JPS5859607A - Microstrip antenna - Google Patents

Microstrip antenna

Info

Publication number
JPS5859607A
JPS5859607A JP15740681A JP15740681A JPS5859607A JP S5859607 A JPS5859607 A JP S5859607A JP 15740681 A JP15740681 A JP 15740681A JP 15740681 A JP15740681 A JP 15740681A JP S5859607 A JPS5859607 A JP S5859607A
Authority
JP
Japan
Prior art keywords
antenna
power
power supply
microphone
microstrip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15740681A
Other languages
Japanese (ja)
Other versions
JPH0129082B2 (en
Inventor
Yasuo Suzuki
康夫 鈴木
Noriaki Miyano
宮野 憲明
Taneaki Chiba
胤昭 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP15740681A priority Critical patent/JPS5859607A/en
Publication of JPS5859607A publication Critical patent/JPS5859607A/en
Publication of JPH0129082B2 publication Critical patent/JPH0129082B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To suppress an unnecessary higher order mode, by providing feeding points of adjacent antennas to location deviating from the center of each antenna in opposite direction. CONSTITUTION:To feeding points P111 and P112 and P121 and P122 which are provided to microstrip antennas 11 and 12, respectively, in such a way that one point is moved by 90 deg. to the center O on each antenna, signals having phase relationships of 0 deg., 90 deg., 90 deg., and 180 deg. are supplied from an electric power distributor 20. Radio waves of circular polarized ones are generated from each microstrip antenna 11 and 12. The distributions of the lowest order mode surface electric currents of the circular polarized waves are the same in phase at both antennas and, therefore, they strengthen with each other. On the contrary, the circular polarized waves due to the distributions of the secondary higher order mode surface electric current at both antennas become opposite in phase and, therefore, they deny with each other.

Description

【発明の詳細な説明】 本実−はマイクロストリップアンテナに関し、特にアレ
イ化されかつ広帯域にわ九うて円偏波動作する際に、所
望のモードと共に励振される不要高次毫−ドに対してこ
O励振を抑制するマイクロストリップアンテナに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microstrip antenna, and particularly to an unnecessary high-order mode that is excited together with a desired mode when it is arranged in an array and operates as a circularly polarized wave over a wide band. The present invention relates to a microstrip antenna that suppresses lever O excitation.

一般にマイクロストリップアンテナO**@aきわめて
狭い。
In general, microstrip antennas O**@a are extremely narrow.

こ〇九め従来は、基I[O厚みを増したシ、誘電体O誘
電率を低くしえりするなどして該!イクIストリップア
ンテナO広帯域化をはかうていえ。
Conventionally, this has been achieved by increasing the thickness of the base I[O, lowering the dielectric constant of the dielectric O, etc. Iku I strip antenna O I am trying to widen the band.

ところでマイクロストリップアンテナを広帯域化してい
つ大場合、ド電ナンド毫−ドもしくは所望の高次モード
に加えて辷れもド電ナンドモードもしくは所望の高次モ
ードO1m有共振jl液数付近に固有共振周波数を有す
る不要高次モードも共に励振されてしまい、−生ずる円
偏波、の特性が劣化するというような不都合が生じる。
By the way, when a microstrip antenna is made to have a wide band and becomes larger, in addition to the high-power Nando mode or the desired higher-order mode, there is also a special resonance near the double-power Nando mode or the desired higher-order mode O1m resonance jl liquid number. Unnecessary higher-order modes having frequencies are also excited, causing problems such as deterioration of the characteristics of the resulting circularly polarized waves.

とOことはアレイ化され九マイクロストリップアンテナ
についても同様である。
The same holds true for nine microstrip antennas arranged in an array.

しかるKll来は、上記不要高次毫−ドの追従励mに対
する対策は推とんど購じられなかりた。
However, since then, no countermeasures against the unnecessary high-order code follow-up excitation have been considered.

本実嘴状上記実情に鍾みてなされ良もOであシ、アレイ
化されかつ広帯域にわ九りて円偏波動作するINK、有
害と表る不要高次モードを抑制し、安定化した円偏波を
得るマイクシストリップアンテナを提供することを目的
とする。
In view of the above-mentioned actual situation, this is a good idea, and INK that is arrayed and operates with circularly polarized waves in a wide band, suppresses unnecessary higher-order modes that appear harmful, and stabilizes the circular The purpose of the present invention is to provide a microphone systrip antenna that obtains polarized waves.

本発明によれば、円偏波を得る丸めの給電点ベアを有し
、しかも基板の厚みを増した〉、誘電体の誘電率を低く
しえりして広帯域化したマイクロストリップアンテナの
プレイ化に際し、隣シ金う一対1)@子(ベアアレイ素
子)関’K 90@(度)の回転変位を持えせて各素子
を配設するとともに、上記ベアアレイ素子のそれぞれの
上記給電点ベアのうち90°の回転変位を誇大せたこと
によりて互いの素子で対称な位置関係となる各給電点へ
の給電条件を互いに等振幅、逆位相とすることによシ上
記不要高次モードを抑制する。
According to the present invention, the microstrip antenna has a round feeding point bear that obtains circularly polarized waves and has an increased thickness of the substrate. , one pair of adjacent metal elements) @ child (bare array element) 90 @ (degrees) of rotational displacement, and 90 of the feed point bears of each of the bare array elements. By exaggerating the rotational displacement of .degree., the unnecessary higher-order modes are suppressed by setting the power feeding conditions to the feeding points, which have a symmetrical positional relationship between the elements, to have equal amplitude and opposite phase.

以下、本実vIK係るマイクロストリップアンテナにつ
いて添附図面の実施例を参照し、詳細に説明する。
Hereinafter, a microstrip antenna according to the actual vIK will be described in detail with reference to embodiments of the accompanying drawings.

はじめK111図および第2図を参照して本実―に係る
!イクーストリップアンテナO願墓を説明する。
Please refer to Figure K111 and Figure 2 to get started! Ikustrip Antenna O Tomb will be explained.

い壜、第1II伽)に示すマイクロストリップアンt−
to給電点PI>!びP2にそれでれ90”0位相差を
有する勢振幅電力を供給してこのマイクロストリップア
ンテナから円偏波を得るものとする。
The microstrip ant-t-
to feeding point PI>! It is assumed that a circularly polarized wave is obtained from this microstrip antenna by supplying amplitude power having a phase difference of 90''0 to P2 and P2.

ただしiはアンテナ中心点でTo〉、給電点Pla石ム
纏上の任意の位置に配設され、給電点P2社′6]I鐘
上の上記給電点PIと対応する位置(OPI冨″6P2
となる位置)に配設される。t>、上記gA+IIJ:
O1[efl交する。
However, i is the antenna center point To〉, the feeding point Pla is placed at any position on the stone wall, and the feeding point P2 company'6] I is the position corresponding to the above feeding point PI on the bell (OPI depth''6P2
location). t>, the above gA+IIJ:
O1 [efl intersect.

例えば最低次毫−ド(第1毫−ド)を所望篭−ドとし、
諌最低次篭−ドで上記給電点P1を励振し大場合、ζO
vイク賞ストリップアンテナOf!両電流分布紘第1図
OOK示す態様となる。まえ上記最低次毫−ドで励振し
大場合、最も影響力の大きい不寮高次毫−ド、すなわち
上記最量次モードOIl有共振周波数に最も近い固有共
振周波数を有する不要高次モードは第2次高次毫−ドで
あシ、マイクロスト呼ツブアンテナは広帯域化にと41
にいこO菖2水高次噌−ドによっても励振を受妙る。
For example, if the lowest order code (first order code) is the desired order code,
If the above feed point P1 is excited at the lowest order mode, ζ
V Iku Award Strip Antenna Of! The current distribution on both sides is as shown in Figure 1. If the above-mentioned lowest-order mode is excited and is large, the unnecessary high-order mode with the most influential non-resonant high-order mode, that is, the unnecessary high-order mode whose natural resonant frequency is closest to the above-mentioned maximum order mode OIl's resonant frequency, is The second-order high-order antenna is used, and the microst call antenna is used for wideband 41
It is also stimulated by the 2nd iris, the 2nd water, and the 2nd water.

この第2次高次毫−ドに基づく素面電流分布紘第1@I
(C)K示す態様とtk為。さらにマイクーストツップ
アンテta上記不要高次峰−ド(この例では第2水高次
璧−ド)Kようて励振されることによ〉b 該誘起した逆起電力によりて第18@)に示すよう1に
表面電流分布を発生する。
Surface current distribution based on this second-order higher-order wave 1st @I
(C) Mode showing K and tk. Furthermore, the above unnecessary high-order peak (in this example, the second water high-order peak) is excited by the induced back electromotive force, as shown in 18@). generates a surface current distribution.

次に、上述した最低次モードで給電点P2を励振した鳩
舎(えだし、給電点PiOall振条件に対して+90
ho位相差を誇大せる)、このマイクレストリップアン
チ10表両電流分布は第1図←)に示す態様と1.&。
Next, the pigeon coop with the feed point P2 excited in the lowest order mode described above (+90 with respect to the feed point PiOall vibration condition)
The current distribution of this microslip anti-10 table is as shown in Figure 1←) and 1. &.

以下、第1図(f)Th!び111図(2)は該給電点
? 201111KJlltづいてそれでれζOマイク
pストリップアンテナに生じる第2次高次毫−ドo*w
i電流分布および該第2次高次彎−ドによりて誘起(2
次励振)され九最低次岨−ド09間電流分布を示すもO
′eあシ、上述し九第1図(e)シよび第111411
)Kそれぞれ対応する。
Below, Figure 1 (f) Th! Is Figure 111 (2) the corresponding power feeding point? According to 201111KJllt, it is the second higher order wave that occurs in the ζO microphone p strip antenna.
The induced (2
(order excitation) and shows the current distribution between the lowest order
'e Ashi, above-mentioned Figure 1 (e) A and No. 111411
)K correspond to each other.

さて、上記給電点P1およびP!に対して上述した励振
を同時に施す仁とによ〉このマイクリスジリップアンテ
ナ状原理的には円偏波を発生する。
Now, the above feeding points P1 and P! By simultaneously applying the above-mentioned excitation to the microchip antenna, circularly polarized waves are generated in principle.

ただし、上述しえ各IIWi電流分布の方向性に着目し
た場合、第1図−)〜−によって明らかなように所iI
モード(最低次モード)の表面電流分布(第1図(ロ)
および(e)参照)に基づく偏IEO四転方向と不賛高
次毫−ド(第2水高次モード)Kよりて誘起され九所望
モード(最低次モード)のlI!両電流分布(111図
−)およびω参照)に基づ(偏波O回転方向とは逆方向
になることがわかる。すなわちこO逆方向Wc回転して
いる偏設成分が交差偏波であシ、ζO交差偏擬が上記得
られる正日傭波成分に陣書を及はす。
However, when paying attention to the directionality of the current distribution of each IIWi mentioned above, as is clear from Figure 1-) to
Mode (lowest order mode) surface current distribution (Figure 1 (b)
(see (e)) and the biased IEO quadrature direction and the negative higher order mode (second water higher order mode) K induced by the nine desired mode (lowest order mode) lI! Based on the two current distributions (see Figure 111-) and ω), it can be seen that the polarization O is in the opposite direction of rotation. In other words, the polarized component rotating in the opposite direction Wc is cross-polarized. The ζO cross bias is applied to the positive and negative wave components obtained above.

第2@−)は、上記第111(a)K示し九!イクレス
トリップアンテナの給電点PiおよびI’2に対し9G
@の回転変位を持せて給電点P3ThよびP4を配設し
たマイクロストリップアンテナを示すものであ〉、この
マイタロストリップアンテナにおいても給電点P3およ
びP4vc−すれぞれ9o00位相えだしこのM2WJ
伽)K示すマイクロストリップアンテナへ供給する電力
O位相#1ll1図伽)に示したマイクレストリップア
ンテナへ供給する電力の位相よ〕さらに90′″進めて
お夛、給電点PI (第1図(荀参照)へ供給する電力
の位相と給電点P4(第2図C)参照)へ供給する電力
の位相と社ちょうど逆相(位相差180°)tclにる
ものとすゐ。
No. 2 @-) indicates No. 111(a)K above! 9G for the feed points Pi and I'2 of the Eclestrip antenna
This shows a microstrip antenna in which feeding points P3Th and P4 are arranged with a rotational displacement of
佽)The phase of the power supplied to the microstrip antenna shown in K is the phase of the power supplied to the microstrip antenna shown in FIG. It is assumed that the phase of the power supplied to the power supply point P4 (see Figure 2C) is exactly opposite in phase (phase difference 180°) tcl.

さて、こOマイクロストリップアンテナの給電点P3お
よびP4のそれぞれに対して励振を施した場合、鋏最低
次彎−ドO1!l!両電流分布、第2水高次壁−ドof
1N!両電流分布、およびこの第2水高次峰−ドによっ
て誘起(2次励振)された最低次毫−ドO聚買電流分布
はそれぞれ第2図(ロ)〜輔)および第2図(e)〜−
に示すll!橡となる。ただし、これら第2図−)〜(
2)は先に示した第1図か)〜&6にそれぞれ対応する
もOであり、この詳述は省略する。
Now, when excitation is applied to each of the feeding points P3 and P4 of the microstrip antenna, the lowest degree of curvature of the scissors O1! l! Both current distribution, second water higher order wall-do of
1N! The two current distributions and the lowest order current distributions induced (secondary excitation) by this second water height peak are shown in Figures 2 (b) to 5) and 2 (e) to 2, respectively. −
ll shown in! Becomes a hut. However, these Figure 2-)~(
2) corresponds to ?) to &6 shown in FIG. 1, respectively, and the detailed explanation thereof will be omitted.

すなわちこのマイク謂ストリップアンテナにおいても、
上記給電点pss+−よびP4に対して前述し九励振が
同時に論されることによ〉所定O円偏波を発生す石が、
不要高次モード(第2水高次篭−ド) owhvavc
伴りて賦発生し大円偏波に有害となる交差偏波も同時に
発生する。
In other words, in this microphone so-called strip antenna,
By discussing the above-mentioned nine excitations simultaneously for the feed points pss+- and P4, a stone that generates a predetermined O circularly polarized wave is
Unnecessary higher order mode (second water higher order mode) owhvavc
At the same time, cross-polarized waves, which are generated and are harmful to great circularly polarized waves, also occur at the same time.

次に、第1図に示したマイクロストリップアンテナと第
2図に示し九マイク冒ストリップアンテナとをペアアレ
イ素子として同時Km振させるとすゐ。
Next, let's make the microstrip antenna shown in FIG. 1 and the nine-microphone strip antenna shown in FIG. 2 simultaneously vibrate for Km as a pair array element.

こO場合、第1図(ロ)〜(2))および第2図(ロ)
〜ωによって明らかなように鍛低次毫−ドのlNN電電
流分く第1図か)、←)および第2図か>、<e>参j
[)Kよる円偏歓威分は同相とtk?て!いに強め会い
、ま良第2水高次毫−ドによりて誘起(!次励振)され
九最低次毫−ド01!面電流分布(第1mlに)、ωシ
よび第2図に)、(2)参照)による交差偏波成分は逆
相となりて互IK打ち消し金うことKする。
In this case, Figures 1 (b) to (2)) and Figure 2 (b)
As is clear from ~ω, the lNN electric current of the forged low-order arc is divided by Fig. 1), ←) and Fig. 2>, <e>.
[) Is the circular bias due to K the same phase as tk? hand! The second water high-order wave is induced (!-order excitation) by the second water high-order wave, and the ninth lowest-order wave is 01! Cross-polarized components due to the surface current distribution (see 1 ml), ω (see FIG. 2), and (2)) have opposite phases and mutually cancel each other.

ζOように、広帯域にわたうて円偏波動作する2つOマ
イクロス)ラップアンテナに9G@OB転変位を持九せ
てペアアレイ素子を構成し、会素子の給電点ペアのうち
上記9000關転嶽位を持たせ九ことによって亙いO素
子で対称な位置−係となる各給電点への給電条件を互い
に等振幅、逆位相とすることにより、不要高次モードに
ようて及ばされる幣書を抑制することができる。
ζO, a pair array element is constructed by attaching two O micros wrap antennas that operate circularly polarized waves over a wide band with a displacement of 9G@OB, and By setting the power supply conditions to the respective power supply points, which are in symmetrical position relation with each other by providing a transverse position, to equal amplitude and opposite phase to each other, unnecessary higher-order modes can be spread. Banknotes can be suppressed.

1シ、上述し九J[履が弛O偶数次Oいかなる“不蚕高
次壁−ドを抑制する場合においても同様に通用する4の
であることは勿論である。
1. It goes without saying that the above-mentioned 9.4 also applies in the case of suppressing any "relaxed, even-ordered, high-order walls."

まえ、第115(a)Kシ塾1て6ム纏上シよび″6■
曽上に複数O給電点を設叶えとして411似し九表函電
流分布を示す%0?4ヤ、この場合#i第2図−)に示
すマイクレストリップアンテナにシいて%6B鐘上シよ
び″6C纏上に複数O給電点を設叶、これら各給電点に
対してj遮した給電条件を一括して適用すれば゛よい。
Before, Section 115(a)
By setting up multiple O feed points on the top of the tower, the current distribution is similar to 411, and the current distribution is %0? It is sufficient to set up a plurality of power supply points on the 6C wire and apply the interrupted power supply conditions to each of these power supply points at once.

1ksP1上述Om!嘴で社便宜上第4図体)および第
211(a)K示しえ各給電点Pi 、P2ThよヒP
3.P40配設位置をそれぞれの中心点oy一ついて*
*aiとし良が、とれも各給電点デ1およびP20配設
位置は必ずしもそれぞれの中心点るについて勢距麟でな
くと4よい、すなわち、これら各給電点Pl。
1ksP1 Om! For convenience, the beak (Fig. 4) and 211 (a) K indicate each feeding point Pi, P2Th, and P.
3. Place the P40 at the center point of each *
*Although it is important to note that the placement positions of each power supply point P1 and P20 do not necessarily have to be at the same distance from each other, that is, each of these power supply points Pl.

?2およびP3 、?4のうち少なくとも一方O給電点
同士が互いに逆方向O偏倚位置にさえあれば上記給電条
件の適宜な配慮によ〉十分亀効果を得ることができる。
? 2 and P3,? As long as at least one of the power supply points 4 is at a bias position opposite to each other, a sufficient tortoise effect can be obtained by appropriately considering the power supply conditions described above.

このこと紘上記給電点をII数とする場合について亀岡
様である。
This is what Mr. Kameoka said about the case where the power supply points mentioned above are number II.

さて、円偏波を得るためOアレイ化しえマイクレストリ
ップアンテナに上述し一九原理を適用して形成し九本発
明に係るマイターストリップアンテナ〇一実施例を第3
図に示す。
Now, in order to obtain circularly polarized waves, the miter strip antenna according to the present invention is formed by applying the above-mentioned principle to the miter strip antenna which can be formed into an O array.
As shown in the figure.

第3図において、Wはアレイ化されえマイクレストリッ
プアンテナであり、ペアアレイ素子となる素子(素子ア
ンテナ)Uシよび1基mu、およびこれら素子tt、1
2と基1[13と0IIK介在する図示し1に%1%誘
電体にようて構成される。ま九こOアレイ化され九マイ
クース)リップアンテナWは、同第311に示すように
亙いO素子uspよびセ閏でso@闘転変転変位1給電
点Pill 、 P112 sI−よび給電点P 1!
1 、 P 122を^えてイル、@tlコ0!イク四
ストストリップアンテナ1oIIi記基1[130厚み
を増し大〉、上記−電体OII電率を低くシ**するな
どor’段が施され、適宜に広帯域化されてt九、電力
分配器20杜上記給電点p 111 、 P112 。
In FIG. 3, W is a microphone strip antenna that can be arrayed, and an element (element antenna) U and one element mu, which become a pair array element, and these elements tt, 1
2 and the group 1[13 and 0 IIK are shown intervening 1%1% dielectric. As shown in the same No. 311, the lip antenna W is formed into an O array with nine microcouses), and has a large O element usp and a separator. !
1, P 122 ᄒete ill, @tlko0! Iku four-stroke strip antenna 1o IIi base 1 [130 thicker and larger], or' stages such as lowering the electrical conductivity of the above-mentioned electric body OII, etc., and widening the band appropriately, t9, power divider 20 Mori above power feeding points p 111 , P112 .

P 121シよびp122に対して所定条件の電力を与
えることにより上記アレイ化されたマイタロストリップ
アンテナWt−膳振する装置であ〉、ζこでは第31!
lK示す位相条件Oもとに等線@04つの電力を一時に
供給するものとする。すなわち給電点? 111 K対
して紘位相0”0所定振幅電力を供給し、給電点デ11
2に対しては位相+90’ 0所定振幅電力を供給し、
給電点p 121 wc対して紘同じく位相+*o”o
所jI!Il@電力を供給し、給電点デl!2に対しで
紘位相+180@D所定Il@電力を供給する。
P121 and p122 are provided with electric power under predetermined conditions to form an array of mital strip antennas Wt.
It is assumed that four equilinear powers are supplied at once under the phase condition O indicated by lK. In other words, the feeding point? A predetermined amplitude power of Hiro phase 0"0 is supplied to 111 K, and the power supply point de 11
For 2, supply phase +90' 0 predetermined amplitude power,
Feeding point p 121 For wc, the same phase as Hiro +*o”o
TokorojI! Il@supply power, feed point de l! 2, the Hiro phase +180@D predetermined Il@power is supplied.

これによ〉マイクロス)リップアンテナ10紘、上記給
電点P 111とP 112とで構成される給電点ペア
および上記給電点1’ 121とP122とで構成され
為給電点ペアにようて先に説明し九原環に基づ〈上記所
璽峰−ド01111強調を行なうとともに不要高次壁−
ドによってILはされる整置(交差偏液成分OIl生)
を抑制する0以上の説明は便宜上左施円偏*0場合につ
%11て述ぺえものであるが、右施円偏*0場合は位相
回転O方向を逆にすることにより全く同様のことがいえ
る。
As a result, the micros lip antenna 10, the feed point pair consisting of the above feed points P111 and P112, and the above feed point 1' 121 and P122 are formed. Based on Kuhara Kan, we will emphasize the above-mentioned Seishiho-de 01111 and remove unnecessary higher-order walls.
IL is arranged according to the direction (cross polarized liquid component OIL raw)
For convenience, the explanation for suppressing 0 or more is given in the case of left-handed circular deviation *0, but in the case of right-handed circular deviation *0, the same thing can be achieved by reversing the phase rotation O direction. I can say that.

し丸が、て、このアレイ化され大マイクロストリップア
ンテナlOからは安定し大円偏液が放射されることKす
る。
It is assumed that a stable large circularly polarized liquid is radiated from this arrayed large microstrip antenna lO.

なお、上述しえマイク−ストリップアンテナ10をよ〉
多素子化する場合にお(亀て%113図に示しえ素+を
基本素子として例えば第411及び菖5図に示す如くア
レイ化すればよ―。
In addition, the above-mentioned microphone strip antenna 10
In the case of multi-element design, the elements shown in Figure 113 can be used as basic elements to form an array as shown in Figures 411 and 5.

t−に%ζO第3図に示した実施例は前記電力分配器加
から出力される各電力を同軸線路を介してマイクレスト
リップアンテナ10へ供給する同軸給電タイプについて
示しえ40であるが、前述した給電条件さえ満足できる
ものであれば他Oいかなる給電方式を採用してもよい。
The embodiment shown in FIG. 3 is a coaxial feeding type in which each power output from the power divider is supplied to the microphone strip antenna 10 via a coaxial line. Any other power supply method may be used as long as it satisfies the above power supply conditions.

さらに、上記素子11および12t)Aターン形状は振
動方向に働直ik@に対称であれげよ(、一実施例とし
て第3図に示し大円形に@定される4のでは倉い。
Furthermore, the A-turn shape of the elements 11 and 12t) should be symmetrical with respect to the working axis in the vibration direction (as an example, it should not be defined as a large circle shown in FIG. 3).

1ksIP1本発明に係るマイクレストリップアンテナ
において各給電点の数、位置関係および各給電条件が一
義的でないこと紘先oxmで説5−シ九通〉であ)%し
かもこのことを応用すれに楕円状の偏液を得る場合にも
有効に適用できる。
1ksIP1 In the microphone strip antenna according to the present invention, the number of feeding points, the positional relationship, and each feeding condition are not unique. It can also be effectively applied when obtaining a polarized liquid.

以上11111L九ように本発明に係るマイクレストリ
ップアンテナによれば、いかに広帯域化しても偶数次O
不景高次モードにようて暴影響を受けることがなく、良
好tns*を容1に得ることがで自る。
As described above, according to the microphone strip antenna according to the present invention, even-order O
It is possible to obtain good TNS* without being affected by the violent effects of the low-level high-order mode.

【図面の簡単な説明】[Brief explanation of drawings]

第4図および菖2図紘本発明に係るマイク−ストリップ
アンテナOJ[履を示す図、第3図紘本発@に係る!イ
クーストリップアンテナ〇一実施例を示す■、第4閣及
び1g5図は本実91IK係る!イク賞ストリップアン
テナの他O実施例を示す図である。 1G−ffイク■ストリップアンテナ、11.12−・
素子、ロー基板、加−電力分配器。 第1図 (G) (b)          (C) (e)    (f) (d) (9) 第2図 (Q) (b)          (c) (e)          (f) (d) (9) 第3図 1n 第4図
Figure 4 and Diagram 2 Hiro A diagram showing the microphone-strip antenna OJ according to the present invention, Figure 3 from Hiromoto @! Ikustrip antenna〇1 example ■, 4th cabinet and 1g5 diagram relate to the real 91IK! It is a figure which shows the other O Example of an Iku prize strip antenna. 1G-ff Iku ■ Strip antenna, 11.12-・
Elements, low substrates, and power dividers. Figure 1 (G) (b) (C) (e) (f) (d) (9) Figure 2 (Q) (b) (c) (e) (f) (d) (9) 3rd Figure 1n Figure 4

Claims (1)

【特許請求の範囲】 a) 複数の素子アンテナで構成され、かつ円偏波にて
動作するマイクロストリップアンテナKs?いて、各素
子アンテナに前記円偏波を得る九めにそれぞれl1ff
られる2つの給電部Oうち少なくとも1つO給電部をI
II)会う素子アンテナに関して亙いに逆方崗O偏倚位
置に配設しえことを特徴とするマイク−ストリップアン
テナ。 セ) 前記円偏波を得る九めにそれでれ設けられ為2つ
の給電部はそれでれ会素子アンテナの中心に4、   
  つiて亙いに直角方向Jかつ勢距離の位置に配設さ
れえもOである特許請求011@第α)項記載のマイク
−ストリップアンテナ。 0) 前記亙いに逆方崗O偏倚位置に配設される給電部
紘それぞれ各素子アンテナO中心から等距離の位置に配
設され九%のである轡許請京011MI第C)項記載の
マイク寵ストリップアンテナ。 ■ 前記給電部は単一の給電点からなる特許請求O@s
第■項記I!Oマイク−ストリップアンテナ。 6) 前記給電部は複数の給電点からなる特許請求o1
111jlaり項記載Ovイクーストリップアンテナ。 缶) 前記互いに逆方向の偏倚位置に配設され為給電部
へ供給す1電力は互いに逆位置の電力である特許請求e
sim菖(2)項記載のマイクロストリップアンテナ。 (7)  前記亙いに逆方向の偏倚位置に配設される給
電部へ供給する電力は等II@0電力である特許請求0
111111(6)項記載のマイクロストリップアンテ
ナ。 ・) 前記互いに逆方向0偏倚位置に配設される給電部
へ供給する電力社亙いに逆位相、かう勢振幅の電力てあ
為特許請求OSm第口)項記載のマイクロストリップア
ンテナ。
[Claims] a) A microstrip antenna Ks? that is composed of a plurality of element antennas and operates with circularly polarized waves. and l1ff respectively to obtain the circularly polarized wave in each element antenna.
At least one of the two power supply units O connected to I
II) A microphone-strip antenna, characterized in that it can be arranged in a substantially opposite position with respect to the meeting element antenna. C) The two feeding parts are placed at the center of the element antenna to obtain the circularly polarized wave.
The microphone-strip antenna according to claim 011, wherein the antenna is disposed in a perpendicular direction J and at a close distance from each other. 0) The power feeding section arranged in the above-mentioned opposite position is arranged at a position equidistant from the center of each element antenna O, and has a ratio of 9%. Microphone strip antenna. ■ Patent claim O@s where the power supply unit consists of a single power supply point
Section ■I! O microphone - strip antenna. 6) Patent claim o1 in which the power feeding unit includes a plurality of power feeding points
Ov equal strip antenna described in 111jla. (can) Patent claim e, wherein the electric power supplied to the power supply unit is arranged at biased positions in mutually opposite directions, and the electric power supplied to the power supply unit is electric power in mutually opposite positions.
The microstrip antenna described in sim iris (2). (7) Patent claim 0, wherein the power supplied to the power supply unit disposed at the biased position in the opposite direction is equal to II@0 power.
The microstrip antenna described in Section 111111(6).・) The microstrip antenna according to claim OSm (part 1), in which the electric power supplies are supplied to the power feeding units disposed at zero deviation positions in opposite directions to each other and have opposite phases and bias amplitudes.
JP15740681A 1981-10-05 1981-10-05 Microstrip antenna Granted JPS5859607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15740681A JPS5859607A (en) 1981-10-05 1981-10-05 Microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15740681A JPS5859607A (en) 1981-10-05 1981-10-05 Microstrip antenna

Publications (2)

Publication Number Publication Date
JPS5859607A true JPS5859607A (en) 1983-04-08
JPH0129082B2 JPH0129082B2 (en) 1989-06-07

Family

ID=15648927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15740681A Granted JPS5859607A (en) 1981-10-05 1981-10-05 Microstrip antenna

Country Status (1)

Country Link
JP (1) JPS5859607A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617707A (en) * 1984-06-22 1986-01-14 Japan Radio Co Ltd Array antenna for circularly polarized wave
US4922259A (en) * 1988-02-04 1990-05-01 Mcdonnell Douglas Corporation Microstrip patch antenna with omni-directional radiation pattern
JPH02179008A (en) * 1988-12-28 1990-07-12 Dx Antenna Co Ltd Planar antenna
JPH07321538A (en) * 1995-01-17 1995-12-08 Toshiba Corp Circularly polarized wave array antenna
US5892482A (en) * 1996-12-06 1999-04-06 Raytheon Company Antenna mutual coupling neutralizer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538546A (en) * 1976-07-13 1978-01-26 Mitsubishi Electric Corp Circular array antenna
JPS5339043A (en) * 1976-09-22 1978-04-10 Mitsubishi Electric Corp Circular polarized wave array antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538546A (en) * 1976-07-13 1978-01-26 Mitsubishi Electric Corp Circular array antenna
JPS5339043A (en) * 1976-09-22 1978-04-10 Mitsubishi Electric Corp Circular polarized wave array antenna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617707A (en) * 1984-06-22 1986-01-14 Japan Radio Co Ltd Array antenna for circularly polarized wave
US4922259A (en) * 1988-02-04 1990-05-01 Mcdonnell Douglas Corporation Microstrip patch antenna with omni-directional radiation pattern
JPH02179008A (en) * 1988-12-28 1990-07-12 Dx Antenna Co Ltd Planar antenna
JPH07321538A (en) * 1995-01-17 1995-12-08 Toshiba Corp Circularly polarized wave array antenna
US5892482A (en) * 1996-12-06 1999-04-06 Raytheon Company Antenna mutual coupling neutralizer

Also Published As

Publication number Publication date
JPH0129082B2 (en) 1989-06-07

Similar Documents

Publication Publication Date Title
US7460077B2 (en) Polarization control system and method for an antenna array
Bucci et al. A deterministic two dimensional density taper approach for fast design of uniform amplitude pencil beams arrays
EP2697865B1 (en) Array antenna having a radiation pattern with a controlled envelope, and method of manufacturing it
KR20160056262A (en) Waveguide slotted array antenna
KR102007837B1 (en) Dual band circular polarization antenna having chip inductor
US20200106193A1 (en) Patch Antenna Array System
US8482472B2 (en) Planar antenna
JPS61172411A (en) Multi-stage linear array antenna
JPS5859607A (en) Microstrip antenna
RU2507628C2 (en) Apparatus for plasma treatment of large areas
JPH0129083B2 (en)
Rusch et al. Boresight-gain loss and gore-related sidelobes of an umbrella reflector
US11245471B2 (en) Photonics adaptive beam forming with a polar lattice comprising optical phased array receiving elements to receive the steered optical beam from optical phased array transmitting elements positioned in a circular path
JPWO2002069450A1 (en) Antenna device
Hosseini et al. Optimization of side lobe level and fixing quasi-nulls in both of the sum and difference patterns by using continuous ant colony optimization (ACO) method
US20220137310A1 (en) Circular Optical Array System Using Waveguide Fed Angled Mirrors
JPH088640A (en) Radial line patch antenna
Karim et al. Strategies for selecting common elements excitations to configure multiple array patterns
JP2586303B2 (en) Localizer antenna device
JPH02113706A (en) Antenna system
JPH09214241A (en) Plane antenna for mobile sng
JPS6022844B2 (en) array antenna
JPH05243840A (en) Antenna equipment
JPS6181003A (en) Array antenna
Abdulqader et al. Unconventional and irregular clustered arrays