JPS5859322A - Electronically controlled fuel injection engine - Google Patents

Electronically controlled fuel injection engine

Info

Publication number
JPS5859322A
JPS5859322A JP15741981A JP15741981A JPS5859322A JP S5859322 A JPS5859322 A JP S5859322A JP 15741981 A JP15741981 A JP 15741981A JP 15741981 A JP15741981 A JP 15741981A JP S5859322 A JPS5859322 A JP S5859322A
Authority
JP
Japan
Prior art keywords
engine
fuel injection
fuel
electronically controlled
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15741981A
Other languages
Japanese (ja)
Other versions
JPH0246779B2 (en
Inventor
Masashi Horikoshi
堀越 正史
Akito Oonishi
明渡 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15741981A priority Critical patent/JPS5859322A/en
Publication of JPS5859322A publication Critical patent/JPS5859322A/en
Publication of JPH0246779B2 publication Critical patent/JPH0246779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the accuracy in controlling the air fuel ratio, by switching the fuel injection to one fuel injection per cycle of the engine under the specified operating state of the engine, and alleviating the restriction of the minimum fuel injection quantity. CONSTITUTION:Two fuel injections are oerformed for one cycle of the engine in synchronization with the rotation of the engine. In step 58, the engine speed of 1,000rpm or more is judged. In a step 59, the fuel is cut OFF. When the engine speed of 900rpm or less is judged in a step 60, a program is finished, and the fuel cut is finished. When the engine speed is 900rpm or more, the step is advanced to a step 61, the contents of a counter, which counts the number of rotation of a crank shaft are judged. In this way, since one fuel injection per cycle of the engine is performed when the engine speed is decreased and the fuel cut is finished, the accuracy in controlling the air fuel ratio can be improved.

Description

【発明の詳細な説明】 本発明は、機関回転(クランク角)に同期して燃料噴射
弁から吸気系へ燃料を噴射する電子制御燃料噴射機関に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronically controlled fuel injection engine that injects fuel from a fuel injection valve to an intake system in synchronization with engine rotation (crank angle).

電子制御燃料噴射機関では吸入空気流ら1および機関回
転速度等から要求燃料噴射量が計算され、要求燃料噴射
量に対応するパルス幅の電気パルスが燃料噴射弁へ送ら
れている。燃料噴射弁には1回の燃料噴射により燃料噴
射可能である下限としての最小燃料噴射量が存在し、従
来の電子制御燃料噴射機関では機関の運転状態に関係な
く機関d1サイクルに2き2回の燃料噴射が行なわれて
いるために、燃ネ1噴射量の大幅な減少が困難であり、
空燃比の制御精度が悪化していた。
In an electronically controlled fuel injection engine, a required fuel injection amount is calculated from the intake air flow 1, engine rotational speed, etc., and an electric pulse having a pulse width corresponding to the required fuel injection amount is sent to the fuel injection valve. A fuel injection valve has a minimum fuel injection amount as a lower limit at which fuel can be injected in one fuel injection, and in a conventional electronically controlled fuel injection engine, it is injected twice per engine d1 cycle regardless of the engine operating state. Because fuel injection is performed, it is difficult to significantly reduce the amount of fuel injected.
Air-fuel ratio control accuracy had deteriorated.

本憾明の目的は、最小燃料噴射量の制限を緩和LAY”
空燃比の制御精度を改善することができる電子制御機関
を提供することである。
The purpose of this protest is to relax the restrictions on the minimum fuel injection amount.
An object of the present invention is to provide an electronically controlled engine that can improve the control accuracy of air-fuel ratio.

この目的を達成するために本発明、の電子制御燃料噴射
機関によhば、通常時では機関のlすイクルにつき2回
の燃料噴射が行なわれ、燃料噴射IItの大幅な減少が
要求される機関の運転領域では機関のlサイクルにつき
1回の燃料噴射に切換えられる。
In order to achieve this object, according to the electronically controlled fuel injection engine of the present invention, fuel injection is performed twice per engine cycle under normal conditions, and a significant reduction in fuel injection IIt is required. In the operating range of the engine, the fuel injection is switched to once per engine cycle.

図面を参照して本発明の詳細な説明する。The present invention will be described in detail with reference to the drawings.

第1図は電子制御燃料噴射機関の全体の概略図であり、
エアクリーナ1を通って吸気道、路2へ吸入された空気
は、運転室の加速ペダルに連動する絞り弁3により流量
を制御され、吸気分岐管4を介して機関本体5の燃焼室
へ導かれる。
Figure 1 is an overall schematic diagram of an electronically controlled fuel injection engine.
The air sucked into the intake passageway 2 through the air cleaner 1 has its flow rate controlled by a throttle valve 3 that is linked to an accelerator pedal in the driver's cab, and is guided to the combustion chamber of the engine body 5 via an intake branch pipe 4. .

排気系には上流から順番に排気分岐管6、排気管7、お
よび三元触媒を収容する触媒コンバータ8が設けられて
いる。燃焼室の点火栓への供給電流は点火コイル9およ
び配電器lOにゝより制御される。エアフローメータ1
3は吸入空気流I+1を検出、し、吸気温センサ14は
吸気温度を検出し、水温センナ15はシリンダブロック
に取付けられて冷却水温度を検出し、空燃比センサ16
は排気分岐管6に取付けられて排気ガス中の酸素濃度を
検出しスロットルセンサ17は絞り弁3の開度を検出す
る。点火コイル9の一次電流信号、エアフローメータ1
3、吸気温センサ14、水温センサ16、空燃比キンサ
16、およびスロットルセンサ17の出力は電子制御装
置20へ送られる。燃料噴射弁21は吸気分岐管4の各
核部分に設けられ、電子制御装置20からの電気パルス
に応動して開閉する。
The exhaust system is provided with, in order from upstream, an exhaust branch pipe 6, an exhaust pipe 7, and a catalytic converter 8 that accommodates a three-way catalyst. The current supplied to the spark plug in the combustion chamber is controlled by the ignition coil 9 and the power distributor IO. Air flow meter 1
3 detects the intake air flow I+1, the intake temperature sensor 14 detects the intake air temperature, the water temperature sensor 15 is attached to the cylinder block and detects the cooling water temperature, and the air-fuel ratio sensor 16
is attached to the exhaust branch pipe 6 to detect the oxygen concentration in the exhaust gas, and the throttle sensor 17 detects the opening degree of the throttle valve 3. Primary current signal of ignition coil 9, air flow meter 1
3. The outputs of the intake air temperature sensor 14, water temperature sensor 16, air-fuel ratio sensor 16, and throttle sensor 17 are sent to the electronic control unit 20. The fuel injection valves 21 are provided at each core portion of the intake branch pipe 4 and are opened and closed in response to electric pulses from the electronic control device 20.

第2図は電子制御装置2oのブロック図であり、第3図
は第2図の各ブロックの波形図である。
FIG. 2 is a block diagram of the electronic control device 2o, and FIG. 3 is a waveform diagram of each block in FIG.

点火コイル9からの点火−次信号AIは分周回路29へ
送られ、分周回路29は、り°ランク角のフ20゜の変
化ごとに1つのパルスを発生する。実施例では内燃機関
は4気筒であり、点火−次パルス4個当たり、すなわち
機関の1/2サイクル当たりに1個のパルスが分周回路
29の出力として形成される。基本噴射パルス発生回路
30は第1のコンデンサ31を含み、第1のコンデンサ
31は分周回路29の出力パルスのパルス幅に等しい時
間TIだけ、すなわち時刻11からt2まで所定電流A
4で充電され、時刻t2かもエアフローメータ2の出力
電圧に関係する放電電流で放電され、時刻t2から時間
T2の経過後の時刻t3において第1のコンデンサ31
0両端電圧は零となる。第1のコンデンサ31の放電電
流は吸入空気流taQが大きいとき程小さく、時間TI
は機関回転速度Nに反比例するので、時間T2はQ/N
に比例する。基本噴射パルス発生回路(資)はパルス幅
T2のパルスを、出力として発生し、この出力はダイオ
ード32を介して乗算回路33へ送られる。乗算回路3
3は第2のコンデンサ34を含み、第2のコンデンサ3
4は時間T2だけ充電され、時刻t3かも放電される。
The next-ignition signal AI from the ignition coil 9 is sent to a divider circuit 29 which generates one pulse for every 20 degree change in the rank angle. In the exemplary embodiment, the internal combustion engine is a four-cylinder engine, and one pulse is generated as the output of the frequency divider circuit 29 for every four post-ignition pulses, that is, for every 1/2 cycle of the engine. The basic injection pulse generation circuit 30 includes a first capacitor 31, and the first capacitor 31 generates a predetermined current A for a time TI equal to the pulse width of the output pulse of the frequency dividing circuit 29, that is, from time 11 to t2.
The first capacitor 31 is charged at time t2 and discharged at a discharge current related to the output voltage of the air flow meter 2 at time t2, and at time t3 after time T2 has elapsed from time t2.
The voltage across 0 becomes zero. The discharge current of the first capacitor 31 is smaller as the intake air flow taQ is larger, and the discharge current of the first capacitor 31 is smaller as the intake air flow taQ is larger.
is inversely proportional to the engine speed N, so the time T2 is Q/N
is proportional to. The basic injection pulse generation circuit generates a pulse with a pulse width T2 as an output, and this output is sent to a multiplier circuit 33 via a diode 32. Multiplier circuit 3
3 includes a second capacitor 34, and the second capacitor 3
4 is charged for time T2 and is also discharged for time t3.

第2のコンデンサ34の充電電流は空燃比センサ16の
帰還信号等により変化し、放電電流は水温センサ15の
出力により変化する。時刻t3から時間T3が経過した
時刻t4において第2のコンデンサ34の両端電圧は零
になるが、時間T3は時間T2を機関の運転状態により
補正したものである。
The charging current of the second capacitor 34 changes depending on the feedback signal of the air-fuel ratio sensor 16, and the discharging current changes depending on the output of the water temperature sensor 15. At time t4, when time T3 has elapsed from time t3, the voltage across the second capacitor 34 becomes zero, but time T3 is the time T2 corrected based on the operating state of the engine.

時刻t4から時刻t5までパルス幅T4のパルスが発生
し、乗算回路23は時間T2+T3+74に等しいパル
ス幅T5のパルスを出力として発生する。時間T4ユ燃
料噴射弁9の無効噴射時間に等しい。乗乗回路33の5
出力はオア回路35を介して電力増幅器360ベースへ
送られる。4つの燃料噴射弁21は、互いに並列に接続
され、一端において電力増、幅器36へ、他端において
抵抗37を介して直流電源としての蓄電池38へ接続さ
れている。蓄電池38はまた抵抗49を介して乗算回路
33の入力端へ接続されている。デジタル補正回路53
においてCPU (中央処理装置)39、タイマ40、
割込み制御部41.入力インタフェース42、出力イン
タフェース43.RAM(任意アクセス記憶装置)44
、ROM (読出し専用記憶装置)45、A/1)(ア
ナログ/デジタル)変換器46、およびD/A (デジ
タル/アナログ)変換器47はバス48を介して互いに
接続されている二側込み演算部41は基本噴射パルス発
生回路30の出力を受け、入力インタフェース42は空
燃比センf16およびスロットルポジションセンサ17
の゛デジタル出力を受け、A/p変換器声はエアフロー
メータ13および水温センサ15のアナログ出力を受け
゛る。蓄電池38は、点火スイッチとしての運転室のキ
ースイッチ5oを介して主電源回路51へ、および副電
源回路52へ接続されている。RAM 44は副電源回
路52がら電力を供給され、キースイッチ5oが開がれ
ている期間も記憶を保持することができる。出方インタ
フェース43の各出力端は乗算回路33の入力端、およ
びオア回路35の入力端へ接続されている。
A pulse with a pulse width T4 is generated from time t4 to time t5, and the multiplier circuit 23 outputs a pulse with a pulse width T5 equal to time T2+T3+74. The time T4 is equal to the invalid injection time of the fuel injection valve 9. Multiplying circuit 33-5
The output is sent via OR circuit 35 to power amplifier 360 base. The four fuel injection valves 21 are connected in parallel to each other, and are connected at one end to a power amplifier 36 and at the other end via a resistor 37 to a storage battery 38 as a DC power source. The accumulator 38 is also connected to the input of the multiplier circuit 33 via a resistor 49. Digital correction circuit 53
In the CPU (central processing unit) 39, timer 40,
Interrupt control unit 41. Input interface 42, output interface 43. RAM (arbitrary access storage device) 44
, ROM (read-only memory) 45, A/1) (analog/digital) converter 46, and D/A (digital/analog) converter 47 are connected to each other via a bus 48. The section 41 receives the output of the basic injection pulse generation circuit 30, and the input interface 42 receives the output from the air-fuel ratio sensor f16 and the throttle position sensor 17.
The A/P converter signal receives the analog outputs of the air flow meter 13 and the water temperature sensor 15. The storage battery 38 is connected to the main power circuit 51 and to the auxiliary power circuit 52 via a key switch 5o in the driver's cab serving as an ignition switch. The RAM 44 is supplied with power from the auxiliary power supply circuit 52 and can retain memory even while the key switch 5o is open. Each output terminal of the output interface 43 is connected to an input terminal of the multiplication circuit 33 and an input terminal of the OR circuit 35.

出力インタフェース43から乗算回路33への信号が0
である場合、基本噴射パルス発生回路3oの出力パルス
が乗算回路33へ送られるのが阻11−され、この結果
、燃料噴射弁21が駆動されず燃料カットが行なわれる
。また、出力インタフェース43からオア回路35ヘパ
ルスが送られると、電力増幅器36が導通状態となり、
クランク角に同期しない非同期噴射が行なわれる。
The signal from the output interface 43 to the multiplication circuit 33 is 0.
In this case, the output pulse of the basic injection pulse generation circuit 3o is prevented from being sent to the multiplication circuit 33, and as a result, the fuel injection valve 21 is not driven and fuel cut is performed. Further, when a pulse is sent from the output interface 43 to the OR circuit 35, the power amplifier 36 becomes conductive,
Asynchronous injection is performed that is not synchronized with the crank angle.

通常時では燃料噴射弁21の1回の噴射による最小燃料
噴射量以上の量の燃料が要求されるので、基本噴射パル
ス発生回路30のすべての出力パルスは乗算回路33へ
送られ、第3図に示されるように、機関の1サイクルに
つき(実施例では4.気筒内燃機関であるので、点火−
次信号A1としての点火パルス8個につき)2個の燃料
噴射パルス(乗算回路33の出力All )が形成され
る。これに対し、噴射すべき燃料噴射量が非常に一減少
する機関の所定の運転領域では機関のηサイクルの期間
だけ出力インタフェース43かもの信号により乗算回路
33の入力端が0に維持され、基本噴射パルス発生回路
30の2個の出力パルスのうちの1つは乗算回路33へ
の入力が阻止され、燃料噴射は機関の1サイクルにつき
1回となる。
Under normal conditions, an amount of fuel greater than the minimum fuel injection amount for one injection from the fuel injection valve 21 is required, so all output pulses of the basic injection pulse generation circuit 30 are sent to the multiplication circuit 33, as shown in FIG. As shown in , for each cycle of the engine (4 in the example), since it is a cylinder internal combustion engine, the ignition -
Two fuel injection pulses (output All of multiplier circuit 33) are formed for every eight ignition pulses as subsequent signal A1. On the other hand, in a predetermined operating range of the engine in which the amount of fuel to be injected is significantly reduced by one, the input terminal of the multiplier circuit 33 is maintained at 0 by the signal from the output interface 43 during the period of the engine's η cycle; One of the two output pulses of the injection pulse generation circuit 30 is blocked from being input to the multiplication circuit 33, and fuel injection is performed once per engine cycle.

第4図は本発明を燃料カット方法に適用した場合のプロ
グラム例のフローチャートである。
FIG. 4 is a flowchart of an example program when the present invention is applied to a fuel cut method.

ステップ57ではスロットルセンサ17からの入力から
絞り弁3がアイドリング開度にあるか否かを判別し、判
別結果が正であればステップ58へ進み、否であればこ
のプログラムを終了する。
In step 57, it is determined from the input from the throttle sensor 17 whether or not the throttle valve 3 is at the idling opening. If the determination result is positive, the process proceeds to step 58, and if not, the program is terminated.

ステップ58では機関回転速度が100o r、 p、
 m、以上であるか否かを判別し、判別結果が正であれ
ばステップ59へ進み、否であればステップ60へ進む
。ステップ59では燃料カットを行なう。燃料カットは
出力インタフェース43により乗算回路33の入力端を
0にすることにより行なわれる。
In step 58, the engine rotation speed is 100 o r, p,
It is determined whether or not it is greater than or equal to m, and if the determination result is positive, the process proceeds to step 59, and if not, the process proceeds to step 60. In step 59, a fuel cut is performed. The fuel cut is performed by setting the input terminal of the multiplication circuit 33 to 0 using the output interface 43.

したがって°機関回転速度が100Or、 p、 m、
以上である減速期間では燃料カットが行なわれる。ステ
ップ60では機関回転速度が90Or、 p、m、以下
であるか否かを判別し、判別結果が正であればこのプロ
グラムを終了し、否であればステラ:j61へ進む。し
たがって機関回転速度が90Or、 p、 m、以ドで
あれば燃料カットが終了される。ステップ6゜ではカウ
ンタの内容が1であるか否かを判別し、判別結果が正で
あればこのプログラムを終rし、否であればステップ5
9へ進む。このカウンタはクランク軸の回転数を計数す
る1ピツトカウンタであり、クランク軸の2回転のうち
一方の1回転の期間では1ビツトカウンタの内容は0で
あり、他方の1回転の期間ではlピットカウンタの内容
はlである。したがって機関回転速度が90Or、 p
、 m、より太き(1000r、 p、 m、より小さ
い場合ではクランク軸の2回転につき、すなわち機関の
lサイクルにつき1回の燃料噴射が行なわれる。このよ
うに機関回転速度が低下して燃料カットを終了する際、
直ちに通常の、機関lサイクルにつき2回の燃料噴射が
行なわれること・なく、機、関lサイクルにつき1回の
燃料噴射が行なわれ、次に機関1サイクルにつき2回の
燃料噴射が行なわれるので、燃料カッ゛トの終了に伴う
機関のトルク変化が緩やがとなり、衝撃が抑制される。
Therefore, the engine rotation speed is 100 Or, p, m,
During the above deceleration period, fuel cut is performed. In step 60, it is determined whether the engine rotational speed is 90 Or, p, m, or less. If the determination result is positive, this program is terminated, and if not, the program proceeds to Stella:j61. Therefore, if the engine rotational speed is 90 Or, p, m, or less, the fuel cut is terminated. In step 6, it is determined whether the content of the counter is 1 or not, and if the determination result is positive, this program is terminated, and if not, step 5
Proceed to 9. This counter is a 1-bit counter that counts the number of revolutions of the crankshaft, and during one of the two revolutions of the crankshaft, the content of the 1-bit counter is 0, and during the period of the other revolution, the content of the 1-bit counter is 0. The content of is l. Therefore, the engine rotation speed is 90Or, p
, m, thicker (1000 r, p, m), if the fuel is injected once per two revolutions of the crankshaft, or in other words, per 1 cycle of the engine.In this way, the engine speed decreases and the fuel When finishing the cut,
Instead of the usual two fuel injections per engine cycle, there is now one fuel injection per engine cycle, and then two fuel injections per engine cycle. , the change in engine torque due to the end of the fuel cut becomes more gradual, and the impact is suppressed.

第5図は絞り弁3がアイドリング開度がら開かれて機関
が加速された場合の燃料噴射量の説明図である◎絞り弁
3がアイドリング開度から開かれると、すなわちスロッ
トルセンサ17の出力がオンからオフへ変化する時刻t
lにおいて、エアフ・ローメータ13により検出される
吸入空気流量は直ちに増大する。工、アフロ−メータ1
3を通過した吸入空気は、占アフローメータ13より下
流の吸気系の容積の゛ために燃焼室へ吸入されるまでに
所定の時間を要¥1が、°エアフローメータ1’3の出
力に基づいて計算され′石燃料哨射量は第5図の破線で
示されるように直ちに増大し、従来の燃料噴射方法では
排気ガス中の有害な未燃成分の量が増大する。しがし本
発明では加速開始時刻tlかも所定時間が経過する時刻
t2まで燃料噴射が機関の1サイクルにつき1回にされ
るので、第5図実線で示されるように燃料噴射甲が過大
となることなく、実際の要求(Ilに、はぼ沿って変化
する。
FIG. 5 is an explanatory diagram of the fuel injection amount when the throttle valve 3 is opened from the idling opening and the engine is accelerated. ◎When the throttle valve 3 is opened from the idling opening, that is, the output of the throttle sensor 17 is Time t when changing from on to off
At 1, the intake air flow rate detected by the air flow meter 13 immediately increases. Afrometer 1
The intake air that has passed through the airflow meter 13 takes a predetermined time to be sucked into the combustion chamber due to the volume of the intake system downstream from the airflow meter 13. The amount of petroleum fuel ejected immediately increases as shown by the broken line in FIG. 5, and with the conventional fuel injection method, the amount of harmful unburned components in the exhaust gas increases. However, in the present invention, fuel injection is performed once per cycle of the engine until acceleration start time t1 or time t2 when a predetermined time has elapsed, so the fuel injection height becomes excessive as shown by the solid line in Figure 5. However, the actual demand (Il) will vary along the line.

このように本発明によれば、燃料噴射(110人幅な減
少が要求される機関の運転状態では機関の1サイクルに
つき2回の燃料噴射からl (+ilの燃ネ゛)噴射へ
切換えられるので、燃料噴射弁の最小燃料噴射量の制限
を緩和して、空燃比の制御?+’i度を改善することが
できる。
As described above, according to the present invention, in an operating state of the engine that requires a reduction in fuel injection by 110 degrees, fuel injection is switched from two fuel injections per engine cycle to l (+il fuel fuel) injection. By relaxing the restriction on the minimum fuel injection amount of the fuel injection valve, it is possible to improve the air-fuel ratio control by ?+'i degrees.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例としての電子制御燃料噴射機関
の全体の概略図、第2図は第1図の電子制御装置のブロ
ック図、第3図は第2図のブロック図の作動説明のため
のタイミングチャート、第4図は本発明を減速中の燃料
カットに適用したプログラムのフローチャート、第5図
は本発へを加速開始時の燃料噴射に適用した場合の説明
図である。 9・・・点火コイル、20・・・電子制御装置、21・
・・燃料噴射弁 特許出願人  トヨタ自動車工業株式会社!べ°− 第1図 第5図 オノ tl  ℃2   時間
Fig. 1 is an overall schematic diagram of an electronically controlled fuel injection engine as an embodiment of the present invention, Fig. 2 is a block diagram of the electronic control device shown in Fig. 1, and Fig. 3 is an explanation of the operation of the block diagram shown in Fig. 2. FIG. 4 is a flowchart of a program in which the present invention is applied to fuel cut during deceleration, and FIG. 5 is an explanatory diagram when the present invention is applied to fuel injection at the start of acceleration. 9... Ignition coil, 20... Electronic control device, 21.
...Fuel injection valve patent applicant Toyota Motor Corporation! Be°- Figure 1 Figure 5 Ono tl ℃2 hours

Claims (1)

【特許請求の範囲】 1、 機関回転に同期して機関の1サイクルにつき2回
の燃料噴射を行なう電子制御燃料噴射機関において、機
関の所定の運転状態では機関の1サイクルにつき1回の
燃料噴射へ切換え゛られることを特徴とする、電子制御
燃料噴射機関。 2 機関の前記所定の運転状態とは減速中でかつ機関回
転速度が葛lの所定値と第1の所定値より大きい第2の
所定値との間にある期間であることを特徴とする特許請
求の範囲第1項記載の電子制御燃料噴射機関。 3 機関の前記所定の運転領域とは吸気系絞り弁がアイ
ド、リング開度から開かれ牟時刻から所定時間内の加速
中であることを特徴とする特許請求の範囲第1項記載ゐ
電子制御燃料噴射機関。
[Claims] 1. In an electronically controlled fuel injection engine that performs fuel injection twice per engine cycle in synchronization with engine rotation, fuel injection is performed once per engine cycle under a predetermined operating state of the engine. An electronically controlled fuel injection engine characterized by being switched to 2. A patent characterized in that the predetermined operating state of the engine is a period during which the engine is decelerating and the engine rotational speed is between a predetermined value of kuru l and a second predetermined value that is larger than the first predetermined value. An electronically controlled fuel injection engine according to claim 1. 3. Electronic control according to claim 1, characterized in that the predetermined operating range of the engine is during acceleration within a predetermined time from the time when the intake system throttle valve is opened from idle and ring opening. fuel injection engine.
JP15741981A 1981-10-05 1981-10-05 Electronically controlled fuel injection engine Granted JPS5859322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15741981A JPS5859322A (en) 1981-10-05 1981-10-05 Electronically controlled fuel injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15741981A JPS5859322A (en) 1981-10-05 1981-10-05 Electronically controlled fuel injection engine

Publications (2)

Publication Number Publication Date
JPS5859322A true JPS5859322A (en) 1983-04-08
JPH0246779B2 JPH0246779B2 (en) 1990-10-17

Family

ID=15649216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15741981A Granted JPS5859322A (en) 1981-10-05 1981-10-05 Electronically controlled fuel injection engine

Country Status (1)

Country Link
JP (1) JPS5859322A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116838A (en) * 1983-11-26 1985-06-24 Nippon Denso Co Ltd Electronically controlled fuel injection device
JPS62253936A (en) * 1986-04-28 1987-11-05 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection equipment for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232426A (en) * 1975-09-08 1977-03-11 Nippon Denso Co Ltd Electronic controlled fuel jet device for internal combustion engine
JPS55125335A (en) * 1979-03-20 1980-09-27 Nissan Motor Co Ltd Fuel injection controller for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232426A (en) * 1975-09-08 1977-03-11 Nippon Denso Co Ltd Electronic controlled fuel jet device for internal combustion engine
JPS55125335A (en) * 1979-03-20 1980-09-27 Nissan Motor Co Ltd Fuel injection controller for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116838A (en) * 1983-11-26 1985-06-24 Nippon Denso Co Ltd Electronically controlled fuel injection device
JPH0520577B2 (en) * 1983-11-26 1993-03-19 Nippon Denso Co
JPS62253936A (en) * 1986-04-28 1987-11-05 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection equipment for internal combustion engine

Also Published As

Publication number Publication date
JPH0246779B2 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
US4658787A (en) Method and apparatus for engine control
US4436073A (en) Method of and apparatus for controlling the fuel feeding rate of an internal combustion engine
US4373489A (en) Spark timing control system
EP0130382A1 (en) Method of fuel injection into engine
US4469072A (en) Method and apparatus for controlling the fuel-feeding rate of an internal combustion engine
JPH04214947A (en) Torque fluctuation control device for internal combustion engine
JPH0211729B2 (en)
JPS6315465B2 (en)
US5927252A (en) Ignition timing control apparatus for internal combustion engine
JPS6338537B2 (en)
US4501249A (en) Fuel injection control apparatus for internal combustion engine
JP3209112B2 (en) Idle speed control device for stratified combustion engine
US4563994A (en) Fuel injection control apparatus
KR920003200B1 (en) Engine control device
JPS60166734A (en) Fuel feed controlling method of multicylinder internal- combustion engine
JPH0251059B2 (en)
JPS5859322A (en) Electronically controlled fuel injection engine
JPS58222928A (en) Air fuel ratio controller
JPH0623554B2 (en) Engine throttle control device
JPH0510492B2 (en)
JPH0517392B2 (en)
JPS5851231A (en) Fuel cut system for electronic control fuel injecting engine
JPS58222930A (en) Electronically controlled fuel injection device
JPS5830424A (en) Control method of electronically controlled fuel injection
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine