JPS5857573A - Thermo sensitive valve - Google Patents

Thermo sensitive valve

Info

Publication number
JPS5857573A
JPS5857573A JP15572681A JP15572681A JPS5857573A JP S5857573 A JPS5857573 A JP S5857573A JP 15572681 A JP15572681 A JP 15572681A JP 15572681 A JP15572681 A JP 15572681A JP S5857573 A JPS5857573 A JP S5857573A
Authority
JP
Japan
Prior art keywords
valve
temperature
spring
water
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15572681A
Other languages
Japanese (ja)
Other versions
JPS6018875B2 (en
Inventor
Kohei Abe
阿部 幸平
Masataka Ashikawa
芦川 正高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP15572681A priority Critical patent/JPS6018875B2/en
Publication of JPS5857573A publication Critical patent/JPS5857573A/en
Publication of JPS6018875B2 publication Critical patent/JPS6018875B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B1/00Sensitive elements capable of producing movement or displacement for purposes not limited to measurement; Associated transmission mechanisms therefor

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To enable to sense to the temperature of water and to automatically open and close the flow of water by a method wherein the martensite transformation point of a spring, which is one of two springs installed within the valve and acts for parting a valve from a valve seat, and the Curie point of a thermosensitive magnetic material are rendered to be nearly equal to each other. CONSTITUTION:A thermo sensitive device consisting of the tension spring 5, which is made by forming a memory alloy in corrugated shape, and a compression spring 6 made of ordinal spring material is provided within a casing 1. When water with elevated temperature comes in the casing 1 from an intake 12 and the temperature of the valve 4 made of thermo sensitive magnetic material exceeds its Curie point, the valve 4, which is firmly attracted by a permanent magnet 2, is shifted by being pushed by the pressure of the water, because of the disappearance of the attractive force of the valve 4. Consequently, the water flows into the valve and causes to heat the spring 5 of the thermo sensitive device, resulting in transforming the memory alloy from its martensite state to its mother phase and abruptly contracting the device and consequently abruptly discharging the water through the valve from efflux holes 11.

Description

【発明の詳細な説明】 本発明は流体通路をその流体の温度に感応して自動的に
開閉する温度感応パルプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature-sensitive pulp that automatically opens and closes fluid passages in response to the temperature of the fluid.

従来、水の流れを止めたシあけたりする手段にパルプが
使われている。また特に開閉部分の偏位を大きくとるた
めに通常電磁パルプが多く使われている。しかし電磁パ
ルプはパルプの駆動に電気の作る磁力を利用しているた
め、使用する時は電気配線を必要とする上に、水の中に
直接設置する場合は電気回路部および配線部分を防水構
造とせねばならず、煩雑で設備も高価につくという問題
がある。一方、電磁パルプのような手段を用いない場合
は、バイメタルを用いて構成する方法もあるが、バイメ
タルは温度による偏位量も小さく、父方も小さいため所
望の性能が得られない等の欠点があった。
Traditionally, pulp has been used as a means to stop the flow of water and open holes. In addition, electromagnetic pulp is usually used in order to increase the deviation especially in the opening and closing parts. However, since electromagnetic pulp uses the magnetic force created by electricity to drive the pulp, it requires electrical wiring when used, and if it is installed directly in water, the electrical circuit and wiring parts are waterproof. However, there are problems in that it is complicated and the equipment is expensive. On the other hand, if a means such as electromagnetic pulp is not used, there is a method of constructing the structure using bimetal, but bimetal has the disadvantage that the deviation due to temperature is small and the paternal side is also small, so the desired performance cannot be obtained. there were.

本発明の目的は、水の中で電気等信からのエネルギーを
必要とせずに水の温度に感応し、水の流れを自動的に開
閉する構造簡単で確実に作動する全く新規な感温パルプ
を提供することにある。
The object of the present invention is to develop a completely new temperature-sensitive pulp that has a simple structure and operates reliably, which responds to the temperature of water and automatically opens and closes the flow of water without requiring energy from electricity or other sources in water. Our goal is to provide the following.

温度の変化により大きな偏位が得られる材料として形状
記憶合金がある。形状記憶合金は。
Shape memory alloys are materials that can produce large deviations due to temperature changes. Shape memory alloy.

高温の母相に於て形状を成形し、150℃以下のマルテ
ンサイト変態の温度範囲で変形し、再び母相の温度に戻
すと元の形状に復帰するという特異な特性を持った材料
で、又、材料の抗張力が同じひずみの量に対しマルテン
サイト変態の状態の時は、母相の状態にある時のほぼ一
!−になるため2通常のバネと組合せることにより、昇
温、降温に伴って自動的に弁全偏位できる感温装置を構
成することができる。形状記憶特性はNi49〜51%
のTi−Ni合金、或はCu−Al−Ni合金、Cu−
Zn−Al合金等に現われる特異な特性であるが、その
成因についてはくわしく解明されており、又形状記憶合
金と通常バネを組合せて温度の変化によって作動する装
置を構成できることは文献により公知であるが、その方
法9手段についての詳細は現在明らかではない。
It is a material that has the unique property of forming a shape in a high-temperature matrix, deforming in the martensitic transformation temperature range of 150°C or less, and returning to its original shape when the temperature of the matrix is returned again. Also, for the same amount of strain, the tensile strength of the material in the martensitic transformation state is almost equal to that in the matrix state! By combining this with a normal spring, it is possible to construct a temperature-sensing device that can automatically fully deflect the valve as the temperature rises or falls. Shape memory properties are Ni49-51%
Ti-Ni alloy, or Cu-Al-Ni alloy, Cu-
This is a unique characteristic that appears in Zn-Al alloys, etc., but its origin has not been fully elucidated, and it is known from the literature that it is possible to combine a shape memory alloy with a normal spring to construct a device that operates according to temperature changes. However, the details of the method and means are not currently clear.

以下図面を参照しながら実施例を用いて説明する。Examples will be described below with reference to the drawings.

第1図は本発明による感温バルブの一実施例の外観図で
ある。右側のネジの部分を他の機構に接続し、右端の入
口より弁を通り流入した水等の流体がきょう体1の周面
の流出穴11から外へ流出するようになっている。流体
の流れはこの逆向きであってもよい。この感温パルプの
内部構造は第2図および第3図に示されている。
FIG. 1 is an external view of an embodiment of a temperature-sensitive valve according to the present invention. The threaded portion on the right side is connected to another mechanism so that fluid such as water flowing in through the valve from the right end inlet flows out through the outflow hole 11 on the circumferential surface of the housing 1. The fluid flow may be in the opposite direction. The internal structure of this thermosensitive pulp is shown in FIGS. 2 and 3.

先ず第2図に於て、感温バルブのきょう体1・・ニは水
の取入口12となる部分の外周面に、他の構造体に取付
けるためのネジを設けである。
First, in FIG. 2, the housings 1, . . . , 2 of the temperature-sensitive valve are provided with screws on the outer circumferential surface of the portion that will become the water intake port 12 for attachment to other structures.

きょう体1はアルミ合金、或はアルミ亜鉛合金。The housing 1 is made of aluminum alloy or aluminum-zinc alloy.

或は樹脂環、非磁性材料が好ましい。きょう体1の取入
口12の近くには、弁座となる永久磁石2が組込み固着
されている。この永久磁石2はゴム磁石、バリウムフェ
ライト磁石、アルニコ系磁石、希土類磁石の何れでもよ
く、磁極の方向は面方向、或は面内VcN−8極が発生
するように着磁しである。永久磁石2の中心は水の通る
よう中空にしである。
Alternatively, a resin ring or a non-magnetic material is preferable. A permanent magnet 2, which serves as a valve seat, is installed and fixed near the intake port 12 of the housing 1. The permanent magnet 2 may be a rubber magnet, a barium ferrite magnet, an alnico magnet, or a rare earth magnet, and is magnetized so that the direction of the magnetic pole is in the in-plane direction or an in-plane VcN-8 pole is generated. The center of the permanent magnet 2 is hollow so that water can pass through it.

きよう体1の内部にはさらに感温磁性材料よりなる弁4
が軸方向で可動に設けられてい茗。
Inside the body 1, there is further a valve 4 made of a temperature-sensitive magnetic material.
is movable in the axial direction.

この弁4はキュリ一点以下にある時は第2図のように永
久磁石2に吸引されて面を密着して流体の流れをとめて
いるが、第3図のように永久磁石2から離れると流出穴
11を取入口121’(連通させて流体の通過を許す。
When the valve 4 is below one Curie point, it is attracted to the permanent magnet 2 as shown in Fig. 2, and its surfaces come into close contact with each other to stop the flow of fluid, but when it is separated from the permanent magnet 2 as shown in Fig. 3. The outflow hole 11 is connected to the inlet 121' (to allow fluid to pass therethrough).

永久磁石2と弁4との面の密着をよくするため、ゴムや
布や樹脂等よりなるリング状のバッキング5を磁石2の
面に接着しである。弁4を構成する感温磁性材料は、そ
の磁気変態点(キュリ一点)全感温パルプの開閉設定温
度にほぼ一致するように選ぶ。
In order to improve the close contact between the surfaces of the permanent magnet 2 and the valve 4, a ring-shaped backing 5 made of rubber, cloth, resin, etc. is adhered to the surface of the magnet 2. The temperature-sensitive magnetic material constituting the valve 4 is selected so that its magnetic transformation point (curi point) approximately coincides with the opening/closing set temperature of the entire temperature-sensitive pulp.

感温磁性材料は金属酸化物のフェライト感温磁性材料と
、 Fe −Ni−Cr系の金属感温磁性材料があるが
、ここでは金属の感温磁性材料が好ましい。
Temperature-sensitive magnetic materials include metal oxide ferrite temperature-sensitive magnetic materials and Fe-Ni-Cr-based metal temperature-sensitive magnetic materials, but metal temperature-sensitive magnetic materials are preferred here.

さらにきょう体1の内部には、温度に感応して収縮伸長
する感温素子が設けられている。感温素子は、形状記憶
合金の条を波形に成形して作った5個の引張りバネ5と
9通常のバネ材で作った3個の圧縮バネ6とで構成され
ている。
Further, inside the housing 1, a temperature sensing element is provided which contracts and expands in response to temperature. The temperature sensing element is composed of five tension springs 5 made by shaping shape memory alloy strips into a corrugated shape and three compression springs 6 made of nine ordinary spring materials.

これらのバネ5,6け第2図(b)から明らかなように
、形状記憶合金のバネ5と通常のバネ6とがお互いに隣
合って交互に対称に配置されている。ここで形状記憶合
金のバネ5の強さe TM。
As is clear from the springs 5 and 6 in FIG. 2(b), the shape memory alloy springs 5 and the normal springs 6 are alternately and symmetrically arranged adjacent to each other. Here, the strength of the shape memory alloy spring 5 is e TM.

通常のバネ6の強さヲTNとすると、温度が高く形状記
憶合金が母相の状態にある時は、・感温素子は収縮し、
第6図の状態にあり、TM>TNの関係となっている。
Assuming that the strength of the normal spring 6 is TN, when the temperature is high and the shape memory alloy is in the matrix state, the temperature sensing element contracts,
The state is shown in FIG. 6, and the relationship is TM>TN.

つぎに温度が下り、形状記憶合金がマルテンサイト変態
の領域になると。
Next, the temperature drops and the shape memory alloy enters the martensitic transformation region.

形状記憶合金のバネ5の抗張力は低くなシ9通常バネ6
の力が勝り、感温素子は通常バネ乙のバネ圧により伸長
する。この場合、それぞれのバネの力FiTM<TNと
なっている。
Shape memory alloy spring 5 has low tensile strength 9 Normal spring 6
The force of 2 prevails, and the temperature sensing element usually expands due to the spring pressure of spring 2. In this case, the force of each spring is FiTM<TN.

こうして昇温、降温によって形状記憶合金のバネ5と通
常バネ乙の力はそれぞれ逆の力関係となる。その場合で
あっても、形状記憶合金のバネ5と通常バネ6とによっ
て感温素子としての平均な力が得られるように、形状記
憶合金のバネ5と9通常のバネ6とを対称位置に交互に
配置する必要がある。しだがって1つの感温素子を構成
するためには、形状記憶合金のバネ5と通常のバネ乙の
組合せは少なくとも2組以上必要である。
In this way, as the temperature rises and falls, the forces of the shape memory alloy spring 5 and the normal spring B become opposite to each other. Even in that case, the shape memory alloy springs 5 and 9 are placed in symmetrical positions with respect to the regular spring 6 so that an average force as a temperature sensing element can be obtained by the shape memory alloy spring 5 and the regular spring 6. Must be placed alternately. Therefore, in order to constitute one temperature sensing element, at least two or more combinations of the shape memory alloy spring 5 and the normal spring A are required.

次にこの感温バルブの動作を説明すると、第2図に於て
、感温バルブは温度の低い状態にあるとする。今、取入
口12より温度の上昇した水が入って来て、弁4がキュ
リ一点を越すと。
Next, the operation of this temperature-sensitive valve will be explained. In FIG. 2, it is assumed that the temperature-sensitive valve is in a low temperature state. Now, water whose temperature has risen is coming in from the intake port 12, and the valve 4 has exceeded one point.

それ迄永久磁石2によって強く吸引されていた感温磁性
材料製の弁4は吸引力がなくなるため水圧に押されて移
動する。すると温度の上昇した水はバルブの中に流入し
、感温素子のバネ5を加温するため、形状記憶合金はマ
ルテンサイト状態から母相になり、感温素子は第3図の
ように急激に収縮し、水はパルプ全通り抜けて流出穴1
1から急激に流れ出るようになる。次に流れている水の
温度が下ると、感温素子の形状記憶合金のバネ5はマル
テンサイト状態になるだめ、TN>TMとなり、感温素
子は通常バネ6の力が勝り、伸長する。一方、弁4を構
成する感温磁性材料はキュリ一点以下となるため磁性を
生じ、感温素子の伸長によシ永久磁石2に接近すると、
永久磁石2との間に磁路が成形され。
The valve 4 made of a temperature-sensitive magnetic material, which had been strongly attracted by the permanent magnet 2, loses its attractive force and is moved by the water pressure. Then, the heated water flows into the valve and warms the spring 5 of the temperature sensing element, so the shape memory alloy changes from the martensitic state to the matrix, and the temperature sensing element rapidly changes as shown in Figure 3. The water passes through the entire pulp and flows through the outflow hole 1.
It starts to flow rapidly from 1. Next, when the temperature of the flowing water drops, the shape memory alloy spring 5 of the temperature sensing element enters the martensite state, so TN>TM, and the force of the spring 6 normally overcomes the temperature sensing element, causing it to expand. On the other hand, since the temperature-sensitive magnetic material constituting the valve 4 has a temperature of less than one Curie point, it generates magnetism, and when the temperature-sensitive element approaches the permanent magnet 2 due to extension,
A magnetic path is formed between it and the permanent magnet 2.

急激に磁石面に吸引され、水の流れを阻止する。It is suddenly attracted to the magnetic surface and blocks the flow of water.

なお弁座を構成した永久磁石2の代りに感温磁性材料を
用い、そして弁4を永久磁石材料にて構成してもよい。
Note that a temperature-sensitive magnetic material may be used in place of the permanent magnet 2 forming the valve seat, and the valve 4 may be formed of a permanent magnet material.

またバネ5,6の本数・の変更が可能なことはもちろん
である。
It goes without saying that the number of springs 5 and 6 can be changed.

以上のように1本発明の感温バルブによれば。As described above, according to the temperature-sensitive valve of the present invention.

弁を駆動するための他からの動力を必要とせず。No external power is required to drive the valve.

弁の偏位量も大きく、その上大きな弁閉止力が得られる
ため動作が確実であり、構造も簡単で安価に提供でき、
工業的に有用である。
The amount of valve deviation is large, and a large valve closing force can be obtained, so operation is reliable, and the structure is simple and can be provided at low cost.
Industrially useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による感温パルプの一実施例の外観図、
第2図(a)tri同実施例の低温時の縦断面図、第2
図(b) i”を同じく左側面図、第3図は同実施例の
高温時の縦断面図である。 1・・・きょう体、2・・・永久磁石、3・・・バッキ
ング。 4・・・弁、5・・・形状記憶合金バネ、6・・・通常
のノくネ。 第1図
FIG. 1 is an external view of an embodiment of the temperature-sensitive pulp according to the present invention;
FIG. 2(a) Longitudinal cross-sectional view of the same example at low temperature, 2nd
Figure (b) i'' is also a left side view, and Figure 3 is a longitudinal cross-sectional view of the same example at high temperature. 1... Housing body, 2... Permanent magnet, 3... Backing. 4 ... Valve, 5... Shape memory alloy spring, 6... Ordinary nokune. Fig. 1

Claims (1)

【特許請求の範囲】 1、流体通路を構成するきよう体と、該きょう体内に設
けた弁座と、該弁座に対向した可動な弁と、形状記憶合
金で作られ、マルチ/サイト変態点以上の温度では該弁
を該弁座から引離゛すように組込まれた第一のバネと、
普通のバネ材で作られ、該第−のバネのマルテンサイト
変態点以下の温度では該弁を該弁座に近づけるように組
込まれた第二のバネとを含み、該弁座および該弁のうち
の一方に永久磁石を用いるとともに他方に感温磁性体を
用い、しかも該第−のバネのマルテンサイト変態点と該
感温磁性材料のキュリ一点とをほぼ同一になるように選
び構成したことを特徴とする感温パルプ。 以下余白
[Claims] 1. A housing that constitutes a fluid passage, a valve seat provided in the housing, a movable valve facing the valve seat, and a shape memory alloy that is made of a multi/site transformation. a first spring adapted to pull the valve away from the valve seat at temperatures above the temperature;
a second spring made of ordinary spring material and incorporated to move the valve closer to the valve seat at temperatures below the martensitic transformation point of the second spring; A permanent magnet is used for one of the springs, and a temperature-sensitive magnetic material is used for the other, and the martensitic transformation point of the first spring is selected and configured so that the Curie point of the temperature-sensitive magnetic material is almost the same. Temperature-sensitive pulp featuring Below margin
JP15572681A 1981-09-30 1981-09-30 temperature sensitive valve Expired JPS6018875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15572681A JPS6018875B2 (en) 1981-09-30 1981-09-30 temperature sensitive valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15572681A JPS6018875B2 (en) 1981-09-30 1981-09-30 temperature sensitive valve

Publications (2)

Publication Number Publication Date
JPS5857573A true JPS5857573A (en) 1983-04-05
JPS6018875B2 JPS6018875B2 (en) 1985-05-13

Family

ID=15612119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15572681A Expired JPS6018875B2 (en) 1981-09-30 1981-09-30 temperature sensitive valve

Country Status (1)

Country Link
JP (1) JPS6018875B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347423B2 (en) 2001-04-27 2008-03-25 Safematic Oy Arrangement in connection with mechanical seal
US8072302B2 (en) 2003-02-27 2011-12-06 University Of Washington Through Its Center For Commercialization Inchworm actuator based on shape memory alloy composite diaphragm
US8586176B2 (en) 2007-11-02 2013-11-19 University Of Washington Shape memory alloy fibers and shape memory polymer fibers and films and their composites for reversible shape changes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513669Y2 (en) * 1985-04-26 1993-04-12
JPS6213776U (en) * 1985-07-10 1987-01-27

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347423B2 (en) 2001-04-27 2008-03-25 Safematic Oy Arrangement in connection with mechanical seal
US8072302B2 (en) 2003-02-27 2011-12-06 University Of Washington Through Its Center For Commercialization Inchworm actuator based on shape memory alloy composite diaphragm
US8586176B2 (en) 2007-11-02 2013-11-19 University Of Washington Shape memory alloy fibers and shape memory polymer fibers and films and their composites for reversible shape changes

Also Published As

Publication number Publication date
JPS6018875B2 (en) 1985-05-13

Similar Documents

Publication Publication Date Title
US4979672A (en) Shape memory actuator
US7086245B2 (en) Valve apparatus for controlling mass flow, manufacturing method thereof and heat exchanger using the same
EP2019910B1 (en) Thermo-magnetic actuator
US20140007571A1 (en) Actuator using shape memory alloy
WO1990015928A1 (en) A shape memory actuator
JPS5857573A (en) Thermo sensitive valve
JPS5881277A (en) Control method of expansion valve
EP1092106B1 (en) Electrically actuated reed valve
JPS62110087A (en) Changeover valve device
JP7343686B2 (en) A shape memory alloy actuator subassembly comprising a magnetic element and a fluid valve comprising the shape memory alloy actuator subassembly.
JPH049948B2 (en)
JPS624787Y2 (en)
JPS5973680A (en) Flow control valve
JPS6118293Y2 (en)
JPS606976Y2 (en) reed switch
JPS6050280A (en) Response improvement system for shape-memory alloy
JPH0221169A (en) Valve device
JPH0320049B2 (en)
JPS5865381A (en) Open/close valve
JPH04156861A (en) Temperature-sensitive passage cutoff device for fire protection
JPS6035946Y2 (en) temperature switch
JPS5821803A (en) Thermo-sensitive actuator
JPH06137458A (en) Spring device
JPS62159879A (en) Device for opening and closing valve
JPS63266273A (en) Valve device