JPS5859637A - Orientating system for fault point - Google Patents
Orientating system for fault pointInfo
- Publication number
- JPS5859637A JPS5859637A JP56157315A JP15731581A JPS5859637A JP S5859637 A JPS5859637 A JP S5859637A JP 56157315 A JP56157315 A JP 56157315A JP 15731581 A JP15731581 A JP 15731581A JP S5859637 A JPS5859637 A JP S5859637A
- Authority
- JP
- Japan
- Prior art keywords
- repeater
- relay
- fault
- power supply
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/40—Monitoring; Testing of relay systems
- H04B17/407—Monitoring; Testing of relay systems without selective localization
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は直流直列給電を行う通信伝送方式において給電
が断、またはこれに近い障害が発生した際の障害点標定
方式に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for locating a point of failure when power supply is cut off or a similar failure occurs in a communication transmission system that performs DC series power supply.
第1図はアナログ同軸伝送方式を例示したものである。FIG. 1 illustrates an analog coaxial transmission system.
図において1は給電用定電流源、2は伝送線路、31〜
3n、31’〜3n’ は中継器、4は直流と信号と
を分離する電力分離p波器・(゛以下PSF (Pow
er 8eparation Filter)と記す入
5は中継器に一定電圧を供給するための定電圧ダイオー
ドである。伝送線路以外の信号中継のだめの装置、この
例で鉱中継器、PSF、定電圧ダイオードは中継装置と
称されている。6は信号のみを伝送し、直流に対しては
ループを構成する給電折返しトランスである。現在、伝
送方式には各種のものがあるが、給電回路にのみ着目す
れば、多少の変形はあっても基本的にはこのタイプであ
る。In the figure, 1 is a constant current source for power supply, 2 is a transmission line, and 31 to
3n, 31' to 3n' are repeaters, 4 is a power separating p-wave device that separates DC and signals (hereinafter referred to as PSF (Pow
Input 5, labeled er 8eparation Filter), is a constant voltage diode for supplying a constant voltage to the repeater. A signal relay device other than a transmission line, in this example a metal repeater, a PSF, and a constant voltage diode, is called a relay device. Reference numeral 6 denotes a feed turn transformer that transmits only signals and constitutes a loop for direct current. Currently, there are various types of transmission systems, but if you focus only on the power supply circuit, this is basically the type, although there may be some variations.
さて、第1図のような方式において何らかの断障害、た
とえば伝送線路2の一つが工事等によって断線したとす
ると、定逸流源11等からの給電はストップし、すべて
の中給電は動作を停止する。Now, in the system shown in Figure 1, if there is some kind of disconnection, for example, one of the transmission lines 2 is disconnected due to construction work, the power supply from the constant current source 11 etc. will stop, and all intermediate power supply will stop operating. do.
このため中継装置を通しては何らの情報も得られないの
で、障害発生位蓋は勿論、どことどこの中継装置の間が
断となったかも判断することができない。Therefore, since no information is obtained through the relay device, it is impossible to determine not only the location of the failure but also the disconnection between which relay devices.
このような問題点を解決するため、各抛のル害区間を判
定するための方式が提案されているが、いずれの方式も
障害区間を判定するのみであって、障害位置を確定する
ことはできない。障害位置を確定するために従来は、l
ず、障害区間を判定して、障害位置にV4接する中継製
置設置局(以]中継局と称する)において障害となった
伝送線路2を切bmし、ここからくくルスエコーテ哀夕
により障害位置を標定する。という方式がとられている
、。In order to solve these problems, methods have been proposed for determining the faulty section of each stroke, but all of these methods only determine the faulty section, and do not determine the location of the fault. Can not. Conventionally, in order to determine the fault location, l
First, determine the faulty section, cut the faulty transmission line 2 at a relay installation installation station (hereinafter referred to as a relay station) that is in contact with the faulty location, and locate the faulty location from there by using the route route. Orient. This method is adopted.
しかるに、中継器の固体電子化以来中継装置の信頼比は
飛躍的に向上し、中継局は無人であるばかりでなく、伝
送特性上からも地下(マンホール内)れら中継局は幹線
道路上にあることが多く、障害点標定のためにマンホー
ル内に入ろうとしても交通規制の必要性等から、昼間は
不可能なことが多く、シたがって障害位置確定に時間を
要し、伝送路機能の回復が遅れ、ひいては通信サービス
の品質を来たすという欠点がある。However, since the introduction of solid-state electronic repeaters, the reliability of repeaters has improved dramatically, and not only are repeaters unmanned, but due to their transmission characteristics, relay stations are often located underground (inside manholes) or on main roads. Even if you try to enter the manhole to locate the fault point, it is often impossible during the day due to the necessity of traffic regulations, etc. Therefore, it takes time to determine the fault location, and the transmission line function is affected. The drawback is that recovery is delayed and the quality of communication services is affected.
本発明の目的は上記の欠点を解消し、簡便に、地下中継
局等に出動することなく、給電局から直ちに障害点を標
定する障害点標定方式を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a fault point locating method that easily locates a fault point immediately from a power supply station without having to go to an underground relay station or the like.
本発明の障害点標定方式は序継器の入力側および出力側
に電力分離炉波器を設けた複数の中継装置に、伝送線路
を介して血流直列給′−を行う通信伝送方式の送信側の
前記中g装置が出力側の前記電力分離P波器と前記中継
器との間の給電系路に給電電流を検出して第一および第
二のスイッチ素子を断とする電流検出手段を態動に挿入
して構成され、前記第一のスイッチ素子と抵抗との直列
回路を前記電流検出手段および中紡器の接続点と逆方向
の前記中継装置の中継器の入力側の給電系路との間に接
続し、前記第二のスイッチ素子を介して送信側の前記中
継器の信号入力側とを結合し、障害点に隣接する前記中
継装置から障害点までのパルスエコーを、給電された前
記中継装置を介して観測することによシ障害点を標定可
能ならしめることを特徴とすAJI
第2図は本発明の一実施例における中継装置を代表的に
示し、第1図の送信側(右行き)伝送路の各中継装置の
給電回路に、給電電流により動作するリレー7 m (
m = 1 、2 e・・・、n)並びにこのリレーの
接点8m及び抵抗9mを介して、前記リレーの電源側か
ら受信@(左行き)伝送路の中継器給電回路を結ぶよう
な回路を追加し、中継装置に隣接する区間が正常な限シ
は、給電電流によりvレーアmが動作し、接点8mを開
放にして見かけ上第1図と等価にしてしまうものである
が、更に中継器3mの出力側とP8P4との中間点並び
に中継器3m’ の入力側とPBr3との中間点にはそ
れぞれハイブリッドコイルHを挿入し、更にこのハイブ
リッドコイルHは平衡結線網BNWで、その一つの端子
が終端されている。更に中継器3m及び3m’側のそれ
ぞれのハイブリッドコイルHの一端子同志は、リレー7
mの動作によって解放となる接点10mにより結ばれて
いる。ただし接点gm、10mはリレー動作でOFFで
ある。The failure point locating method of the present invention is a communication transmission method in which blood flow is serially supplied via a transmission line to a plurality of repeaters each having a power separation reactor installed on the input side and output side of a repeater. The medium-g device on the side includes current detection means for detecting a power supply current in a power supply line between the power separation P-wave device and the repeater on the output side and disconnecting the first and second switch elements. A series circuit of the first switch element and the resistor is connected to a power supply system on the input side of the repeater of the repeater in the opposite direction to the connection point of the current detecting means and the intermediate spinning machine. and the signal input side of the repeater on the transmitting side via the second switch element, and the pulse echo from the relay device adjacent to the fault point to the fault point is transmitted to the fault point. AJI is characterized in that the point of failure can be located by observing through the relay device. A relay 7m (
m = 1, 2 e..., n), and a circuit that connects the power supply side of the relay to the repeater power supply circuit of the reception @ (left-bound) transmission line via 8 m of contacts and 9 m of resistance of this relay. In addition, in the case where the section adjacent to the repeater is normal, the supply current causes the vreaer m to operate, opening the contact 8m and making it appear to be equivalent to the one shown in Figure 1. A hybrid coil H is inserted at the midpoint between the output side of 3m' and P8P4, and at the midpoint between the input side of repeater 3m' and PBr3, and furthermore, this hybrid coil H is a balanced wiring network BNW, and one terminal of is terminated. Furthermore, one terminal of each hybrid coil H on the repeater 3m and 3m' sides is connected to relay 7.
They are connected by a contact 10m which is released by the action of m. However, contacts gm and 10m are OFF due to relay operation.
またリレーの感動電流及び抵抗の値は、たとえその後位
(右fill)に1中継区間(即ち送受で2中継器)し
かなくてもリレーが動作するよう適当な値に選定してお
くものとする。In addition, the values of the relay current and resistance shall be selected appropriately so that the relay will operate even if there is only one relay section (i.e., two relays for transmission and reception) after it (right fill). .
このような構成で、まず正常な°場合の給電を考える。With this configuration, first consider power supply under normal conditions.
最初は各リレー接点はONであるので、給電開始時を考
えると、各抵抗9mに給電電流がそれぞれ分流するが、
給電開始の過渡時最も大きな電流が流れるリレーは最前
位のもの、即ち71である。よって、リレー71がlず
動作し、したがりて接点81はOFFとなる。次いで次
の中継器のリレー82が動作し、ζうして次々リレーが
動作し最終的には全接点はOFFとなって、第1図と同
様な給電が行われる。Initially, each relay contact is ON, so when considering the start of power supply, the power supply current will be divided into each 9m resistor, but
The relay through which the largest current flows during the transition at the start of power supply is the one at the forefront, ie, 71. Therefore, the relay 71 operates continuously, and therefore the contact 81 becomes OFF. Next, the relay 82 of the next repeater operates, and the relays operate one after another until finally all contacts are turned off, and power is supplied in the same manner as in FIG. 1.
次に給電断のような障害について考える。一般に給電系
断あるいは短絡のような場合、機器保績のため給電用定
電流源(第1図の1)は給電を停止するようになってい
る。今、障害が中継器3mの後位で起ったとする。この
時保守者は給電断を発見したら、給電用定電流電源よシ
強制的に給電をかけてみる。少くとも中継器3(m−1
)までは前述の動作でリレーが働き給電される。しかる
に中継器3mではリレーに電流は流れない。故にリレー
7mは動作せず、給電電流は抵抗9mでループバックさ
れたままとなる。即ち、断線障害が発生したために、自
動また手動により中継器3m。Next, consider failures such as power outages. Generally, when the power supply system is cut off or short-circuited, the constant current source for power supply (1 in FIG. 1) stops power supply to ensure equipment reliability. Now, suppose that a failure occurs 3 meters behind the repeater. At this time, if the maintenance personnel discovers that the power supply is interrupted, they try to forcibly supply power using a constant current power supply. At least 3 repeaters (m-1
), the relay operates as described above and power is supplied. However, with a 3m repeater, no current flows through the relay. Therefore, the relay 7m does not operate, and the power supply current remains looped back through the resistor 9m. In other words, due to a disconnection fault, the 3m repeater was automatically or manually removed.
3 m lで給電がループとなる。この状態で保守者は
給電装置の置かれた局所よりケーブルまたは送端の送信
増幅器の入力にパルスエコーテスタのパルス送出部を接
続し、受信増幅器の出力にパルスエコーテスタの受信部
を接続する。パルスエコーテスタの出力パルス波形は測
定しようとする中継伝送路の区間長、中継間隔、中継器
の上下限周波数、中継器過負荷点等を考瀘して中継伝送
路を正このようにして中継伝送路の送信側にノくルスを
送シ出したとすると、これらは各中継器で次々と中継さ
れて最終的には障害区間直前の中継器3mの出力側に達
する。ところがすでにのべたように、中継器3mの出力
側と中継器3 m lの入力側ではハイブリッドコイル
及び接点10mを通して結ばれているl(その他の中継
装置では接点10iは断である)。中継器3mの出力側
の71イプリクドコイルは、理想的な平衡状態では中継
器3mの出力と中継器3m″入力間で減衰量は無限大と
なるが、とζでは結線網BNWとケーブルのインピーダ
ンス値との平衡度をくずしておき、1中継区間の伝送線
路の減狭量程度の漏洩を持たせておくものとする。この
減衰量をNdB とすれば、中継器3mの出力パルス
はN+3dB の減衰を受けた後中継器3m’の入力に
達し以後受信側伝送路で中継すしてパルスエコーテスタ
の受信点にもどって来る。ただし3dBは中継器3m’
側の7・イブリッドコイルの損失である。The power supply becomes a loop at 3 ml. In this state, the maintenance person connects the pulse sending section of the pulse echo tester to the input of the transmitting amplifier at the cable or sending end from the location where the power feeding device is located, and connects the receiving section of the pulse echo tester to the output of the receiving amplifier. The output pulse waveform of the pulse echo tester is determined by considering the section length of the relay transmission line to be measured, the repeater interval, the upper and lower frequency limits of the repeater, the overload point of the repeater, etc. When a signal is sent to the transmission side of the transmission line, it is relayed one after another by each repeater and finally reaches the output side of the repeater 3m immediately before the faulty section. However, as already mentioned, the output side of the repeater 3m and the input side of the repeater 3ml are connected through the hybrid coil and the contact 10m (in other repeaters, the contact 10i is disconnected). The 71 iplied coil on the output side of the repeater 3m has an infinite amount of attenuation between the output of the repeater 3m and the input of the repeater 3m'' in an ideal balanced state, but at It is assumed that the balance between the two repeaters is disturbed and the leakage is equal to the amount of narrowing of the transmission line in one repeater section.If this amount of attenuation is NdB, the output pulse of the repeater 3m has an attenuation of N+3dB. After receiving it, it reaches the input of the repeater 3m' and is then relayed on the receiving side transmission line and returns to the receiving point of the pulse echo tester.However, 3 dB is the input of the repeater 3m'.
7. This is the loss of the hybrid coil on the side.
他方、中継器3mから出力されたノ(ルスは後位の伝送
線路に対しては損失は3dB の損失であり、線路側に
伝播して行く。しかるに、線路は断線状態であるから線
路を伝播して行った)(ルスは反射係数はぼ1で反射さ
れて来るが、反射波に対してはハイブリッドコイルの損
失は3dBのみで接点10mを介して反射パルスは中継
器3m’の方に伝送される。かくして、結局)くルスエ
コーテスタからパルスを送出した時刻からある時間ω後
に1つのパルスが受信され、それから更に少しの時間(
Δt)後にもう1つのノ(ルスが受信されることになる
。この様子をブラウン管上に画かせれば第3図のような
画像が得られる。この画像からT。On the other hand, the noise output from the 3m repeater has a loss of 3 dB to the downstream transmission line, and propagates to the line side.However, since the line is disconnected, the noise does not propagate along the line. (Russ is reflected with a reflection coefficient of approximately 1, but the loss of the hybrid coil for the reflected wave is only 3 dB, and the reflected pulse is transmitted to the repeater 3 m' through the contact point 10 m.) Thus, one pulse is received after a certain time ω from the time when the pulse was sent from the pulse echo tester, and then a short time (
After Δt), another signal will be received.If this situation is plotted on a cathode ray tube, an image as shown in Fig. 3 will be obtained.From this image, T.
Δtを求めれば障害点直前の中継器位置並びにこの中継
器位置から障害点までの位置を求めることができる。こ
の求め方は周知のところであるので省略スるが、エコー
パルステスタにおいては、トリガ入力時点から掃引開始
までの時間を可変にし、この遅延時間操作により画像を
任意の場所に移動させ、この時の遅延時間を距離に置き
かえることにより距離が直続できるようになっている。By determining Δt, the position of the repeater immediately before the failure point and the position from this repeater position to the failure point can be determined. The method for determining this is well known and will be omitted here, but in an echo pulse tester, the time from the trigger input to the start of the sweep is made variable, and the image is moved to an arbitrary location by manipulating the delay time. By replacing delay time with distance, distance can be directly connected.
なお第3図において最も左のパルスは送出パルス、中間
のパルスが中継装置での折転返しパルス、右端のパルス
が線路での反射パルスである。中間と右端のパルスにア
ンダーシ為−トがあるのは、直流カットの影響であるが
、特に問題はない。中間のパルス即ち中絶器での折り返
し、パルスと、右端の゛パルス、即ち障害点での反射パ
ルスの高さが異るのは、障害点の反射系数を1としても
次の中継装置との中間点よシ若干遠方であり、障害点ま
での往復の減衰量が先にのべた折υ返しパルスの減衰量
Nよりも多いために起ったことを例として示したもので
ある。In FIG. 3, the leftmost pulse is the sending pulse, the middle pulse is the turning pulse at the repeater, and the rightmost pulse is the reflected pulse on the line. The presence of undersheets in the middle and rightmost pulses is due to the direct current cut, but there is no particular problem. The difference in height between the middle pulse, that is, the aliased pulse at the aborter, and the rightmost pulse, that is, the reflected pulse at the fault point, is that even if the reflection coefficient at the fault point is 1, the height is different between the middle pulse and the next repeater. This is an example of what happened because the point is a little far away and the amount of attenuation on the round trip to the point of failure is greater than the amount of attenuation N of the folded pulse mentioned above.
以上のべたように、本発明によれば簡単に障害位置の標
定か正確に行えるため、保守上、サービス上質するとこ
ろ大である。As described above, according to the present invention, the fault location can be easily and accurately located, which greatly improves the quality of service in terms of maintenance.
第1図は一般の同軸ケーブル伝送方式を示す回路図、第
2図は本発明の一実施例を示す回路−、第3図は第2図
においてパルスエコーテスタによって得られる画像の一
例を示す波形図である。
1・・・・・・給電用定電流電源、2・・・・−・伝送
線路、31゜31’ 、32,32’ 3n、3n’、
3m、3m’・・・・・・中継器、4・・・・・・P8
F、5・・・・・・定電圧ダイオード、71゜7m・・
・・・・リレー、81.8m、lQm・・・・・・リレ
ーの動作によシ断となる接点、H・・・・・・ハイブリ
ットコイル、BNW・・・・・・平衡結線網、T・・・
・・・試験局から障害区間直前の中継局までのパルス往
復伝搬時間、Δt・・・・・・障害区間直前の中継局か
ら障害点までのパルス往復伝搬時間。Fig. 1 is a circuit diagram showing a general coaxial cable transmission system, Fig. 2 is a circuit showing an embodiment of the present invention, and Fig. 3 is a waveform showing an example of an image obtained by a pulse echo tester in Fig. 2. It is a diagram. 1... Constant current power supply for power supply, 2... - Transmission line, 31° 31', 32, 32' 3n, 3n',
3m, 3m'...Repeater, 4...P8
F, 5... Constant voltage diode, 71°7m...
...Relay, 81.8m, lQm...Contact that breaks due to relay operation, H...Hybrid coil, BNW...Balanced wiring network, T ...
... Pulse round trip propagation time from the test station to the relay station immediately before the fault section, Δt ... Pulse round trip propagation time from the relay station immediately before the fault section to the fault point.
Claims (1)
けた複数の中継装置にI伝送線路を介して直流直列給電
を行う通信伝送方式の送信側の前記中継装置が出力側の
前記電力分離r波器と前記中継器との間の給電系路に給
電電流を検出して第一および第二のスイッチ素子を断と
する電流検出手段を直列に挿入して構成され、前記第一
のスイッチ素子と抵抗との直列回路を前記電流検出手段
および中継器の接続点と逆方向の前記中継51:、置の
中継器の入力側の給電系路との間に接続し、前記第二の
スイッチ素子を介して送信側の前記中継器の信号出力側
と受信側の前記中継器の信号入力側とを結合し、障害点
に隣接する前記中継装置から障害点までのパルスエコー
を、給電された前記中継装置を介して観測することによ
シ障害点を標定可能ならしめることを特徴とする障害点
標定方式。In a communication transmission system in which DC series power is supplied to a plurality of relay devices provided with power separation Pa1d devices on the input side and output side of the repeater via an I transmission line, the relay device on the transmission side is connected to the power separation r on the output side. the first switch element is configured by inserting in series a current detection means for detecting the power supply current and disconnecting the first and second switch elements in the power supply line between the wave transmitter and the repeater; A series circuit consisting of a resistor and a resistor is connected between the connection point of the current detection means and the repeater and the power supply line on the input side of the repeater located in the opposite direction, and The signal output side of the repeater on the transmitting side and the signal input side of the repeater on the receiving side are coupled via A fault point locating method characterized in that a fault point can be located by observing through a relay device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56157315A JPS5859637A (en) | 1981-10-02 | 1981-10-02 | Orientating system for fault point |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56157315A JPS5859637A (en) | 1981-10-02 | 1981-10-02 | Orientating system for fault point |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5859637A true JPS5859637A (en) | 1983-04-08 |
JPS6236416B2 JPS6236416B2 (en) | 1987-08-06 |
Family
ID=15646995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56157315A Granted JPS5859637A (en) | 1981-10-02 | 1981-10-02 | Orientating system for fault point |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5859637A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0325287Y2 (en) * | 1985-10-02 | 1991-05-31 | ||
JPS632112A (en) * | 1986-06-20 | 1988-01-07 | Nippon Seiki Houseki Kogyo Kk | Head cleaner |
JPS6396626U (en) * | 1986-07-23 | 1988-06-22 | ||
JPS6355204U (en) * | 1986-09-25 | 1988-04-13 | ||
JPH01113813U (en) * | 1988-01-27 | 1989-07-31 |
-
1981
- 1981-10-02 JP JP56157315A patent/JPS5859637A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6236416B2 (en) | 1987-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3636280A (en) | Telephone line testing from remote locations | |
CN103250404B (en) | For determining diagnostic engine and the using method thereof of the overall line characteristic of DSL telecommunication line | |
JPH07198539A (en) | Independent positional application of otdr technology based on correlation of branched optical fiber net in operation | |
JPS596538B2 (en) | Optical repeater monitoring method | |
KR850004366A (en) | Telepaging system and method | |
JPS5859637A (en) | Orientating system for fault point | |
EP0448293B1 (en) | Method of locating a fault | |
EP1524781A1 (en) | Optical link performance monitoring using OTDM with laser for data transmission/reception | |
US5115462A (en) | Remotely controlled apparatus for conditioning telephone line exclusive of metallic DC bypass pair | |
JP3325655B2 (en) | Method and apparatus for monitoring a branched optical line network | |
CN1998185A (en) | Fault management in an Ethernet based communication system | |
EP1825660A2 (en) | Method and system for distance measurements | |
US4445007A (en) | Remote testing of subscriber line interface circuits | |
GB2191356A (en) | Optical communication terminal | |
US5345496A (en) | Remote line test facility | |
JPS5811563B2 (en) | Hikari Eye Bar Tsuushin Houshiki | |
CA1245356A (en) | Data network interface module | |
TW401665B (en) | Method and system for testing a transmission line in a non-addressable network for continuity | |
Minullin et al. | An averaging method for identification of location probing signals in the high-frequency channel of transmission lines | |
JPH10257464A (en) | Device and method for testing catv transmission line separation | |
KR100221528B1 (en) | Test access method of synchronous transmission network | |
USRE29499E (en) | On premise telephone loop tester | |
JP2981886B1 (en) | Failure detection method for leaky transmission line | |
US6628619B1 (en) | Automatic transmit-receive path configuration for a network tester | |
JPS6014546B2 (en) | Fault monitoring method for cable relay communication system |