JPS5859239A - Vulcanized elastomer composition and tyre - Google Patents

Vulcanized elastomer composition and tyre

Info

Publication number
JPS5859239A
JPS5859239A JP56157927A JP15792781A JPS5859239A JP S5859239 A JPS5859239 A JP S5859239A JP 56157927 A JP56157927 A JP 56157927A JP 15792781 A JP15792781 A JP 15792781A JP S5859239 A JPS5859239 A JP S5859239A
Authority
JP
Japan
Prior art keywords
temperature
vulcanized elastomer
frequency
dynamic strain
loss factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56157927A
Other languages
Japanese (ja)
Other versions
JPH0355504B2 (en
Inventor
Hiroshi Furukawa
浩 古川
Yuichi Saito
斎藤 祐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP56157927A priority Critical patent/JPS5859239A/en
Publication of JPS5859239A publication Critical patent/JPS5859239A/en
Publication of JPH0355504B2 publication Critical patent/JPH0355504B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a vulcanized elastomer compsn. having a specified dynamic viscoelastic properties and forming type (tread) with excellent wet grip performance and high-level travelling safety. CONSTITUTION:The vulcanized elastomer compsn. shows a loss factor[tandelta (T)]integrated value SW (equationI) of 5 to higher within the temperature range of -30--15 deg.C as calculated on the basis of temperature distribution curve of loss factor at dynamic strain of 0.5% (frequency: 10Hz, temperature rise rate: 1 deg.C/min) and a loss factor integrated value SR (equation II) of 2.8 or lower within the temperature range of 50-65 deg.C as calculated on the basis of temperature distribution curve of loss factor at the dynamic strain of 0.5% (frequency and temperature rise rate are the same as above). The compsn. is prepared by using high-vinyl butadiene rubber, etc. obtained by solution polymerization process.

Description

【発明の詳細な説明】 本発明は加硫されたエラストマー組成物、および該゛エ
ラストマー組成物をトレッドに用いたタイヤに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vulcanized elastomer composition and a tire using the elastomer composition in a tread.

タイヤ用ゴムに要求される特性として主にウェットグリ
ップ性、°転動抵抗性(低発、熱性)、耐摩耗性、耐屈
曲性、耐チッピング性、耐グループクラツキング性等が
あり、これらの諸特性が総合的にバランスよく具備され
る必要がある。特に近年省資源、省エネルギーの視点か
ら転勤抵抗の低減と操縦者の安全性の観点からウェット
グリップ性能の改善が社会的要請として強くなっている
The main properties required for tire rubber include wet grip, rolling resistance (low rolling resistance, heat resistance), abrasion resistance, bending resistance, chipping resistance, group cracking resistance, etc. The following characteristics need to be comprehensively and well-balanced. In particular, in recent years there has been a strong social demand for improving wet grip performance from the viewpoint of reducing transfer resistance from the viewpoint of resource and energy conservation and from the viewpoint of operator safety.

従来、タイヤ用ゴムとして天然ゴム、合成ポリイソプレ
ンゴム、高シス1,4ポリブタジエンゴム及びスチレン
−ブタジェンゴム等が主に用いられているが、前二者は
エネルギー損失が小さい低い転勤抵抗を有する反面、湿
潤路面に対するグリフ、プ性能が劣る。一方後者は高い
ウェットグリップ性能を有するがエネルギー損失が大き
く転勤抵抗が高い。したがって転勤抵抗性能とウェット
グリップ性能は二律背反する性能であると一般に認識さ
hておりかかる間萌を解決する為、両者をブレンドし両
性能の調和点を選定する配合技術が用いられている。 
          −転勤抵抗とウェットグリップに
関するトレッドゴムの運動について考えてみると、転勤
抵抗は走、行によるタイヤ回転に伴々う繰返し運動によ
るものであ°す、繰返し振動の周波数はlO〜102H
zであり、・その周波数は60〜80°Cの温度に換算
し得る。
Conventionally, natural rubber, synthetic polyisoprene rubber, high-cis 1,4 polybutadiene rubber, and styrene-butadiene rubber have been mainly used as rubber for tires, but while the former two have low energy loss and low transfer resistance, Glyph performance on wet road surfaces is poor. On the other hand, the latter has high wet grip performance, but has large energy loss and high transfer resistance. Therefore, it is generally recognized that transfer resistance performance and wet grip performance are contradictory performances, and in order to solve this problem, a compounding technique is used that blends the two and selects a harmonious point between both performances.
- Considering the movement of the tread rubber in relation to rolling resistance and wet grip, rolling resistance is due to repetitive motion accompanying tire rotation during running and running, and the frequency of repeated vibration is 10~102H.
z, and its frequency can be converted to a temperature of 60-80°C.

他方、ウェットグリップはタイヤが凹凸のある路面を滑
走する際に路面より受け、る応力に対して発生する摩擦
抵抗と考えられ、変形周波数は10〜107H1であり
、滑走時の表面温度は100°Cからそれ以上になると
云うことが知られている。
On the other hand, wet grip is considered to be the frictional resistance that occurs in response to the stress received from the road surface when the tire slides on an uneven road surface, and the deformation frequency is 10 to 107 H1, and the surface temperature when sliding is 100 degrees. It is known that the temperature ranges from C to higher.

したがって、転勤抵抗性能に寄与する低周波数領域では
損失特性をできるだけ低くし、ウェットグリップ性能に
寄与する高周波数領域では、損失特性をできるだけ高く
することにより、相反すると考えられている両性能を共
に改善することが゛できると考えられる。
Therefore, by making the loss characteristics as low as possible in the low frequency region that contributes to transfer resistance performance and as high as possible in the high frequency region that contributes to wet grip performance, both performances, which are considered to be contradictory, can be improved. It is thought that it is possible to do so.

しかしながら、転勤抵抗と相関の高い、たかだ9か10
2H2の周波数における粘弾性の損失特性は各種の粘弾
性測定装置を用いて実験可能であるが  ′ウェットグ
リップと相関の高い104〜l Q7Hzの周波数では
力学的にその損失特性を測定することは殆んど不可能で
あると云ってよい。   。
However, at most 9 or 10 people have a high correlation with transfer resistance.
The loss characteristics of viscoelasticity at the frequency of 2H2 can be experimentally measured using various viscoelasticity measurement devices, but it is almost impossible to mechanically measure the loss characteristics at the frequency of 104 to 7Hz, which has a high correlation with wet grip. It can be said that it is almost impossible. .

従来から、高分子粘弾性体では、°周波数と温度が等値
のものであるという考え方、即ち、温度−・時間換算前
が提示されており、既存のエラストマー、例えば天然ゴ
ム、乳化重合スチレン−ブタジェンゴム等についてはフ
ェリーらがWLF式を提唱し、ガラス転移温度Tgから
Tg+100°Cの範囲で経験的に周波数から温度に変
換できることがわかっている( M、 L、Wi l 
l i amsら、J、Arrl、Chem。
Conventionally, in the case of viscoelastic polymers, the concept that frequency and temperature are equivalent has been proposed, that is, the value before temperature/time conversion. For butadiene rubber, etc., Ferry et al. proposed the WLF equation, and it has been found empirically that frequency can be converted into temperature in the range from the glass transition temperature Tg to Tg + 100°C (M, L, Wi l
l i ams et al., J. Arrl. Chem.

Soc、、77、374 (1955) )。Soc, 77, 374 (1955)).

しかしながら、一般にタイヤのトレッドゴムとして主に
使°用されている天然ゴムあるいは乳化重合スチレンブ
タジェンゴムのガラス転移温度はそれぞれ一70℃、−
50℃前後で、あることが種々の文献で報告されておシ
、WLF式の成り立つ温度範囲はせいぜい30〜50°
Cまでであるため、前述のごとき走行中のタイヤ温度お
よびタイヤ表面温度はこの範囲を逸脱しているために、
従来は走行および滑走による振動現象を、周波数一温度
変換して、温度分散による損失特性としてとらえること
は全くなされなかった。
However, the glass transition temperatures of natural rubber and emulsion polymerized styrene-butadiene rubber, which are generally used as tire tread rubber, are -70°C and -70°C, respectively.
It has been reported in various literature that the temperature range is around 50°C, and the temperature range in which the WLF formula holds is at most 30 to 50°C.
C, the tire temperature and tire surface temperature during driving as mentioned above are outside this range.
Conventionally, vibration phenomena caused by running and sliding have not been converted from frequency to temperature to be understood as loss characteristics due to temperature dispersion.

そこで、本発明者ちは、あえてW・LF式の成立する範
囲から逸脱しているが、温度一時間換算の考え方を利用
して、ウェットグリップ性能を計画する際の高周波、高
温を低周波、低温に変換する可能性を確認するため、温
度分散による損失特性と、実際のタイヤの転勤抵抗性能
およびウェットグリップ性能とがどの様な相関関係にあ
るかについて検討した。その結果、ウェットグリップ性
能は一30°C〜−15°C(’)範囲の損失係数の積
分値の対数と最も相関が高く、転勤抵抗性能は50〜6
5°Cの範囲の損失係数の積分値の対数と最も相関性が
高いと云う従来全く判明していなかった事実を見出すに
到った。′ 本発明者はこの測定法を用い転勤抵抗とウェットグリッ
プを測定し、従来、−Sに用いられているトレッドに比
し、より優れたトレッド性能を有するエラ、ストマー組
成物の検討を行なった結果、本発明を完成した。
Therefore, the inventors purposely deviated from the range in which the W-LF formula holds, but by using the concept of temperature conversion per hour, we calculated high frequency, high temperature, and low frequency when planning wet grip performance. In order to confirm the possibility of conversion to low temperature, we investigated the correlation between the loss characteristics due to temperature dispersion and the actual tire roll resistance performance and wet grip performance. As a result, the wet grip performance has the highest correlation with the logarithm of the integral value of the loss coefficient in the range of -30°C to -15°C ('), and the transfer resistance performance has the highest correlation with the logarithm of the integral value of the loss coefficient in the range of -30°C to -15°C ('), and the transfer resistance performance is 50 to 6
We have discovered the fact that the correlation is the highest with the logarithm of the integral value of the loss coefficient in the range of 5°C, which was completely unknown until now. ' The present inventor measured rolling resistance and wet grip using this measurement method, and investigated gill and stomer compositions that have better tread performance than the tread conventionally used for -S. As a result, the present invention was completed.

即ち、本発明は昇温速度1℃/分で測定された周波数1
0Hzでの動的粘弾性の温度分散曲線において、動歪0
.5%における温度範囲一30°Cがら一15°C間の
↑6失係数(tanδ(T))の積分11W(sv >
 ’: が5以上、動歪1zにおける温度範囲50°Cからが2
.8以下であることを特徴とする加硫されたエラストマ
ー組成物および該加硫エラストマーをトレッドとして用
いたタイヤに関する。
That is, the present invention has a frequency of 1 measured at a heating rate of 1°C/min.
In the temperature dispersion curve of dynamic viscoelasticity at 0 Hz, dynamic strain 0
.. Integral 11W (sv >
': 5 or more, temperature range from 50°C at dynamic strain 1z to 2
.. The present invention relates to a vulcanized elastomer composition characterized in that the vulcanized elastomer has a viscosity of 8 or less, and a tire using the vulcanized elastomer as a tread.

本発明の損失係数の基礎となる加硫エラストマー〇動的
粘弾性の温度分散は周波数1QHz、昇温速度1°C/
分の条件で動歪0.5%および1%で測定する。
The temperature dispersion of the dynamic viscoelasticity of the vulcanized elastomer that is the basis of the loss coefficient of the present invention is at a frequency of 1QHz and a heating rate of 1°C/
Measurements are made under conditions of 0.5% and 1% dynamic strain.

得られた動歪0.5%における温度分散曲線をもとに、
温度範囲一30°Cから一15°C間の損失係数の積分
値(Sw)および動歪1.Ozにおける温度分散曲線を
もとに温度50°Cから65°C曲の損失係数の積分値
(、Si<)を求める。’ SWが5以上、SRが2.
8以下の加硫エラストマーにおいて、走行中のエネルギ
ー損失が少なく、かつ走行安全性の高いタイヤを得るこ
とができる。
Based on the obtained temperature dispersion curve at 0.5% dynamic strain,
Integral value of loss coefficient (Sw) and dynamic strain in temperature range -30°C to -15°C1. Based on the temperature dispersion curve in Oz, the integral value of the loss coefficient (, Si<) for the temperature range of 50°C to 65°C is determined. 'SW is 5 or more, SR is 2.
In the case of a vulcanized elastomer having a molecular weight of 8 or less, a tire with low energy loss during running and high running safety can be obtained.

−30〜−15°Cに4おける損失係数の積分1直54
Vが5以上であれば従来用いられていたタイヤより優れ
たウェットグリップ性能が得られ、特に6.5以上のも
のにあってはより優れたウェットグリップ性能を達成し
得る。
Integration of loss factor in 4 from -30 to -15°C 1 straight 54
When V is 5 or more, wet grip performance superior to that of conventionally used tires can be obtained, and in particular, when V is 6.5 or more, even better wet grip performance can be achieved.

一方、50〜65°Cにおける拝1失係数の積分1直S
Rは転勤抵抗と最も相関性があるが、その相関性はウェ
ットグリップとSWとの関係よりも低い。
On the other hand, the integral of the loss coefficient at 50 to 65°C is
R has the highest correlation with transfer resistance, but its correlation is lower than the relationship between wet grip and SW.

これは転勤抵抗が圧縮、曲げおよびせん新運動によるエ
ネルギーロスによるもので、従って損失コンプライアン
ス(、’E’/ (E*)2)および損失弾性率(E″
′)の寄与が大きいため、損失係数(t’anδ−E・
7 ut )のみで判断するより、より正確にはとより
高い相関関係のあることがラジアルタイヤの場合わかっ
ている。しかしながらこの場合も、tanδを小さくす
゛ればsinδが小さくなり、転勤抵抗の小さいタイヤ
が提供でき°ることを示している。
This is because the transfer resistance is due to energy loss due to compression, bending, and shear motion, and therefore loss compliance (,'E'/(E*)2) and loss modulus (E''
′), the loss coefficient (t'anδ−E・
In the case of radial tires, it has been found that there is a higher correlation with 7 ut ). However, even in this case, if tan δ is decreased, sin δ is decreased, indicating that a tire with low rolling resistance can be provided.

いずれにしてもトレッドの加硫エラストマーのSRを2
.8以下にすれば、転勤抵抗の小さいタイ、ヤを得るこ
とができる。なお、SR,<2.0の場合特に好ましい
In any case, the SR of the vulcanized elastomer of the tread is 2.
.. If it is set to 8 or less, tires with low transfer resistance can be obtained. Note that it is particularly preferable that SR<2.0.

以上のごとき温度分散曲線を示す加硫エラスト(注2)
 複分子是分布   。
Vulcanized elastomer (Note 2) exhibiting the above temperature dispersion curve
Multi-molecule distribution.

(注3 )、5BR−1500住友化学工業(株)製(
注4)  IR−2200日本合成ゴム(株)製実施例
1はハイビニルブタジェンゴム、2はスチレンブタジェ
ンゴム、3は3.4−イソプレンゴムおよび4はイソプ
レンブタジェンゴム糸ゴムでいずれも溶液重合で調製さ
れたポリマーである。
(Note 3), 5BR-1500 manufactured by Sumitomo Chemical Co., Ltd. (
Note 4) IR-2200 manufactured by Japan Synthetic Rubber Co., Ltd. Example 1 is high vinyl butadiene rubber, 2 is styrene butadiene rubber, 3 is 3,4-isoprene rubber, and 4 is isoprene butadiene rubber thread rubber. It is a polymer prepared by solution polymerization.

上記エラストマー配合物を温度175°C9加硫時間2
0努の条件で加硫し、その損失係数の積分値、粘弾性特
性、転勤抵抗指数およびウェットグリップ指数を以下の
条件で測定した。結果を表−(イ)損失係数の:積分直
: 加硫エラストマーを巾4酊×長さ3Qjllll×厚さ
211の試料片を粘4弾性スペクトロメーター(岩本製
作所製)にかけ゛、周波数10H、昇温速度1°C/分
で一50°Cから85°Cの温度範囲の損失係数を測定
した。但し−50〜−5℃の範囲では動歪0.5%、−
5〜85°Cの範囲では動歪1%で測定した。得られた
各組成物の損失係数の“温度分散曲線を第1図および第
2図に示す。第1図は動歪0.5%、第2図は動歪1%
での結果を示す。図中、(1)〜(4)は各実施例1〜
4、(5)2よび(6)はそれぞれ比較例1および2を
示す。
The above elastomer compound was cured at 175°C for 2 vulcanization times.
Vulcanization was carried out under conditions of 0 effort, and the integral value of loss coefficient, viscoelastic properties, transfer resistance index and wet grip index were measured under the following conditions. Table of results - (a) Loss coefficient: Integral direct: A sample piece of the vulcanized elastomer with a width of 4 mm x length of 3 mm x thickness of 21 mm was applied to a viscoelastic spectrometer (manufactured by Iwamoto Seisakusho) at a frequency of 10 H and an increase of The loss factor was measured in the temperature range from -50°C to 85°C at a temperature rate of 1°C/min. However, in the range of -50 to -5℃, the dynamic strain is 0.5%, -
Measurements were made at a dynamic strain of 1% in the range of 5 to 85°C. Figures 1 and 2 show the temperature dispersion curves of loss coefficients for each composition obtained. Figure 1 shows a dynamic strain of 0.5%, and Figure 2 shows a dynamic strain of 1%.
The results are shown below. In the figure, (1) to (4) represent each example 1 to
4, (5) 2 and (6) indicate Comparative Examples 1 and 2, respectively.

得られたグラフから各損失堡数の積分値を求めた。The integral value of each loss barrier number was determined from the obtained graph.

←)転勤抵抗指数 (イ)と同様の大きさ、の試料片を調製し、上記粘弾は
スペグトロメーターを用いて、初期歪10%、周波数I
QHz、動歪2%で各試料の損失モジュ求めた。
←) Prepare a sample piece with the same size as the transfer resistance index (a), and measure the above viscoelasticity with an initial strain of 10% and a frequency of I using a speggtrometer.
The loss modulus of each sample was determined at QHz and dynamic strain of 2%.

e9  ウェットグリップ指数 ポータプルスキッドレジスタンステスターを使用し、湿
潤路面上の摩擦抵抗を測定し、比較例1
e9 Wet Grip Index Using a portable skid resistance tester, the frictional resistance on a wet road surface was measured, and Comparative Example 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1〜4および比較例1および2の加硫ニ
ジストマー組成物の動歪0,5%における損失係数の温
度分散曲線、第2図は同じく動歪1%における損失係数
の温度分散曲線を示す。 図中、(1)〜(4)はそれぞれ実施例1〜4、(5)
および(6)はそれぞれ比較例1および2の温度分散曲
線を示す。 特許出願人 住友′ゴムエ栗株式会扛   −代理入弁
理士肯山葆ほか14 ”、、 、、 、 、”11− 
−木
Figure 1 shows the temperature dispersion curve of the loss coefficient at a dynamic strain of 0.5% for the vulcanized nidistomer compositions of Examples 1 to 4 and Comparative Examples 1 and 2, and Figure 2 shows the temperature dispersion curve of the loss coefficient at a dynamic strain of 1%. The dispersion curve is shown. In the figure, (1) to (4) represent Examples 1 to 4 and (5), respectively.
and (6) show the temperature dispersion curves of Comparative Examples 1 and 2, respectively. Patent Applicant: Sumitomo Gomue Chestnut Co., Ltd. - Acting Patent Attorney Kenzan Bo et al. 14 ”, , , , , ,”11-
−Thursday

Claims (1)

【特許請求の範囲】 1、昇温速度1°C/分で測定された周波数IQHzで
の動的粘弾性の温度分散曲線において、動歪0.5Xに
おけル温度範囲一30°Cから一1’5°C間の損失体
1(tanδ(T))の積分値(SW)が5以上、動歪
1%における温度節−50°Cから65℃間の損失係数
の積分11[(SR)が2.8以下である加硫エラスト
マー組成物。 2、’SWが6.5以圭、である第1項記載の加硫エラ
ストマー組成物。 3、SRが2.0以下である第11項または第2項記載
の加硫エラスト7−組成物。 4、昇温速度1℃/分で測定された1波数1. QIH
zでの動的粘弾性の温度分散曲線において、動歪0.5
%における温度範囲一30°Cから一15°C間ノ損失
係数(tanδ(T))の積分値(SW )が5以上、
動歪1%における温度範囲50℃から65°C間の損失
係数の積分値(SR)が2.8以下である加硫エラスト
マーをトレッドに用いたタイヤ。 5.5Wが6.5以上である第4項記載のタイヤ。 6、SRが2.0以下である第4項または糖5項記載の
タイヤ。
[Claims] 1. In the temperature dispersion curve of dynamic viscoelasticity at a frequency of IQHz measured at a heating rate of 1°C/min, the temperature range from -30°C to -1 at a dynamic strain of 0.5X. Integral value of loss coefficient 11 [(SR ) is 2.8 or less. 2. The vulcanized elastomer composition according to item 1, which has a SW of 6.5 or more. 3. The vulcanized elastomer composition according to item 11 or item 2, which has an SR of 2.0 or less. 4. 1 wave number measured at a heating rate of 1°C/min. QIH
In the temperature dispersion curve of dynamic viscoelasticity at z, dynamic strain 0.5
%, the integral value (SW) of the loss coefficient (tan δ (T)) in the temperature range from -30°C to -15°C is 5 or more,
A tire whose tread is made of a vulcanized elastomer having an integral loss coefficient (SR) of 2.8 or less in a temperature range of 50°C to 65°C at a dynamic strain of 1%. 5. The tire according to item 4, wherein 5.5W is 6.5 or more. 6. The tire according to item 4 or item 5, which has an SR of 2.0 or less.
JP56157927A 1981-10-02 1981-10-02 Vulcanized elastomer composition and tyre Granted JPS5859239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56157927A JPS5859239A (en) 1981-10-02 1981-10-02 Vulcanized elastomer composition and tyre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56157927A JPS5859239A (en) 1981-10-02 1981-10-02 Vulcanized elastomer composition and tyre

Publications (2)

Publication Number Publication Date
JPS5859239A true JPS5859239A (en) 1983-04-08
JPH0355504B2 JPH0355504B2 (en) 1991-08-23

Family

ID=15660506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56157927A Granted JPS5859239A (en) 1981-10-02 1981-10-02 Vulcanized elastomer composition and tyre

Country Status (1)

Country Link
JP (1) JPS5859239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233106A (en) * 1987-11-30 1989-09-18 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH03239603A (en) * 1990-02-17 1991-10-25 Sumitomo Rubber Ind Ltd Radial tire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104343A (en) * 1979-02-05 1980-08-09 Nippon Zeon Co Ltd Production of rubber composition for tire-tread

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104343A (en) * 1979-02-05 1980-08-09 Nippon Zeon Co Ltd Production of rubber composition for tire-tread

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233106A (en) * 1987-11-30 1989-09-18 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH03239603A (en) * 1990-02-17 1991-10-25 Sumitomo Rubber Ind Ltd Radial tire

Also Published As

Publication number Publication date
JPH0355504B2 (en) 1991-08-23

Similar Documents

Publication Publication Date Title
JPH0693134A (en) Rubber composition excellent in grip and rolling resistance and its production
JP5232324B1 (en) Rubber composition for tire inner layer and pneumatic tire
EP0087736A1 (en) Elastomer composition
JP2013517343A (en) Rubber composition comprising a polar thermoplastic elastomer containing alkyl acrylate units
JPH03239737A (en) Pneumatic tire
JP3406105B2 (en) Pneumatic tire
JPS602201B2 (en) steel radial tire
JPS6030562B2 (en) Pneumatic tires with improved tread
JPH07188461A (en) Rubber composition
JPS5859239A (en) Vulcanized elastomer composition and tyre
CN109553827B (en) Tread rubber composition and all-weather tire
BR112020017663A2 (en) POLYMER OF MODIFIED LIQUID DIENE AND RUBBER COMPOSITION
JPS6253013B2 (en)
JP2021091897A (en) Rubber composition for tire tread, and tire manufactured by using the same
WO2016194215A1 (en) A rubber composition
JPH08183883A (en) Tire tread rubber composition and its production
CN112883320B (en) Calculation method of wet land hysteresis friction coefficient of vulcanized rubber composition and application of calculation method in tire design
JPS61293212A (en) Styrene/butadiene copolymer rubber
JPH1060176A (en) Rubber composition for tire tread
JPS62129327A (en) Rubber composition for tire tread
KR100447666B1 (en) Tire tread rubber composition for truck or bus
CN112967768A (en) Method for calculating wet land adhesion friction coefficient of vulcanized rubber composition and application of method in tire design
JPH0251543A (en) Rubber composition for tire tread
BR112017011432B1 (en) TIRE FOR CIVIL ENGINEERING VEHICLE
JPS58147443A (en) Elastomer composition