JPS5858892A - Controller for commutatorless motor - Google Patents

Controller for commutatorless motor

Info

Publication number
JPS5858892A
JPS5858892A JP56155139A JP15513981A JPS5858892A JP S5858892 A JPS5858892 A JP S5858892A JP 56155139 A JP56155139 A JP 56155139A JP 15513981 A JP15513981 A JP 15513981A JP S5858892 A JPS5858892 A JP S5858892A
Authority
JP
Japan
Prior art keywords
circuit
current
phase
winding
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56155139A
Other languages
Japanese (ja)
Inventor
Kihei Nakajima
中島 喜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56155139A priority Critical patent/JPS5858892A/en
Publication of JPS5858892A publication Critical patent/JPS5858892A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To enable commutation of a commutatorless motor without interrupting a DC link current by varying the output powers of compensating coil and field coil power converters in a direction for accelerating the commutation of an armature current. CONSTITUTION:Pulse signals A-C of 120 deg. in phase difference and 180 deg. in width obtained through a gate pulse calculator 19 of a reverse converter 4 from a position detector 6 are converted into a constant width signal of 6 pulses per one cycle of a load through an AND circuit 211, an OR circuit 212, an NOT circuit 213, a monostable multivibrator 214 and an OR circuit 215. A phase input signal outputted via the deviation of a compensating coil current from an arithmetic amplifier 218 is selected when the output of the circuit 215 is H level, a throttle phase signal from a throttle phase setter 217 is selected when the output of the circuit 215 is H level, and a field current controller 18 becoming the input signal PH of the gate pulse calculator 22 of a compensating coil power converter 9 is constructed similarly to the compensating coil current control circuit 21.

Description

【発明の詳細な説明】 本発明は細整流子亀動機の低速時1:おける運転方法に
係り、特に直流式無整流子′に!、電動機曲流リンク電
i!71′t、を断続させることなく電動機電流を安定
に転流させることの出来る無整流子電動機の制御装置に
関するっ 11流式無整流子電動機は交流゛−諒電力をH坦変換器
で曲流に変換し、平滑リアクトルを介して逆疾換器によ
り明示の位相で電動機の電機子巻線に受注電力を供給す
るのが一般的である。逆変換器による″#@械子箪流の
転流、すなわち直びt゛屹流111機子交流電流1m 
F)’+定の馳序l二従がって匁゛換する動作は通常′
電動機の誘起電比によって行なわれる。すなわち逆変換
器を陽酸しているサイリスタのうちターンオフすべきア
ームはこの通起電力;二よりターンオフされる。しかし
ながら電動機が停止状態あるいは低速回転状態において
はこの逆起重力がないか、もしくは小さな値であるため
安定な転流が行なえない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a fine commutator motor at low speed, particularly for a DC type commutatorless motor. , electric motor bending link electric i! 71' Concerning a control device for a non-commutator motor that can stably commutate the motor current without intermittent current.11-flow type non-commutator motor converts AC-DC power into a H-flat converter. It is common to convert this into a smoothing reactor and supply the ordered power to the armature winding of the motor with a specified phase by a reverse converter. Commutation of ``#@machine current by an inverse converter, that is, straight t゛屹current 111 machine alternating current 1 m
F) '+ a fixed order l2 Therefore, the action of changing is usually '
This is done by the induction ratio of the motor. That is, the arm to be turned off of the thyristor supplying the inverter is turned off by this electromotive force. However, when the motor is stopped or rotating at low speed, stable commutation cannot be performed because this countermotive force is absent or has a small value.

このため従来は低速回転時には’!4am子電流の転流
ごとに直流リンク電流を断続させて運転する断続始動法
が一般に用いられている。無整流子電動機として1−?
イクル(:つき6回転流を行なう6パルス形を考えた場
合、iFI紀直流リンす亀流を1サイクルにつき6回断
続させなければならない、直流回路には通常直流す、ア
クドルが接続されているため断続電流め立上りや立下り
に時間を要しリヤープな断続電流波形は得られない、こ
のような運転状態での電動機の出力トルクの瞬時値は直
流リンク電流、すなわち断続電流値にほぼ比例する値と
なりその脈動量は断続周波数が高いほど大となる。この
ため電動機の回転不整が生じたり、機械系の軸共振周波
数と一致したトルク脈動周波数を長時間与えた場合の軸
ねじれ振動の増大など運転特性として好ましくない状態
がある。したがって従来断続始動法を用いる場合は定格
トルクよりも充分小さな平均トルクを出力する方法や、
断続始動を行なう周波数領域を可能なかぎりせまくして
運転する方法が実施されている。
For this reason, conventionally, when rotating at low speed, '! An intermittent starting method is generally used in which the DC link current is intermittent for each commutation of the 4 am current. 1- as a commutatorless motor?
If we consider a 6-pulse type with 6 rotations per cycle, the IFI DC rinsing current must be intermittent 6 times per cycle.The DC circuit usually has an accelerator connected to it. Therefore, the intermittent current takes time to rise and fall, and a sharp intermittent current waveform cannot be obtained. Under such operating conditions, the instantaneous value of the motor's output torque is approximately proportional to the DC link current, that is, the intermittent current value. The higher the intermittent frequency, the greater the amount of pulsation.This may cause rotational irregularities in the motor, or increase in shaft torsional vibration when a torque pulsation frequency that matches the shaft resonance frequency of the mechanical system is applied for a long period of time. There are some unfavorable operating characteristics.Therefore, when using the conventional intermittent starting method, there is a method of outputting an average torque sufficiently smaller than the rated torque,
A method has been implemented in which the frequency range in which intermittent starting is performed is made as narrow as possible.

一方無整流子電動機としての電動機構造I:は公知の例
として種々のものが実用化されている。
On the other hand, various known motor structures I: as non-commutator motors have been put into practical use.

そのうち、の−例として電機子巻線界磁巻線の他に補償
巻線を備えたいわゆる補償巻線つき同期電動機がある。
An example of this is a so-called synchronous motor with compensation winding, which includes a compensation winding in addition to the armature winding and field winding.

この電動機は電機子電流に比例した補償巻線電流を流す
ことにより電機子反作用を補償でき、制卸の安定性、過
負荷耐量の増大、早い応答性などの利点を持ち負荷変動
の大きい用途や急速加減速かできる用途への応用が期待
されている。この種の電動機の回転子は通常積層鉄心で
あり、界磁、補償の各巻線のはかC:は等偏曲なダンパ
ー巻線は存在しないと考えてよい。
This motor can compensate for armature reaction by flowing a compensation winding current proportional to the armature current, and has advantages such as stable control, increased overload capacity, and quick response, and is suitable for applications with large load fluctuations. It is expected to be applied to applications where rapid acceleration/deceleration is possible. The rotor of this type of motor usually has a laminated iron core, and it can be considered that there is no damper winding in which the field and compensation windings are equally eccentric.

本発明の目的は補償巻線1:つき同期電動機を無整流子
電動機として運転する場合に、前記始動時の断続始動法
を用いないで運転出来る無整流子電動機の制御装置を提
供することC二ある。
An object of the present invention is to provide a control device for a non-commutator motor that can be operated without using the intermittent starting method at the time of starting when a synchronous motor with a compensation winding 1 is operated as a non-commutator motor. be.

第1図は本発明の一実施例を示す構成図である。主回路
構成は公知のもので、1,11゜11は三相電源、2は
顯変換器、3は直流リアクトル、4は逆変換器、工は電
動機で51は電機子巻線、52は界磁巻線、53は補償
巻線。
FIG. 1 is a block diagram showing an embodiment of the present invention. The main circuit configuration is a known one, 1,11゜11 is a three-phase power supply, 2 is a transducer, 3 is a DC reactor, 4 is an inverter, numeral is a motor, 51 is an armature winding, 52 is a field. Magnetic winding, 53 is a compensation winding.

6は位WIt検出器、2は速度検出器、8は界磁巻線電
力変換器、9は補償巻線電力変換器である。
6 is a position WIt detector, 2 is a speed detector, 8 is a field winding power converter, and 9 is a compensation winding power converter.

制御回路の構成は、10は速度指令器、13は速度制御
回路、14は電流開側回路、15はゲートパルス演算回
路、16は界磁電流指令器。
The configuration of the control circuit is as follows: 10 is a speed command, 13 is a speed control circuit, 14 is a current open side circuit, 15 is a gate pulse calculation circuit, and 16 is a field current command.

JTは界磁電流演算回路、18は″界磁巻線電流制御回
路、19はゲートパルス演算回路、20は補償巻線電流
演算回路、21は補償巻線電流制卸回路、22はゲート
パルス演算回路、23は逆変換器4のゲートパルス演算
回M、j4#Is、26は電流検出器である。界磁巻線
電流制卸回路18および補償巻線電流制御回路21は本
発明の骨子となるものであるが、その一実施例として補
償巻線電流制卸回路21の構成例を第21M1m示す。
JT is a field current calculation circuit, 18 is a field winding current control circuit, 19 is a gate pulse calculation circuit, 20 is a compensation winding current calculation circuit, 21 is a compensation winding current control circuit, and 22 is a gate pulse calculation circuit. 23 is a gate pulse calculation circuit M, j4#Is of the inverter 4, and 26 is a current detector.The field winding current control circuit 18 and the compensation winding current control circuit 21 are the gist of the present invention. As an example, a configuration example of the compensation winding current control circuit 21 is shown in the 21st M1m.

211はアンド回路、1111゜215はオア回路、2
13はノット回路、214は単安定マルチバイブレータ
、21Cはスイッチ、21rはしぼり位相設定器、21
81’!演算増幅器、PHは位相入力信号である。
211 is an AND circuit, 1111°215 is an OR circuit, 2
13 is a knot circuit, 214 is a monostable multivibrator, 21C is a switch, 21r is a throttle phase setter, 21
81'! Operational amplifier, PH is the phase input signal.

以上の回路構成をもと1=補償巻線電流制御回路21の
動作について説明する。、第2図で示した他畦A、B、
Cは183図で示す特性図のように互に電気角で120
闇位相の異なった180度幅のパルスで、各信号の一ア
ップエツジおよびダウンエツジの時刻にて逆変換器4の
サイリスタ1ニゲート点弧パルスが送られる。アンド回
路211およびオア回路、212をt紀A、B、C偵吟
が通iすることC二より負荷1サイクルにつき3サイク
ルの方形波が出力される。この信号とノット回路213
を通した信号をおのおのアップエツジでトリガーされる
単安定マルチバイブレータ214に入力し七の出力なオ
ア回路215で合成することにより第、3図で示すよう
に負荷1サイクルにつき6パルスの一定幅信号が優られ
る。一方演算増幅器218は補償巻線電流演算回路20
カ〜らの基準値と電流検出器25からの検出値との偏差
により位相入力信号を出力する。一方しぼり位相設定器
211はしばり位相となるよう負の値を設定しておく、
この二組の信号は前述のオア回路215の出力に応じて
スイッチ215で切りかわリオア回路2ノ5の出力がハ
イレベルのときしぼり位相設定器211が通電する。し
たがってPHで示すイ^号は第3図で示すよう(:逆弯
換器4のゲート点弧パルスが与えられる時刻から所定の
時間は負の一定値に、七の他の時間は演算増幅器の出力
がそのまま出力される。この信号は余弦波制釣法、すな
わち補償巻線電力変換器9のサイリスタの制側遅れ角−
がPH■KCosdcで決定される位相l二て点弧され
るための信号となる。
Based on the above circuit configuration, the operation of the 1=compensation winding current control circuit 21 will be explained. , other ridges A, B shown in Figure 2,
C is 120 electrical angles as shown in the characteristic diagram shown in Figure 183.
A ignition pulse for thyristor 1 of the inverter 4 is sent at the time of one up edge and one down edge of each signal with a 180 degree wide pulse having a different dark phase. When the signals A, B, and C pass through the AND circuit 211 and the OR circuit 212, a three-cycle square wave is output from C2 for each cycle of the load. This signal and the knot circuit 213
By inputting the signal passed through the gate to a monostable multivibrator 214 triggered by each up edge and combining it with an OR circuit 215 with seven outputs, a constant width signal of 6 pulses per load cycle is generated as shown in Fig. 3. be superior. On the other hand, the operational amplifier 218 is connected to the compensation winding current calculation circuit 20.
A phase input signal is output based on the deviation between the reference value of the current detector 25 and the detected value from the current detector 25. On the other hand, the throttle phase setter 211 is set to a negative value so that the throttle phase is set.
These two sets of signals are switched by a switch 215 in accordance with the output of the OR circuit 215. When the output of the OR circuit 2 to 5 is at a high level, the throttle phase setter 211 is energized. Therefore, as shown in Fig. 3, the symbol PH is a negative constant value for a predetermined period of time from the time when the gate firing pulse of the inverse converter 4 is given, and for other times of 7, the value of the operational amplifier is The output is output as is.This signal is generated using the cosine wave control method, that is, the dominant delay angle of the thyristor of the compensation winding power converter 9.
The phase l2 determined by PHKCosdc becomes the signal for firing.

第4図は本発明の詳細な説明するための電動子巻線電流
はU相が正方向にW相が負方向1二通電している。固定
子と回転子の相対的位置は本図では実効転流進み角βが
30度で、正の電流がU相からV相へ転流する直前の位
置を表わしている。このとき補償巻線電流ICおよび界
磁巻線電流1fは電機子電流による電機を反作用を打消
す方向に流しており、電動機磁束φμ界磁巻線軸と一致
した方向となっている。この状態で電機子V相のサイリ
スタにゲート点弧パルスを送◆と同時に補償巻線電流を
現在流れている方向から減少させる方向5二変化させる
。転流期間中は電動機のU相とV相の巻線が短絡されて
いる状態であり、このときioを減少させよつとすると
電機子側と回転子側巻線の変圧器作用によりU相電流が
減少する。すなわち電動機の磁束は大きなりアクタンス
により急変できず。
FIG. 4 shows a detailed explanation of the present invention in which the armature winding current is conducted in the positive direction in the U phase and in the negative direction in the W phase. In this figure, the relative position of the stator and rotor is such that the effective commutation advance angle β is 30 degrees and represents the position immediately before the positive current commutates from the U phase to the V phase. At this time, the compensation winding current IC and the field winding current 1f flow in a direction that cancels the reaction of the armature current in the electric machine, and the direction coincides with the motor magnetic flux φμ field winding axis. In this state, a gate firing pulse is sent to the thyristor of the armature V phase. Simultaneously, the compensation winding current is changed in a direction 52 to decrease from the current direction. During the commutation period, the U-phase and V-phase windings of the motor are short-circuited, and if you try to reduce io at this time, the U-phase current will increase due to the transformer action of the armature and rotor side windings. decreases. In other words, the magnetic flux of the motor cannot change suddenly due to large actance.

磁束を一定に保つように電機子側2回転子側巻線電流が
相互に変化する駅である。一方、無整流子電動機の直流
リンク電流はほぼ一定の値であるからU相電流が減少し
た分だけV相電流が増加して転流動作を行なう。なお1
本実織例では転流時io変化を与えるために位相入力を
変化させているが、*流基準値を変化させても同   
 ′様な動作を行なう。k、紀説明では補償巻線電力の
変化手段を与えた場合について述べたが、181図の界
磁巻線電流制御回路18の構成も第2図で示したものと
同様な構成とし、しぼり位相設定器・211の設定量と
して界磁電流1fを増加させる方向−二正の値を与えて
おけば上い。すなわち114図からの考え方によりV相
電流を増加させるためにifを増加すればよいこととな
る。
This is a station where the armature-side and two-rotor-side winding currents change mutually so as to keep the magnetic flux constant. On the other hand, since the DC link current of the non-commutator motor has a substantially constant value, the V-phase current increases by the amount that the U-phase current decreases, thereby performing commutation operation. Note 1
In this actual weaving example, the phase input is changed to give a change in io at the time of commutation, but the same effect can be obtained even if the flow reference value is changed.
’-like actions. In the explanation of section 1, the case was described in which a means for changing the compensation winding power was provided, but the configuration of the field winding current control circuit 18 in FIG. 181 is also the same as that shown in FIG. It suffices if the set value of the setting device 211 is set to a positive value minus the direction in which the field current 1f is increased. That is, based on the idea from FIG. 114, it is sufficient to increase if in order to increase the V-phase current.

このように本発明では電機子側と回転子側巻線相互の変
圧器作用を利用して電機子電流の転締を行なわしめるも
のであり、電動機の回転による誘起電圧を利用しなくて
も安定な転流を行なわせることができる。変圧器作用を
利用した転流動作の手段として補償巻線用電力変換器の
みを用いる手法、界磁巻線用電力変換器のみを用いる手
法、および両者を併用して用いる手法か考えられるが、
いずれの手法を用いてもよい。
In this way, the present invention utilizes the mutual transformer action between the armature and rotor windings to transfer the armature current, and is stable even without using the induced voltage caused by the rotation of the motor. It is possible to perform a suitable commutation. As a means of commutation operation using transformer action, it is possible to consider a method using only a power converter for compensation winding, a method using only a power converter for field winding, or a method using both in combination.
Either method may be used.

また本動作でのトルク脈動は直流リンク電流がほぼ一定
であること、転流中に磁束の歪がほとんどないことから
通常の運転状態での値と同様なものとなる。したがって
従来断続始動を行なっていた額域で本発明による運転を
行ない、逆起電力が確立した段階で通常の運転モードC
:切換えることにより、全速度範囲でトルク脈動の少な
い安全な運転を行なう、ことが可能である。
Further, the torque pulsation in this operation is similar to that in normal operating conditions because the DC link current is almost constant and there is almost no distortion of the magnetic flux during commutation. Therefore, the operation according to the present invention is performed in the range where intermittent starting has conventionally been performed, and when the back electromotive force is established, the normal operation mode C is started.
: By switching, it is possible to perform safe operation with less torque pulsation over the entire speed range.

【図面の簡単な説明】[Brief explanation of the drawing]

131図は本発明の一実捲例を示す構成図、第2図は第
1図の補償巻線電流制御回路の構成図。 第3図は第2図の回路の動作を説明するための信号の時
間特性図、!J4図は本発明の詳細な説明するための電
動機通電のモデル図である。 1.11.12・・・三相電源、2・・・嗅変換器。 3・・・直流リアクトル、4・・・逆変換器、互・・・
電動機、6・・・位置検出器、7・・・速度検出器、8
・・・界磁巻線電力変換器、9・・・補償巻線電力変換
器。 10・・・速度指令器、13・・・速度制御回路、14
・・・電流制御回路、15,19.24・・・ゲートパ
ルス演算回路、16・・・界磁電流指令器、11・・・
界磁電流演算回路、18・・・界磁巻線電流制御回路、
20・・・補償巻線電流演算回路、2)・・・補償巻線
電流制御回路。 第2図 説 第3図 第4因 U       −W
FIG. 131 is a block diagram showing one practical example of the present invention, and FIG. 2 is a block diagram of the compensation winding current control circuit of FIG. 1. Figure 3 is a signal time characteristic diagram for explaining the operation of the circuit in Figure 2. Figure J4 is a model diagram of motor energization for detailed explanation of the present invention. 1.11.12... Three-phase power supply, 2... Olfactory transducer. 3...DC reactor, 4...Inverse converter, mutual...
Electric motor, 6... Position detector, 7... Speed detector, 8
... Field winding power converter, 9... Compensation winding power converter. 10... Speed command device, 13... Speed control circuit, 14
...Current control circuit, 15, 19.24...Gate pulse calculation circuit, 16...Field current command device, 11...
Field current calculation circuit, 18... field winding current control circuit,
20... Compensation winding current calculation circuit, 2)... Compensation winding current control circuit. 2. Illustration 3. 4. Cause U - W

Claims (1)

【特許請求の範囲】 電機子巻線及び界磁巻線と補償巻線を有する同期’m動
機、およびこれら各巻線■二おのおの゛叩力変換器を具
備してなる直流式無整流(−電動機において、亀動醜電
機子電流の転mrタイミング伝号により、前記補償巻線
へ電力な供給する電力変換器の出力電力を変化させる第
lの手段。 前記界磁巻線用゛醸カ変換器の出力電力を変化させる第
2の手段を設け、電動機の低速回転鎮域において電機子
電流の転流を助長する方向に。 第1の手段あるいは第2の手段、もしくは第1と第2の
生膜を併用した手段により補償巻線。 界磁巻線の電力を変化させ、創紀−−子巻線用電力変換
器の直流リンク電流をFk′I続きせることなく電機子
電流の転流を打なわせることを特徴とした無km子亀動
機の制御装置。
[Claims] A synchronous motor having an armature winding, a field winding, and a compensation winding; In the first means for changing the output power of the power converter that supplies power to the compensation winding by the rotation mr timing transmission of the tortoise armature current. A second means for changing the output power of the motor is provided in the direction of promoting commutation of the armature current in the low speed rotation region of the motor. Compensation winding by means of membrane combination.By changing the power of the field winding, the commutation of the armature current can be achieved without continuing the DC link current of the power converter for the child winding. A control device for a no-kilometer motive that allows you to hit the ball.
JP56155139A 1981-09-30 1981-09-30 Controller for commutatorless motor Pending JPS5858892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56155139A JPS5858892A (en) 1981-09-30 1981-09-30 Controller for commutatorless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155139A JPS5858892A (en) 1981-09-30 1981-09-30 Controller for commutatorless motor

Publications (1)

Publication Number Publication Date
JPS5858892A true JPS5858892A (en) 1983-04-07

Family

ID=15599398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155139A Pending JPS5858892A (en) 1981-09-30 1981-09-30 Controller for commutatorless motor

Country Status (1)

Country Link
JP (1) JPS5858892A (en)

Similar Documents

Publication Publication Date Title
US4767976A (en) Control system for PWM inverter
JPH08182398A (en) Driving device for permanent magnet-type synchronous motor
US4942344A (en) Control system for brushless motors
JPS5915478B2 (en) Method and device for driving an alternating current motor
US4255695A (en) Method and apparatus for control of inverter synchronous machine drive system
US20080157703A1 (en) Synchronous reluctance machines
JPS6346253B2 (en)
JP3053612B2 (en) Pumped storage generator
EP0253267A2 (en) AC motor drive apparatus
JPS6041556B2 (en) Control method of synchronous motor
JPS6243437B2 (en)
JP2538862B2 (en) Variable speed pumped storage power generation system controller
US20080150469A1 (en) Feedforward controller for synchronous reluctance machines
JPH1080180A (en) Control method and equipment of synchronous motor
JPH09149689A (en) Operation controller for pole change motor
JPS5858892A (en) Controller for commutatorless motor
JP4655405B2 (en) Vector control method and vector control apparatus for induction motor
JP4018262B2 (en) Frequency converter
JPS61269686A (en) Braking device of wound-rotor induction machine
JPH07250496A (en) Induction motor controller
JPH0591787A (en) Controller for dc brushless motor
JPS6223552B2 (en)
JPS6145760Y2 (en)
JP2880167B2 (en) AC excitation generator motor
JPS5858891A (en) Controller for commutatorless motor