方法においては上記のようなアルデヒドlたは
ケトンの製造工程において、その反応系にリンまたはリ
ン化合物を添加して、リンを含有する銀触媒の活性を長
く持続させる。
In the method of the present invention, phosphorus or a phosphorus compound is added to the reaction system in the process of producing aldehyde l or ketone as described above, so that the activity of the phosphorus-containing silver catalyst is sustained for a long time.

この方法として、■リンまたはリン化合物を原料物質と
共に触媒床に供給する方法、■触媒の活性が低下した反
応時点で、反応を中断し触媒床にリンまたはリン化合物
を供給して再賦活する方法等がある。
This method includes: ■ a method in which phosphorus or a phosphorus compound is supplied to the catalyst bed together with a raw material; and ■ a method in which the reaction is interrupted at the point where the activity of the catalyst has decreased, and phosphorus or a phosphorus compound is supplied to the catalyst bed to reactivate it. etc.

原料物質と共にリンまたはリン化合物を触媒床に供給す
る方法では、触媒床に供給するリン化合物の量は元素状
のリンに換算して、銀触媒1kg、につき毎時 I X
 10 ’ 〜I X 10−2f/Hr/kgpat
In the method of feeding phosphorus or a phosphorus compound to the catalyst bed together with the raw material, the amount of phosphorus compound fed to the catalyst bed is IX per hour per 1 kg of silver catalyst, converted to elemental phosphorus.
10' ~I X 10-2f/Hr/kgpat
.

の範囲が好ましい。供給するリン化合物は、例えば、リ
ン酸、亜リン酸、リン酸塩(リン酸アンモ、ニウム等)
、ホスフィン、トリアルキルホスフィン、あるいは元素
状のリン等である。
A range of is preferred. The phosphorus compounds to be supplied include, for example, phosphoric acid, phosphorous acid, phosphates (ammonium phosphate, nium phosphate, etc.)
, phosphine, trialkylphosphine, or elemental phosphorus.

本発明の方法では、アルコール、またはアルコールとス
チームとを空気と共に触媒床に供給することにより反応
させるので、アルコールまたは、スチーム原料となる水
の中に前記リン化合物を溶解させ、反応原料と共に気化
器で予熱気化させて、触媒床に供給する方法が便利であ
る。
In the method of the present invention, alcohol or alcohol and steam are reacted together by being supplied to a catalyst bed together with air. Therefore, the phosphorus compound is dissolved in alcohol or water which is a raw material for steam, and the phosphorus compound is dissolved in a vaporizer together with a reaction raw material. A convenient method is to preheat and vaporize it before supplying it to the catalyst bed.

つさに触媒活性が低下した除に反応ケ一時中断し触媒床
にリン化合物を供給して再賦活する方法では、前記のよ
うなリン化合物を水等の溶媒に溶解せしめ、これを予熱
気化させて触媒床に供給する、触媒床への供給業はlX
l0 ”〜6X10’f/Hr7k t eat、の割
合で数時間乃至10時間実施する。
In a method in which the reaction is temporarily stopped and the phosphorus compound is supplied to the catalyst bed to reactivate the catalyst, the phosphorus compound as described above is dissolved in a solvent such as water, and this is preheated and vaporized. The supply business to the catalyst bed is lX.
It is carried out at a rate of 10'' to 6×10'f/Hr7k eat for several hours to 10 hours.

リン化合物を供給する場合の触媒床の温度は、通常、3
00〜600℃、特に400℃前後が好ましい。
The temperature of the catalyst bed when feeding the phosphorus compound is usually 3
00 to 600°C, particularly preferably around 400°C.

水に溶解したリン化合物と共に空気等のり酸素ガトンは
、繊維加工、紙加工樹脂原料、農医薬合成中間体等とし
て有用な化合物である。
The phosphorus compounds dissolved in water and the oxygen contained in the air are useful compounds for fiber processing, paper processing resin raw materials, agricultural and pharmaceutical synthesis intermediates, and the like.

以下、実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

比較例 ホルマリン合成用の粒状銀触媒にリン酸アンモニウム水
溶液を浸漬し乾燥、400℃空気中で焼成しリン添加銀
触媒を調製した。銀に対する元素状リン換算のリンの添
加量は200ppmである。本触媒10f’を内径12
m/mのステンレススチール管に充填し、外部から砂流
動浴で400℃に加熱した。エチレングリコールの50
%水溶液をI CC/Hrで予熱器に供給し気化させ、
窒素100mfl/min空気15mQ/min  と
共に触媒床に供給した。反応管流出物を冷却補集しグリ
オキザールの生成量を高速液体クロマトグラフィーで定
量した。触媒床の運転時間に対するグリオキザールの収
率を表−1に示めす。
Comparative Example A phosphorous-added silver catalyst was prepared by immersing a granular silver catalyst for formalin synthesis in an ammonium phosphate aqueous solution, drying it, and calcining it in air at 400°C. The amount of phosphorus added in terms of elemental phosphorus relative to silver is 200 ppm. This catalyst 10f' has an inner diameter of 12
m/m stainless steel tube and heated externally to 400°C in a sand fluidized bath. 50 of ethylene glycol
% aqueous solution was supplied to a preheater at I CC/Hr and vaporized.
Nitrogen was supplied to the catalyst bed at 100 mfl/min and air at 15 mQ/min. The reaction tube effluent was cooled and collected, and the amount of glyoxal produced was determined by high performance liquid chromatography. Table 1 shows the yield of glyoxal with respect to the operating time of the catalyst bed.

実施例−1 比較例と同じ触媒を用い、供給原料の50wt%エチレ
ングリコール水溶液に1100ppのリン酸第−アンモ
ニウムを添加し反応させた。反応条件は比較例と同様で
ある。触媒の運転時間とグリオキザールの収率との関係
を表−1に示す。
Example 1 Using the same catalyst as in the comparative example, 1100 pp of tertiary ammonium phosphate was added to a 50 wt % ethylene glycol aqueous solution as a feedstock and reacted. The reaction conditions are the same as in the comparative example. Table 1 shows the relationship between the operating time of the catalyst and the yield of glyoxal.

表  −1 実施例−2 比較例−1で4日間触媒床を運転し活性低下した時点で
原料供給を中断し、リン酸第−アンモニウム5m′!−
を水10CCに溶かした水溶液を、触媒床400℃で空
気100mQ/minを供給しながら5時間を要して気
化後触媒床に供給し触媒の賦活を実施した。リン安水溶
液の供給が終了した後、ふたたび原料の供給を再開した
ところグリオキザールの収率は80%を示めした。リン
安を含まない水と空気のみを用いて触媒を処理した場合
にはグリオキザールの収率は50%に過ぎなかった。
Table-1 Example-2 In Comparative Example-1, the catalyst bed was operated for 4 days, and when the activity decreased, the raw material supply was interrupted, and 5 m' of tertiary ammonium phosphate! −
An aqueous solution prepared by dissolving . After the supply of the ammonium phosphorus aqueous solution was completed, the supply of raw materials was restarted, and the yield of glyoxal was 80%. When the catalyst was treated with only water and air without ammonium phosphate, the yield of glyoxal was only 50%.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] アルコールを酸化脱水素してアルデヒドまたはケトンを
製造するに際し、リンを添加した娯触媒の存在下、該触
媒の活性をリンまたはリン化合物によシ持続せしめなが
ら製造することを特徴とするアルデヒドまたはケトンの
製造法。
An aldehyde or ketone produced by oxidative dehydrogenation of alcohol in the presence of a recreational catalyst to which phosphorus is added, while maintaining the activity of the catalyst with phosphorus or a phosphorus compound. manufacturing method.
JP56158169A 1981-10-06 1981-10-06 Preparation of aldehyde or ketone Pending JPS5859933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56158169A JPS5859933A (en) 1981-10-06 1981-10-06 Preparation of aldehyde or ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56158169A JPS5859933A (en) 1981-10-06 1981-10-06 Preparation of aldehyde or ketone

Publications (1)

Publication Number Publication Date
JPS5859933A true JPS5859933A (en) 1983-04-09

Family

ID=15665777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56158169A Pending JPS5859933A (en) 1981-10-06 1981-10-06 Preparation of aldehyde or ketone

Country Status (1)

Country Link
JP (1) JPS5859933A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000955A1 (en) * 1982-08-30 1984-03-15 Mitsui Toatsu Chemicals Process for producing glyoxal
US5750768A (en) * 1995-08-24 1998-05-12 Nippon Shokubai Co., Ltd. Method of manufacturing α-oxocarboxylate and catalyst adopted in the method
WO1999047481A1 (en) * 1998-03-16 1999-09-23 Basf Aktiengesellschaft Method for producing carbonyl compounds
US6313343B1 (en) 1998-05-20 2001-11-06 Nippon Shokubai Co., Ltd. Process for the preparation of alpha-oxoaldehydes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000955A1 (en) * 1982-08-30 1984-03-15 Mitsui Toatsu Chemicals Process for producing glyoxal
US4555583A (en) * 1982-08-30 1985-11-26 Mitsui Toatsu Chemicals, Incorporated Preparation process for glyoxal
US5750768A (en) * 1995-08-24 1998-05-12 Nippon Shokubai Co., Ltd. Method of manufacturing α-oxocarboxylate and catalyst adopted in the method
WO1999047481A1 (en) * 1998-03-16 1999-09-23 Basf Aktiengesellschaft Method for producing carbonyl compounds
US6313343B1 (en) 1998-05-20 2001-11-06 Nippon Shokubai Co., Ltd. Process for the preparation of alpha-oxoaldehydes

Similar Documents

Publication Publication Date Title
KR100954049B1 (en) Method for preparing heteropoly acid catalyst
JPS5811416B2 (en) Method for producing methacrylic acid
EP3288917B1 (en) Process for aldehyde manufacture
US4359587A (en) Method for preparing carbonyl compounds
KR100413574B1 (en) Process for the Manufacture of Aromatic Amines by Gas-Phase Hydrogenation and Catalyst Useful Thereof
JPS5924140B2 (en) Method for producing methacrylic acid and catalyst
JPS61283352A (en) Preparation of oxidizing catalyst
JPS5859933A (en) Preparation of aldehyde or ketone
US4148822A (en) Process for the manufacture of methacrylic or acrylic acid
US4172051A (en) Catalyst for producing methacrylic acid
US4146732A (en) Process for preparing unsaturated carboxylic acids by the catalytic oxidation in the gas phase of the corresponding aldehydes
KR920003917B1 (en) Reactivation of phosphorus vanadium catalysts
JPS5987047A (en) Catalyst for alcohol oxidation and ammonium oxidation and production thereof
JPS5838227A (en) Preparation of aldehyde
JPH03232835A (en) Production of glyoxal
US4088822A (en) Simultaneous production of methacrylic acid and a methacrylate or acrylic acid and an acrylate
US4138365A (en) Catalyst for the manufacture of methacrylic or acrylic acid
US4014952A (en) Process for the preparation of isoprene
JP3437864B2 (en) Method for producing hydrocyanic acid
JP2002506054A (en) Method for non-oxidative production of formaldehyde from methanol
KR870000522B1 (en) Contisuous process preparing indole
US5689011A (en) Process for the production of glyoxals and catalysts therefor
US2098842A (en) Peepabation of acetaldehyde and a
GB1560238A (en) Production of metharcrylic and acrylick acids and their esters
JPS60100533A (en) Preparation of glyoxal