JPS5857960B2 - sound reproduction device - Google Patents

sound reproduction device

Info

Publication number
JPS5857960B2
JPS5857960B2 JP54106358A JP10635879A JPS5857960B2 JP S5857960 B2 JPS5857960 B2 JP S5857960B2 JP 54106358 A JP54106358 A JP 54106358A JP 10635879 A JP10635879 A JP 10635879A JP S5857960 B2 JPS5857960 B2 JP S5857960B2
Authority
JP
Japan
Prior art keywords
circuit
stereo
signal
output
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54106358A
Other languages
Japanese (ja)
Other versions
JPS5642495A (en
Inventor
義信 菊池
明寿 山田
陽一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54106358A priority Critical patent/JPS5857960B2/en
Publication of JPS5642495A publication Critical patent/JPS5642495A/en
Publication of JPS5857960B2 publication Critical patent/JPS5857960B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Description

【発明の詳細な説明】 本発明は2スピーカ内蔵のステレオカセット、或いは2
スピーカ内蔵型の音声多重受信機等の様なスピーカ間隔
の狭いステレオ及びモノラル信号を再生する音響再生装
置に関するものである。
[Detailed Description of the Invention] The present invention provides a stereo cassette with built-in two speakers, or a stereo cassette with built-in two speakers.
The present invention relates to an audio reproduction device that reproduces stereo and monaural signals with narrow speaker spacing, such as an audio multiplex receiver with built-in speakers.

上記スピーカ間隔の狭い音響再生装置は外形寸法等の制
約により良好なステレオ感、臨場感が通常の再生方式で
は得られないものである。
Due to constraints such as external dimensions, the sound reproduction device with narrow speaker spacing cannot provide a good stereo effect and a sense of realism using normal reproduction methods.

本発明は例えば音声多重テレビ音声の様なステレオ信号
とモノラル信号が再生される装置において、モノラル信
号の再生音に臨場感、ステレオ信号再生時の音場拡大効
果に於いてより明確な音像定位、臨場感が得られると共
に、モノラル及びステレオ信号双方に対する信号制御回
路の大部分をコンパチブルにできるもので、合理的にモ
ノラル、ステレオ音声の音像拡大を実現するものである
The present invention provides a sense of realism in the reproduced sound of the monaural signal, a clearer sound image localization in the sound field expansion effect when reproducing the stereo signal, in a device that reproduces stereo signals and monaural signals, such as audio multiplexed television audio. In addition to providing a sense of realism, most of the signal control circuits for both monaural and stereo signals can be made compatible, and the sound image expansion of monaural and stereo audio can be rationally realized.

まず、従来のこの種の装置について説明する。First, a conventional device of this type will be explained.

第1図、第2図、第3図は従来のステレオ信号専用の音
像拡大回路を示している。
FIGS. 1, 2, and 3 show conventional sound image enlarging circuits dedicated to stereo signals.

第1図は最も簡単な音像拡大回路であり、左右両チャン
ネルL。
Figure 1 shows the simplest sound image expansion circuit, with both left and right channels L.

Rのそれぞれから、メインチャンネル信号レベル比α(
α〈1)の位相反転信号を創成し、他方のチャンネルに
加算し、2スピ一カ再生時の受聴者両耳に生じるクロス
トーク音成分を打消し、または減少せしめ音像拡大効果
を得ようとするもめである。
From each of R, the main channel signal level ratio α(
An attempt is made to create a phase-inverted signal of α<1) and add it to the other channel to cancel or reduce the crosstalk sound component that occurs in both ears of the listener when playing back from two speakers, thereby obtaining a sound image enlargement effect. This is Surumome.

回路的には、位相反転型の増巾器αの増巾器1,2及び
加算器3,4で構成されるが、この方式は、ステレオ信
号の低域成分が主に同相で2チヤンネルに入力される為
に、加算器3,4で混合される時点で低域成分が減少し
、その割合は拡大量を増す(α=1)程大きくなるもの
である。
The circuit consists of amplifiers 1 and 2 of phase inversion type amplifier α and adders 3 and 4, but in this system, the low frequency components of the stereo signal are mainly in phase and divided into two channels. Since the signals are input, the low-frequency components are reduced at the time of mixing in the adders 3 and 4, and the ratio increases as the amount of expansion increases (α=1).

この第1図の回路の欠点を除去する目的で考案されたの
が第2図に示す音像拡大回路である。
The sound image enlarging circuit shown in FIG. 2 was devised to eliminate the drawbacks of the circuit shown in FIG. 1.

第2図に示す回路は、第1図の増巾器1,2の前或いは
後にバイパスフィルター5,6を挿入したもので、低域
成分をあらかじめ除外して反転増巾器7,8及び加算器
9,10で同相低域成分の打消しを阻止する様にしたも
のである、この方式は第1図方式に比較し再生音の周波
数バランスは良くなるが、完全では無く、シかも音像低
位の解像度は第1図方式と同様良くないものである。
The circuit shown in Fig. 2 has bypass filters 5 and 6 inserted before or after the amplifiers 1 and 2 shown in Fig. 1.The circuit shown in Fig. 2 has bypass filters 5 and 6 inserted before or after the amplifiers 1 and 2 shown in Fig. 1. The frequency balance of the reproduced sound is better compared to the method shown in Fig. 1, but it is not perfect and may cause the low frequency components of the sound image to be canceled. The resolution of this method is not as good as that of the method shown in FIG.

第3図は第2図方式を更に改善するもので、第3図中、
11.12は低域信号キャンセル阻止用バイパスフィル
ター、13,14は増巾塵αの反転増巾器であり、この
反転増幅器13.14の後にローパスフィルター15.
16を挿入している。
Figure 3 shows a further improvement on the method shown in Figure 2. In Figure 3,
Reference numeral 11.12 is a bypass filter for preventing low frequency signal cancellation, reference numerals 13 and 14 are inverting amplifiers for the amplification dust α, and after the inverting amplifiers 13 and 14, a low-pass filter 15.
16 is inserted.

17.18は加算器である。17 and 18 are adders.

上記ローパスフィルター15.16は受聴両耳のクロス
トーク音の周波数特性と中高音信号域で近づけさせて、
打消し効果を高めると同時に再生音の周波数特性バラン
スも幾分改善させる。
The above-mentioned low-pass filters 15 and 16 bring the frequency characteristics of the crosstalk sound between the listening ears closer to the mid-high frequency signal range,
This enhances the cancellation effect and at the same time improves the frequency characteristic balance of the reproduced sound to some extent.

従って音像定位の解像度も、第2図方式より向上し、ス
テレオ信号の音像拡大方式としては実用性の高いもので
あるが、この方式に於いては両耳間の音の到達時間差を
考慮すると更に音像定位の解像度が向上し、より完全な
ものとなる。
Therefore, the resolution of sound image localization is also improved compared to the method shown in Figure 2, making it highly practical as a method for enlarging the sound image of stereo signals. The resolution of sound image localization is improved and becomes more complete.

一般にモノラル信号に対して音像の拡大を得る場合、受
聴者両耳に振巾、位相(或いは時間)の相関上の操作が
必要で、第4図にモノラル信号の音場拡大回路の基本的
一例を示す。
Generally, in order to obtain sound image expansion for a monaural signal, it is necessary to perform amplitude and phase (or time) correlation operations for both ears of the listener. Figure 4 shows a basic example of a sound field expansion circuit for a monaural signal. shows.

第4図に於いて、19はモノラル信号が入力される入力
信号端子、20は遅延回路で通常数ms〜十数msの初
期遅延時間を有するものである。
In FIG. 4, numeral 19 is an input signal terminal to which a monaural signal is input, and 20 is a delay circuit which usually has an initial delay time of several ms to tens of ms.

遅延信号出力は加算器21.22で互いに逆位相(位相
特性を持たせる場合もある)でもとの入力信号と混合し
、それぞれ出力端子0UT0,0UT2に出力される、
この混合2信号の周波数特性は例えば第5図の様になり
出力振巾は図の様に周波数に対して、ピーク、ディップ
交互に生じ、しかも、0UT1゜0UT2の振巾特性の
関係は完全対称となって、この2信号が2つのスピーカ
で再生されると、スピーカ中央で受聴した時、両耳の点
でもこの特性関係が維持される。
The delayed signal outputs are mixed with the original input signals at adders 21 and 22 in mutually opposite phases (they may have phase characteristics), and are output to output terminals 0UT0 and 0UT2, respectively.
The frequency characteristics of this mixed two signals are as shown in Figure 5, for example, and the output amplitude alternates between peaks and dips with respect to the frequency as shown in the figure, and the relationship between the amplitude characteristics of 0UT1 and 0UT2 is completely symmetrical. Therefore, when these two signals are reproduced by two speakers, this characteristic relationship is maintained at both ears when listening at the center of the speakers.

この事は、モノラル入力信号の周波数変化に応じて、両
耳間の音圧関係が常時変化する事になり、受聴者は音圧
強度の高い方に音方向を感じ取る結果、音像の拡大現象
が生じる。
This means that the sound pressure relationship between the ears changes constantly in response to changes in the frequency of the monaural input signal, and as a result, the listener perceives the direction of the sound to be toward the side with higher sound pressure intensity, resulting in a phenomenon in which the sound image expands. arise.

この回路ではステレオ信号を入力した時、信号成分の中
で、モノラル成分については拡大効果を呈するが左右分
離定位成分には何らの拡大効果は生じないものである。
In this circuit, when a stereo signal is input, the monaural component among the signal components exhibits an enlargement effect, but the left and right separated localization components do not have any enlargement effect.

従って、音声多重テレビの様なステレオ、モノラル2種
の信号を再生する事を対象としたものにおいて、それぞ
れの拡大を実現する為には、第1〜第3図の様なステレ
オ拡大回路と別に第4図の様なモノラル拡大回路の2つ
信号制御回路が必要となり、回路構成が複雑となるとと
もにコスト的な点で非常に不利となるものである。
Therefore, in a device that is intended to reproduce two types of signals, stereo and monaural, such as an audio multiplex television, in order to achieve each expansion, a stereo expansion circuit as shown in Figures 1 to 3 must be installed separately. Two signal control circuits such as a monaural expansion circuit as shown in FIG. 4 are required, which complicates the circuit configuration and is very disadvantageous in terms of cost.

本発明は以上の点に鑑み、モノラル信号拡大回路が容易
に付加できるステレオ信号の拡大回路を構成し、しかも
、人工類を用いたステレオ音源と受聴者間の音の伝達関
数を測定し、これら測定データを駆使して、音像定位精
度の高い、しかも実用的なモノラル、ステレオコンバチ
フルの音像拡大回路を実現するものである。
In view of the above points, the present invention constitutes a stereo signal expansion circuit to which a monaural signal expansion circuit can be easily added. By making full use of the measured data, we will realize a practical monaural/stereo convertible sound image expansion circuit with high sound image localization accuracy.

本発明はスピーカ間隔の狭いステレオ、モノラル再生袋
、例えば音声多重テレビ等に適用するものであり、以下
に音声多重テレビの例について説明する。
The present invention is applied to stereo and monaural reproduction bags with narrow speaker intervals, such as audio multiplex televisions, and an example of an audio multiplex television will be described below.

テレビに於いては適視距離が存在し、ステレオスピーカ
間隔に対し、再生音受聴距離の比率が大きくなり、その
為に音源スピーカに対する受聴角は数度〜10数度、と
、ステレオ標準受聴角とされている130度に対して非
常に小さいものとなる。
There is an appropriate viewing distance for televisions, and the ratio of the reproduction sound listening distance to the stereo speaker spacing is large, so the listening angle with respect to the sound source speaker is from several degrees to over 10 degrees, which is the standard stereo listening angle. This is much smaller than the supposed 130 degrees.

この為、通常状態でステレオ再生をした場合十分なステ
レオ感が得られないものとなる。
For this reason, when performing stereo reproduction under normal conditions, a sufficient stereo effect cannot be obtained.

この為にステレオ音像拡大回路が必要となる。For this reason, a stereo sound image enlarging circuit is required.

第6図はステレオ受聴状態の模式図を示している。FIG. 6 shows a schematic diagram of a stereo listening state.

この場合、スピーカSP1.スピーカSP2は音声多重
テレビ内蔵のステレオスピーカである。
In this case, speaker SP1. The speaker SP2 is a stereo speaker built into the audio multiplex television.

前述のように音声多重テレビの場合受聴角θは小さく、
この場合θ=15°と想定する。
As mentioned above, in the case of audio multiplex television, the listening angle θ is small;
In this case, it is assumed that θ=15°.

A、Bはそれぞれスピーカ5P1(スピーカ5P2)と
聴取者両耳23,24間の伝達関数である。
A and B are transfer functions between the speaker 5P1 (speaker 5P2) and the listener's ears 23 and 24, respectively.

スピーカSP3は音像拡大作用による、スピーカSP1
の音源拡大定位の位置と想定したもので、受聴角をφと
する。
Speaker SP3 is connected to speaker SP1 due to the sound image magnification effect.
This is assumed to be the position of sound source enlargement localization, and the listening angle is assumed to be φ.

C,DはそれぞれスピーカSP3と聴取者両耳23.2
4間の伝達関数である。
C and D are speaker SP3 and listener's both ears 23.2
It is a transfer function between 4 and 4.

伝達関数は音源位置固有のものであり、受聴角φの音源
位置を実現する為には、スピーカSP1.スピーカSP
2の伝達関数A、Bと、ステレ第2チャンネル系での信
号制御回路により、聴取者両耳23゜24のそれぞれで
伝達関数C,Dを実現させなければならない。
The transfer function is unique to the sound source position, and in order to realize the sound source position at the listening angle φ, the speaker SP1. speaker SP
Transfer functions C and D must be realized in each of the listener's ears 23 and 24 using the transfer functions A and B of 2 and the signal control circuit in the second stereo channel system.

A 、B、C、Dのそれぞれの伝達関数のレスポンスが
どの様になるか、φ=15゜φ−90°ノ場合について
人工類を用いた測定例を、第8図、第9図に示す。
Figures 8 and 9 show measurement examples using an artificial type for the case of φ = 15° and φ-90°, which show how the responses of the transfer functions of A, B, C, and D will look. .

(振巾特性のみ)この測定データは、音源スピーカ、人
工類マイク個有伝達特性を平担に補正した上で、音源ス
ピーカにインパルスを入力し、人工類マイク出力をフー
リエ変換して得たもので、音源スピーカと人工頭耳道入
ロ迄の、空間振巾特性を受聴角θ−15° 90°測定
距離1.5mについてのメイン系振巾特性をそれぞれ示
している。
(Amplitude characteristics only) This measurement data was obtained by inputting an impulse to the sound source speaker and Fourier transforming the output of the artificial microphone after compensating for the unique transfer characteristics of the sound source speaker and artificial microphone. The spatial amplitude characteristics from the sound source speaker to the artificial ear canal are shown, and the main system amplitude characteristics are shown for a listening angle of θ-15° and a measurement distance of 90° of 1.5 m.

次に第7図a、bに示す様に、受聴角θのステレオ受聴
系BでAの受聴角φの膏体定位を得る信号制御回路の伝
達特性E1.E2を求めてみる。
Next, as shown in FIGS. 7a and 7b, the transfer characteristic E1 of the signal control circuit that obtains the localization of A at the listening angle φ in the stereo listening system B at the listening angle θ. Let's try to find E2.

第7図Aに於いて、スピーカSP3音源による聴取者両
耳圧は、それぞれ以下の通りである。
In FIG. 7A, the listener's binaural pressures due to the sound source of speaker SP3 are as follows.

次に第7図Bに於いての聴取者両耳音圧は右耳音圧;(
Po’)−E・*6+0・*B)(2)左耳音圧:〔P
Ll〕=E1*B+E2*A従って、上式(1)、 (
2)から聴取者両耳音圧を等価とする為には (Pu″I三CPR/) t (PL)三(PL/)ゆ
えに、(3)式より求める制御回路E1.E2を求める
と、となる。
Next, in Figure 7B, the listener's binaural sound pressure is the right ear sound pressure; (
Po') - E・*6+0・*B) (2) Left ear sound pressure: [P
Ll]=E1*B+E2*A Therefore, the above formula (1), (
From 2), in order to equalize the listener's binaural sound pressure, (Pu''I3CPR/) t (PL)3 (PL/) Therefore, the control circuits E1 and E2 to be obtained from equation (3) are as follows. becomes.

又第7図電気回路による信号制御ブロックは、第10図
に示すブロックに変換でき、更にステレオ系では第11
図の制御系となる。
Furthermore, the signal control block based on the electric circuit shown in Figure 7 can be converted to the block shown in Figure 10, and furthermore, in a stereo system, the signal control block using the electric circuit
This is the control system shown in the figure.

第10゛・・ E2は(4) (5) 図、第11図中の制御フロック−菰 。10th... E2 is (4) (5) , the control block in FIG. 11.

式より(6)式の様になる。From equation (6), we obtain equation (6).

以上からステレオ信号系による音像拡大再生系を第11
図の通り実現できるが、本発明では、モノラル信号の音
像拡大制御系と、その制御回路上のコンパチビリティ−
を実現するものであり、モノラル、ステレオ信号音像拡
大制御系として第12図の制御ブロックを提案するもの
である。
From the above, the sound image enlargement reproduction system using the stereo signal system is the 11th
Although it can be realized as shown in the figure, in the present invention, the compatibility of the monaural signal sound image enlargement control system and the control circuit.
The control block shown in FIG. 12 is proposed as a monaural and stereo signal sound image enlargement control system.

第12図中、RIN 、 LINはRチャンネル及びL
チャンネル信号入力端子、25.26で示されるFl及
び30のGは信号制御回路である。
In Figure 12, RIN and LIN represent the R channel and L channel.
Channel signal input terminals Fl shown at 25 and 26 and G at 30 are signal control circuits.

27.28は位相反転器、29,31.32はそれぞれ
加算器である。
27 and 28 are phase inverters, and 29 and 31.32 are adders, respectively.

ここで、第11図制御系と第12図制御系の出力信号を
比較してみると、ROI(人力信号をr1LcH入力信
号入力上すれば、第11図制御系(出力R8UT及びり
Comparing the output signals of the control system shown in FIG. 11 and the control system shown in FIG.

H出力り。UTは従って、(7)と(9) 、 (8)
と00)を等価にする条件は、(11)、(1沁より第
12図中のF、Gを求めると、となる。
H output. UT therefore has (7), (9), (8)
The condition for making F and G in FIG. 12 equivalent from (11) and (1 cm) is as follows.

(13)、αaに(4)及び(5)を代入すると、とな
る。
(13), and by substituting (4) and (5) for αa, we get.

以上から、第12図の信号制御系で第11図の信号制御
系と等価、すなわち、同等のステレオ音像拡大効果を得
る為にはFl及びGの信号制御回路に(151、(16
)式で示される伝達特性を与えれば良い事がわかる。
From the above, in order to obtain the same stereo sound image enlargement effect with the signal control system of FIG. 12 as the signal control system of FIG.
), it can be seen that it is sufficient to give the transfer characteristic shown by the equation.

なお回路Fは主に音像の方向性を判断させるための要素
となり、回路Gは主に両耳への音の振巾差、位相差(時
間差)を創成するための要素となる。
Note that the circuit F is mainly an element for determining the directionality of a sound image, and the circuit G is an element mainly for creating an amplitude difference and a phase difference (time difference) of sound to both ears.

すなわち第13図の信号制御系で実現できる。That is, it can be realized by the signal control system shown in FIG.

そこで、先に測定した伝達関数データ、A、B、C,D
によりθ−15°。
Therefore, the transfer function data measured earlier, A, B, C, D
Therefore, θ-15°.

φ=90°と置いた場合の計算結果を第14〜第17図
に示す。
The calculation results when φ=90° are shown in FIGS. 14 to 17.

第14図は、Fの振巾特性、第15図はFの位相特性、
第16図はGの振巾特性、第17図はGの位相特性であ
る。
Figure 14 shows the amplitude characteristics of F, Figure 15 shows the phase characteristics of F,
FIG. 16 shows the amplitude characteristics of G, and FIG. 17 shows the phase characteristics of G.

第17図Gの位相特性は周波数で微分した結果、この計
算例では遅延時間τs;170(μS〕が得られた。
As a result of differentiating the phase characteristic shown in FIG. 17G with respect to frequency, a delay time τs of 170 (μS) was obtained in this calculation example.

以上の様に、第13図に示す制御ブロックに於いて、第
14〜17図に示す伝達特性を電気回路で実現すれば、
理想的なステレオ音像拡大回路が実現できるものである
As mentioned above, in the control block shown in FIG. 13, if the transfer characteristics shown in FIGS. 14 to 17 are realized by the electric circuit,
An ideal stereo sound image enlarging circuit can be realized.

次にモノラル信号音像拡大回路を付加した回路について
説明する。
Next, a circuit to which a monaural signal sound image enlarging circuit is added will be explained.

第18図は本発明による、モノラル、ステレオコンパチ
ブルな音像拡大回路であり、モノラル信号音像拡大回路
の信号の経路を説明する。
FIG. 18 shows a monaural and stereo compatible sound image enlarging circuit according to the present invention, and the signal path of the monaural signal sound image enlarging circuit will be explained.

33は加算器で、ROM2 LOHからの入力信号は、
方向性判断回路−4% を介して加算器33で加算さ
れアナログ信号遅延素子(BBD)34で数ms〜十数
msの初期遅延を与えられローパスフィルター35に入
力され、スイッチ36にて、接点aのモードで加算器3
7゜39へ反転位相で入力され、ここで方向性判断回路
からの直接信号と合成される。
33 is an adder, and the input signal from ROM2 LOH is
The signals are added by an adder 33 via a directionality judgment circuit -4%, given an initial delay of several ms to more than ten ms by an analog signal delay element (BBD) 34, and input to a low-pass filter 35. Adder 3 in mode a
7.39 with an inverted phase, where it is combined with the direct signal from the directionality determination circuit.

38.42は位相反転器である。38.42 is a phase inverter.

加算器37.39の出力信号は第5図に示される様な振
巾特性を有し、第4図に示す従来モノラル信号音像拡大
回路と同様の原理で音像拡大効果が得られる。
The output signals of the adders 37 and 39 have amplitude characteristics as shown in FIG. 5, and a sound image enlarging effect can be obtained on the same principle as the conventional monaural signal sound image enlarging circuit shown in FIG.

本発明のモノラル音像拡大回路ではBBDの入力信号を
ROMとLOHの方向性判断回路の出力側から取ってい
る為、第14図に示す特性と逆特性のローパスフィルタ
ーを構成すればBBDのクロックパルス除去と出力信号
の平担性を実現できるものであり、加算器37.39の
合成出力信号の周波数特性の平担性も向上できるもので
ある。
In the monaural sound image enlarging circuit of the present invention, the BBD input signal is taken from the output side of the ROM and LOH directionality determination circuits, so if a low-pass filter with characteristics opposite to those shown in FIG. 14 is constructed, the BBD clock pulse This makes it possible to achieve elimination and flatness of the output signal, and also to improve the flatness of the frequency characteristics of the combined output signals of the adders 37 and 39.

又、第18図に示す本発明によれば両耳差創成回路41
の出力信号と、ローパスフィルター35の出力信号とを
加算器40で加算すれば、スイッチ36の接点すで、モ
ノラル、ステレオ両信号成分に対して音像拡大効果が発
輝される。
Further, according to the present invention shown in FIG. 18, a binaural difference generating circuit 41
By adding the output signal of the output signal and the output signal of the low-pass filter 35 by the adder 40, a sound image enlargement effect is produced for both monaural and stereo signal components at the contact point of the switch 36.

これは通常のステレオソース等の様に左右独立定位信号
と中央定位同相信号が混在する場合有効で中央定位音像
に距離感が付加され音像拡大効果がより増強されるもの
となる。
This is effective when left and right independent localization signals and center localization in-phase signals coexist, such as in a normal stereo source, and a sense of distance is added to the center localization sound image, further enhancing the sound image expansion effect.

以上の様に本発明では、モノラル用の遅延回路を別途設
け、スイッチ回路により、簡単にモノラル、ステレオの
音像拡大効果が得られるものである。
As described above, according to the present invention, a monaural delay circuit is separately provided, and by using a switch circuit, monaural and stereo sound image enlargement effects can be easily obtained.

次に方向性判断回路、すなわち工の具A+B 体的回路を示す。Next, the direction judgment circuit, that is, tool A + B Shows the physical circuit.

第19図はコンデンサC低抗Rによって構成される最も
シンプルな回路で実用的に十分である。
The circuit shown in FIG. 19 is the simplest, consisting of a capacitor C with a low resistance R, and is sufficient for practical use.

43は信号入力端子、44は出力端子でT1=CR1で
求まる周波数から6dB10Ct増加する周波数特性が
得られ、第20図に周波数特性を示の回路を示す。
43 is a signal input terminal, 44 is an output terminal, and a frequency characteristic that increases by 6 dB10Ct from the frequency determined by T1=CR1 is obtained, and FIG. 20 shows a circuit showing the frequency characteristic.

第21図はトランジスタ2石とCRで構成する一例であ
り、45は入力端子、R1゜R2はバイアス低抗、Ql
はトランジスタ、このトランジスタQ1のエミッタ、ニ
レフタに低抗R3゜R4を挿入して位相反転回路を構成
する。
Figure 21 shows an example of a structure consisting of two transistors and a CR, where 45 is an input terminal, R1°R2 is a bias resistor, and Ql
A phase inversion circuit is constructed by inserting a low resistor R3°R4 into the emitter and NILFT of the transistor Q1.

またC1.R5によりフェーズシフターを構成する、ト
ランジスタQ2はエミッタホロワで、シフター出力信号
は、C2,R7,C3で周波数補正される。
Also C1. Transistor Q2, which constitutes a phase shifter with R5, is an emitter follower, and the shifter output signal is frequency-corrected with C2, R7, and C3.

すなわち、”2R7=Tl t R+RT1= T2゜
XR 4C2=T3で決まる時定数で周波数特性が求まる。
That is, the frequency characteristic is determined by the time constant determined by "2R7=Tl t R+RT1=T2° XR 4C2=T3.

ステレオ信号時の遅延時間はフェーズシフクーとローパ
スフィルターで創成され、Ts→C1R5+T3で求ま
る。
The delay time for a stereo signal is created by a phase shift and a low-pass filter, and is determined by Ts→C1R5+T3.

第22図はその特性である。Figure 22 shows its characteristics.

これら回路で構成される第18図の回路の拡大効果を確
認した所、ステレオ時の音像定位は従来例のどの方式よ
りも音像定位の明確さ、音質に於いて、明らかに優れて
いる事が確認された。
When we confirmed the expansion effect of the circuit shown in Figure 18, which is composed of these circuits, we found that the sound image localization in stereo is clearly superior to any conventional method in terms of clarity and sound quality. confirmed.

またモノラル時についても音像拡大効果が十分感じられ
、特にテレビ放送の歌番組、スポーツ中継で非常に効果
的であった。
In addition, the sound image enlargement effect was sufficiently felt even in monaural mode, and was particularly effective in TV broadcasts of song programs and sports broadcasts.

本発明は上記のような構成であり、本発明によれば以下
に示す効果が得られるものである。
The present invention has the above configuration, and according to the present invention, the following effects can be obtained.

(1) 従来例より音像定位が明確、異和感が少ない
ステレオ音像拡大効果が得られる。
(1) Sound image localization is clearer than in the conventional example, and a stereo sound image enlargement effect with less discomfort can be obtained.

(2)音像拡大幅を大きくする事による音質の劣化が少
ない。
(2) There is little deterioration in sound quality due to increasing the sound image expansion width.

(3)モノラル専用の遅延回路を付加するだけで、モノ
ラル、ステレオコンパチブルな拡大回路を構成できる。
(3) By simply adding a monaural-dedicated delay circuit, a monaural and stereo compatible expansion circuit can be constructed.

(4)2つの遅延出力信号の合成により、通常ステレオ
ソースの拡大効果を更に増強できる。
(4) By combining the two delayed output signals, the expansion effect of the normal stereo source can be further enhanced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はそれぞれ従来のステレオ音像拡大回路
のブロック図、第4図は従来のモノラル音像拡大回路の
ブロック図、第5図は同回路の出力信号の周波数特性図
、第6図はステレオ受聴時の概略図、第7図Aは受聴角
φの受聴状態を示す概略図、第7図Bは第7図Aと等価
な2チヤンネル制御系の概略図、第8図は受聴角15の
伝達関数A、Bの振巾特性図、第9図は受聴角90の伝
連関数C,Dの振巾特性図、第10図は第7図Bと等価
なモノラル制御系のブロック図、第11図は第7図Bと
等価なステレオ音像拡大制御系のブロック図、第12図
は本発明の音響再生装置の基本構成を示すブロック図、
第13図は同装置を伝達関数で示すブロック図、第14
図は同装置の方向性判断回路の振巾特性の計算結果を示
す図、第15図は同回路の位相特性の計算結果を示す図
、第16図は同装置の両耳差創成回路の振巾特性の計算
結果を示す図、第17図は同回路の位相特性の計算結果
を示す図、第18図は本発明の他の実施例のブロック図
、第19図は同装置の方向性判断回路の電気回路図、第
20図は同周波数特性図、第21図は同装置の両耳差創
成回路の電気回路図、第22図は同周波数特性図である
。 25 、26・・・・・・方向性判断回路、27,28
・・・・・・位相反転器、29=・・・・・加算器、3
0・・・・・・両耳差創成回路、31,32・・・・・
・加算器、33・・・・・・加算器、34・・・・・・
アナログ信号遅延素子、35・・・・・・ローパスフィ
ルター、36・・・・・・スイッチ、37・・・・・・
加算器、38・・・・・・位相反転器、39,40・・
・・・・加算器、41・・・・・・両耳差創成回路、4
2・・・・・・位相反転器。
Figures 1 to 3 are block diagrams of conventional stereo sound image enlargement circuits, Figure 4 is a block diagram of a conventional monaural sound image enlargement circuit, Figure 5 is a frequency characteristic diagram of the output signal of the circuit, and Figure 6 is a block diagram of a conventional stereo sound image expansion circuit. is a schematic diagram for stereo listening, Figure 7A is a schematic diagram showing the listening state at the listening angle φ, Figure 7B is a schematic diagram of a two-channel control system equivalent to Figure 7A, and Figure 8 is a diagram showing the listening angle. Fig. 9 is an amplitude characteristic diagram of transfer functions C and D at a listening angle of 90. Fig. 10 is a block diagram of a monaural control system equivalent to Fig. 7 B. , FIG. 11 is a block diagram of a stereo sound image enlargement control system equivalent to FIG. 7B, and FIG. 12 is a block diagram showing the basic configuration of the sound reproduction device of the present invention.
Figure 13 is a block diagram showing the same device in terms of transfer functions;
Figure 15 shows the calculation results of the amplitude characteristics of the directional judgment circuit of the same device, Figure 15 shows the calculation results of the phase characteristics of the circuit, and Figure 16 shows the amplitude of the binaural difference creation circuit of the same device. FIG. 17 is a diagram showing the calculation results of the width characteristic, FIG. 17 is a diagram showing the calculation result of the phase characteristic of the same circuit, FIG. 18 is a block diagram of another embodiment of the present invention, and FIG. 19 is a diagram showing the directionality determination of the same device. The electrical circuit diagram of the circuit, FIG. 20 is a frequency characteristic diagram thereof, FIG. 21 is an electrical circuit diagram of a binaural difference generating circuit of the same device, and FIG. 22 is a frequency characteristic diagram thereof. 25, 26... Directionality judgment circuit, 27, 28
... Phase inverter, 29 = ... Adder, 3
0...Binaural difference generation circuit, 31, 32...
・Adder, 33... Adder, 34...
Analog signal delay element, 35...Low pass filter, 36...Switch, 37...
Adder, 38... Phase inverter, 39, 40...
... Adder, 41 ... Binaural difference generation circuit, 4
2... Phase inverter.

Claims (1)

【特許請求の範囲】[Claims] 12個のスピーカとこの2個のスピーカ間の中央線上に
位置する聴取者の両耳との間の伝達特性を、上記2個の
スピーカの外側の任意の位置に想定された音源と上記聴
取者の両耳との間の伝達特性に変換するための方向性判
断回路と両耳差創成回路とを有し、前記方向性判断回路
をステレオの左右各チャンネルの糸路に挿入し、前記各
方向性判断回路の出力をその一方チヤンネルに関しては
位相反転器を通して加算するとともにその加算出力を前
記両耳差創成回路に入力し、前記両耳差創成回路の出力
を前記各方向性判断回路の出力側に対してその一方のチ
ャンネルに関しては位相反転器を通して加算し、かつ前
記各方向性判断回路の出力を加算した加算出力を数ミリ
秒〜十数ミリ秒の初期遅延を与える遅延素子およびロー
パスフィルタを介して前記両耳差創成回路の出力に加算
するように構成したことを特徴とする音響再生装置。
The transmission characteristics between the 12 speakers and the listener's ears located on the center line between these two speakers are calculated using a sound source assumed to be located at an arbitrary position outside the two speakers and the listener's ears. It has a directionality judgment circuit and a binaural difference generation circuit for converting the transmission characteristics between the two ears, and the directionality judgment circuit is inserted into the thread path of each left and right channel of the stereo, and For one channel, the output of the gender determination circuit is added through a phase inverter, and the added output is input to the binaural difference generation circuit, and the output of the binaural difference generation circuit is added to the output side of each of the directionality determination circuits. For one channel, the sum is added through a phase inverter, and a delay element and a low-pass filter are provided to give an initial delay of several milliseconds to tens of milliseconds to the summed output obtained by adding the outputs of the respective directionality determination circuits. A sound reproduction device characterized in that the sound reproduction device is configured to add the signal to the output of the binaural difference generating circuit via the binaural difference generating circuit.
JP54106358A 1979-08-20 1979-08-20 sound reproduction device Expired JPS5857960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54106358A JPS5857960B2 (en) 1979-08-20 1979-08-20 sound reproduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54106358A JPS5857960B2 (en) 1979-08-20 1979-08-20 sound reproduction device

Publications (2)

Publication Number Publication Date
JPS5642495A JPS5642495A (en) 1981-04-20
JPS5857960B2 true JPS5857960B2 (en) 1983-12-22

Family

ID=14431521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54106358A Expired JPS5857960B2 (en) 1979-08-20 1979-08-20 sound reproduction device

Country Status (1)

Country Link
JP (1) JPS5857960B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178242A (en) * 1985-02-04 1986-08-09 Koito Mfg Co Ltd Head lamp device for vehicle
JPH01175500A (en) * 1987-12-29 1989-07-11 Matsushita Electric Ind Co Ltd Image expanding circuit
US6236730B1 (en) 1997-05-19 2001-05-22 Qsound Labs, Inc. Full sound enhancement using multi-input sound signals
US6198826B1 (en) 1997-05-19 2001-03-06 Qsound Labs, Inc. Qsound surround synthesis from stereo
US7003119B1 (en) 1997-05-19 2006-02-21 Qsound Labs, Inc. Matrix surround decoder/virtualizer

Also Published As

Publication number Publication date
JPS5642495A (en) 1981-04-20

Similar Documents

Publication Publication Date Title
US3725586A (en) Multisound reproducing apparatus for deriving four sound signals from two sound sources
US6937737B2 (en) Multi-channel audio surround sound from front located loudspeakers
US7945054B2 (en) Method and apparatus to reproduce wide mono sound
US5222059A (en) Surround-sound system with motion picture soundtrack timbre correction, surround sound channel timbre correction, defined loudspeaker directionality, and reduced comb-filter effects
US6970569B1 (en) Audio processing apparatus and audio reproducing method
US5742687A (en) Signal processing circuit including a signal combining circuit stereophonic audio reproduction system including the signal processing circuit and an audio-visual reproduction system including the stereophonic audio reproduction system
US4359605A (en) Monaural signal to artificial stereo signals convertings and processing circuit for headphones
KR100236447B1 (en) Device for enlarging stereo sound place
US6222930B1 (en) Method of reproducing sound
JPS5857960B2 (en) sound reproduction device
US4394535A (en) Split phase stereophonic sound synthesizer
JP4427937B2 (en) Acoustic signal processing circuit and acoustic reproduction device
US7054816B2 (en) Audio signal processing device
JPH02261300A (en) Stereophonic sound reproducing device
US6999590B2 (en) Stereo sound circuit device for providing three-dimensional surrounding effect
JP3368835B2 (en) Sound signal processing circuit
US7796766B2 (en) Audio center channel phantomizer
JPS61266000A (en) Pseudo stereo system
JPS6132700A (en) Generator of stereo sound field reproducing signal
JPH04177999A (en) Stereo circuit
JP2006303839A (en) Microphone
JPS5814798B2 (en) 3D sound field expansion device
AU624347B2 (en) Surround-sound system
JPH03266599A (en) Acoustic circuit
JPH05191898A (en) Sound image expansion device