JPS5857388B2 - Manufacturing method of lightweight heat-resistant ceramic - Google Patents

Manufacturing method of lightweight heat-resistant ceramic

Info

Publication number
JPS5857388B2
JPS5857388B2 JP17623880A JP17623880A JPS5857388B2 JP S5857388 B2 JPS5857388 B2 JP S5857388B2 JP 17623880 A JP17623880 A JP 17623880A JP 17623880 A JP17623880 A JP 17623880A JP S5857388 B2 JPS5857388 B2 JP S5857388B2
Authority
JP
Japan
Prior art keywords
mold
heat
reaction
composite material
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17623880A
Other languages
Japanese (ja)
Other versions
JPS5798641A (en
Inventor
耕治 今川
茂 秋山
英俊 上野
純夫 長田
晃 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP17623880A priority Critical patent/JPS5857388B2/en
Publication of JPS5798641A publication Critical patent/JPS5798641A/en
Publication of JPS5857388B2 publication Critical patent/JPS5857388B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は硅酸質ガラス中空球−アルミニウム系複合材よ
り、鋳型材として有用な軽量耐熱セラミック材を製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a lightweight heat-resistant ceramic material useful as a mold material from a siliceous glass hollow sphere-aluminum composite material.

従来、金属の造形技術として重要な鋳造法においては鋳
型材に鋳物砂を用いる砂型が主流を占めてきたが、最近
の砂資源の枯褐および廃砂、粉塵騒音の発生など公害源
として工場規制の強まるなかで、金属による鋳型、すな
わち金型の使用が主として銅合金以下の融点をもつ各種
金属の鋳造に多くなっている。
Conventionally, sand molds using foundry sand have been the mainstream in the casting method, which is an important metal forming technology, but recently, sand molds have been subject to factory regulations due to browning of sand resources, waste sand, dust noise generation, and other pollution sources. With this trend, the use of metal molds, or metal molds, is increasing, mainly for casting various metals with melting points lower than copper alloys.

この金型は砂型に比較しておよそ次の利点を有している
This mold has approximately the following advantages compared to a sand mold.

(1)1個の型で反復使用ができるいわゆる永久型であ
る。
(1) It is a so-called permanent mold that can be used repeatedly with one mold.

(2)製品の寸法精度が高い。(2) The product has high dimensional accuracy.

(3)生産性が高い。(4)騒音粉塵の減少などの環境
の改善。
(3) High productivity. (4) Environmental improvements such as reduction of noise and dust.

(5)加圧鋳造が行え、製品の機械的性質が向上する。(5) Pressure casting can be performed, improving the mechanical properties of the product.

一方金型の欠点として次のような事項があげられる。On the other hand, the following points can be cited as drawbacks of molds.

(1)金型の製作に日数を要し、高価である。(2)鋳
造製品の金型に接した部分に脆性なチル層が生じやすい
(1) It takes many days to manufacture the mold and is expensive. (2) A brittle chill layer tends to form in the part of the cast product that comes into contact with the mold.

(3)金型自体が重量物となり、取扱いか不便。(3) The mold itself is heavy and inconvenient to handle.

(4)設計変更に対する対応が困娼(5)同一金型での
製造個数か少ないと不経済。
(4) It is difficult to respond to design changes. (5) It is uneconomical if the number of units manufactured using the same mold is small.

そこで理想的な型材としては、金型の利点を有しながら
、かつ製作加工が容易でチル層か入らないように熱伝導
率が小さく、できるだけ軽量であり、安価であることな
どが望ましい。
Therefore, it is desirable that the ideal mold material has the advantages of a mold, is easy to manufacture, has low thermal conductivity so as not to penetrate the chill layer, is as lightweight as possible, and is inexpensive.

本発明者らはこのような鋳型材の問題に対し強い関心を
持ち種々検討を進めて来た結果、本発明をなすに至った
ものである。
The present inventors have a strong interest in the problem of mold materials and have conducted various studies, resulting in the completion of the present invention.

本発明者らはすてに硅酸質ガラス中空球−アルミニウム
系複合材(特許第847310号、第847352号)
を空気中で熱処理することにより、軽量耐火断熱材(特
許第9910125号)が得られることを明らかにして
いるが、この材料に先に述べた理想的な型材としての条
件をあてはめると、該複合材の製作、加工は極めて容易
であり、この複合材を熱処理によりセラミック化すれば
、耐熱性か得られ、またセラミック質であるため熱伝導
率が金型(多くは鋳鉄または鋼材)よりはるかに小さく
、熱変形も小さい上に、該複合材の特徴である軽量性が
加わるなど、多くの点において金型に代る永久型材とし
て満足できる特徴をもつと考えられる。
The present inventors have previously developed a siliceous glass hollow sphere-aluminum composite material (Patent Nos. 847310 and 847352).
It has been revealed that a lightweight fire-resistant insulation material (Patent No. 9910125) can be obtained by heat-treating the material in air. However, if the conditions for the ideal shape material described above are applied to this material, the composite The material is extremely easy to manufacture and process, and if this composite material is made into a ceramic material through heat treatment, heat resistance can be obtained. It is thought that it has characteristics that are satisfactory as a permanent molding material in place of a mold in many respects, such as being small and having little thermal deformation, as well as the lightness that is a characteristic of the composite material.

ところが、該複合材の従来の熱処理により得られる素材
は、その表面に小さなふくれや微細なき裂が入ることが
多く、また高温の溶融金属と急に接すると接触面より微
細なき裂が入るなど、鋳型として重要な性質である耐熱
衝撃性も小さいことが判明した。
However, materials obtained by conventional heat treatment of composite materials often have small blisters or minute cracks on their surfaces, and when they suddenly come into contact with high-temperature molten metal, minute cracks appear from the contact surface. It was also found that thermal shock resistance, which is an important property for molds, was low.

そこで本発明者らはこのような欠点は該複合材の熱処理
時の加熱過程を厳密に制御することにより除くことがで
きると考え、種々研究の結果、次のような熱処理条件を
用いることによりはゾ理想的な鋳型素材が得られること
を見出したものである。
Therefore, the inventors of the present invention believe that such drawbacks can be eliminated by strictly controlling the heating process during heat treatment of the composite material, and as a result of various studies, by using the following heat treatment conditions. It was discovered that an ideal mold material could be obtained.

すなわち、該複合材のセラミック化に必要な8008C
以上の温度に加熱処理をおこなう際、600℃より70
0℃への温度範囲を通過する時の昇温速度を20°C/
H以下に保つことである。
In other words, the 8008C required for ceramicizing the composite material
When performing heat treatment at a temperature higher than 600°C, 70°C
The temperature increase rate when passing through the temperature range to 0℃ is 20℃/
It is important to keep it below H.

そもそも該複合材に対する熱処理は、先の軽量耐火断熱
材の製造方法(特公昭54−23926号公報)におい
て示したように、該複合材の約40φを占めるアルミニ
ウムが硅酸ガラスのシリカ(S s O2)成分および
空気中の酸素との化学反応により、酸化アルミニウム(
アルミナ)化することを主目的とするものである。
In the first place, the heat treatment of the composite material is carried out using silica glass (S s Aluminum oxide (
The main purpose is to convert into alumina).

このうちとくに重要な反応かシリカとアルミニウムの酸
化還元反応である。
Of these, a particularly important reaction is the redox reaction between silica and aluminum.

3 S t02 + 4 AI= 38 t + 2
Al2O3(1)この反応は比較的低温度(たとえばA
Iが固相状態である500’C)においても長い誘導期
(反応の前駆現象)を伴い、非常に緩慢な反応速度で進
行することが認められているが、次第に高温になるに従
い反応速度は上昇し、発熱を伴う急激な反応を生じる。
3 S t02 + 4 AI= 38 t + 2
Al2O3(1) This reaction occurs at relatively low temperatures (e.g. A
It is recognized that even at 500'C, when I is in a solid state, the reaction proceeds at a very slow rate with a long induction period (precursor phenomenon of the reaction), but as the temperature gradually increases, the reaction rate decreases. The substance rises, causing a rapid reaction with exotherm.

代表的な硅酸質ガラス中空球であるシラスバルーンを軽
量化充てん材に用いた該アルミニウム複合材の熱処理の
場合、各シラスバルーンの外周はアルミニウムと接触し
ており、加熱温度により(1)式を初めとする反応がそ
の接点で生じる。
In the case of heat treatment of the aluminum composite material using Shirasu balloons, which are typical silica glass hollow spheres, as a lightweight filling material, the outer periphery of each Shirasu balloon is in contact with aluminum, and depending on the heating temperature, formula (1) is obtained. Reactions such as occur at the contact point.

もちろんアルミニウムは空気中の酸素による酸化反応も
複合材の外周より進行する。
Of course, the oxidation reaction of aluminum due to oxygen in the air also proceeds from the outer periphery of the composite material.

4Al+302=2Al□03 (2)この
場合従来の熱処理条件たとえば5℃/M以上の昇温速度
で所定温度まで加熱すると主として(1) 、 (2)
式の反応によりアルミナ質の軽量(場合により溶融アル
ミニウムの滴下を伴う)断熱材が得られるが、この場合
は鋳型材のように精密な型状を保つ必要のないため、こ
のような熱処理条件で十分である。
4Al+302=2Al□03 (2) In this case, when heating to a predetermined temperature under conventional heat treatment conditions, for example, at a temperature increase rate of 5°C/M or more, mainly (1), (2)
A lightweight alumina heat insulating material (sometimes accompanied by dripping of molten aluminum) can be obtained by the reaction of the formula, but in this case, it is not necessary to maintain a precise shape like mold material, so it is difficult to heat it under such heat treatment conditions. It is enough.

一方本発明品の目的である鋳型材は、前駆ってアルミニ
ウム複合材の時に鋳型形状に加工したものを熱処理によ
りセラミック化するものであるため、加熱時に変形、ふ
くれ、き裂の生じることは鋳型として致命的な欠陥とな
る。
On the other hand, the mold material that is the object of the present invention is made of an aluminum composite material that has been processed into a mold shape and then made into a ceramic material through heat treatment. This is a fatal flaw.

従来の加熱条件ではすでに述べたようにこれらの欠陥を
生じる場合が多い。
Conventional heating conditions often result in these defects as described above.

加熱速度を遅くすると変形などの欠陥が少なくなること
はすでに経験的に知るところであったが、本発明はその
原因について詳しく検討することにより得られたもので
ある。
Although it has already been known from experience that defects such as deformation are reduced when the heating rate is slowed, the present invention was achieved through a detailed study of the causes thereof.

すなわち、600℃より700℃までの昇温速度を毎分
50’Cより1/6℃(10’C/H)の間で変化させ
て該複合材の熱処理を行なったところ、上記の欠陥は昇
温速度が小さくなるにつれて少なくなり、1/3°C/
馴(20℃/H)に至っては完全に欠陥のないセラミッ
ク材を得た。
That is, when the composite material was heat-treated by changing the heating rate from 600°C to 700°C between 50°C and 1/6°C (10°C/H), the above defects were removed. As the temperature increase rate decreases, it decreases to 1/3°C/
Upon acclimatization (20° C./H), a ceramic material completely free of defects was obtained.

同時に行なった示差熱の測定では、昇温速度が大きいこ
と6000C〜7008Cの間において(1)式による
急激な反応熱の発生により、複合材の温度が上昇し、い
わゆる示差熱ピークがみられる。
In the differential heat measurement carried out at the same time, the temperature of the composite material rises due to rapid generation of reaction heat according to equation (1) between 6000C and 7008C due to the large temperature increase rate, and a so-called differential heat peak is observed.

ところが、昇温速度が、昇温速度が1/3°C/min
以下では、示差熱ピークはほとんど観察されず、(1)
式の反応は緩やかに進行していることが認められた。
However, the temperature increase rate is 1/3°C/min.
Below, few differential thermal peaks are observed, (1)
It was observed that the reaction of the formula was proceeding slowly.

示差熱ピークが明らかに生じるような昇温速度の場合、
複合材内部においては、(1)式の反応はもとより、そ
の部分的な昇温により(2)式の反応も加速される。
If the heating rate is such that a differential thermal peak clearly occurs,
Inside the composite material, not only the reaction of formula (1) but also the reaction of formula (2) is accelerated by the partial temperature rise.

また(1)式の反応により生成した硅素はアルミニウム
中に溶解し、さらに(2)式の進行に伴い、アルミニウ
ム中の硅素の酸化反応も生じる。
Further, silicon produced by the reaction of formula (1) is dissolved in aluminum, and as formula (2) progresses, an oxidation reaction of silicon in the aluminum also occurs.

これら発熱を伴う反応が、複合材のシラスバルーン壁と
アルミニウムの各接点で急速に生じるため、材料全体と
しての熱歪および局部的な昇温によるセラミック部分(
ガラス部分や反応生成物であるアルミナ質部分)と残存
する金属部分との熱膨張差による歪などが大きくなり、
これが結局材料の変形やき裂の発生につながると考えら
れる。
These exothermic reactions occur rapidly at each contact point between the glass balloon wall and aluminum of the composite material, resulting in thermal strain in the material as a whole and local temperature rises in the ceramic part (
Distortion due to the difference in thermal expansion between the glass part and the alumina part (which is a reaction product) and the remaining metal part increases,
This is thought to eventually lead to material deformation and crack generation.

なお熱処理に際し、室温より600℃までおよび700
℃以上の温度における昇温速度も、極端に過大であると
歪を生じ、変形などの欠陥を生じる可能性があるので、
通常10’C〜30’C/m程度の昇温速度を用いるこ
とが望ましい。
In addition, during heat treatment, temperatures from room temperature to 600°C and 700°C
If the temperature increase rate at temperatures above ℃ is extremely high, it may cause distortion and defects such as deformation.
It is usually desirable to use a temperature increase rate of about 10'C/m to 30'C/m.

一方鋳型素材として重要な耐熱衝撃性についても示差熱
ピークが生じるような昇温速度で熱処理をおこなったも
のは、すでに存在する微細なき裂あるいは内部歪のため
か、高温の溶融金属との接触時に直ちに音を発してき裂
の進行することが認められた。
On the other hand, with regard to thermal shock resistance, which is important for mold materials, those that were heat treated at a temperature increase rate that causes differential thermal peaks may be due to already existing fine cracks or internal strain, or when they come into contact with high-temperature molten metal. Immediately a sound was emitted and the crack was observed to progress.

しかし20°C/H以下の昇温速度による熱処理材では
実施例にみられるように、全くき裂の発生が認められな
かった。
However, as seen in the examples, no cracks were observed in the heat-treated materials at a heating rate of 20°C/H or less.

次に本発明による具体的な実施例について述べるO 実施例 1 平均粒径300μの硅酸質ガラス中空球60容とアルミ
ニウム合金(Al−12%5i)40容よりなる複合材
の50X50X10 の寸法に加工したものを、管状
電気炉中で600’Cまでを昇温速度100C/Mで加
熱したのち、700℃までを昇温速度毎分500.20
°、100.5° 、2゜1° 、1/3° 、1/6
°Cの各条件で刃口熱し、次に825℃までを昇温速度
to’c/=で加熱した後炉冷したところ、試料のうち
600°〜7000Cの間の昇温速度が1°C/M以上
であったものは、変形、き裂、ふくれなどがみられ、そ
の傾向は昇温速度の大きい程顕著であった。
Next, a specific example according to the present invention will be described. Example 1 A composite material of 50 x 50 x 10 dimensions consisting of 60 volumes of silica glass hollow spheres with an average particle size of 300μ and 40 volumes of aluminum alloy (Al-12% 5i) The processed material was heated in a tubular electric furnace to 600'C at a heating rate of 100C/M, and then to 700°C at a heating rate of 500.20/min.
°, 100.5°, 2゜1°, 1/3°, 1/6
When the cutting edge was heated under various conditions of °C, then heated to 825 °C at a temperature increase rate to'c/=, and then cooled in the furnace, the temperature increase rate between 600 °C and 7000 °C was 1 °C. /M or more, deformation, cracking, blistering, etc. were observed, and this tendency became more pronounced as the temperature increase rate increased.

一方昇温速度が1/3℃/馴(20℃/H)以下であっ
た試料には、上記の変形、き裂、ふくれなどが全くみら
れず、極めて健全なセラミック素材が得られた。
On the other hand, in the samples whose heating rate was 1/3° C./heating (20° C./H) or less, the above deformation, cracking, blistering, etc. were not observed at all, and extremely sound ceramic materials were obtained.

実施例 2 実施例1の熱処理法のうち、600°〜700℃間の昇
温速度が20’C/Hの条件を用いて熱処理をおこなっ
た各種寸法の軽量耐熱性セラミックを鋳型とし、これに
錫、アルミニウム、銅、鋳鉄などの各溶融金属を鋳込ん
だ所、型への焼着および型の熱衝撃割れなどは全くみら
れなかった。
Example 2 Lightweight heat-resistant ceramics of various sizes heat-treated using the heat treatment method of Example 1 at a heating rate of 20'C/H between 600° and 700°C were used as molds. Where molten metals such as tin, aluminum, copper, and cast iron were cast, no burning or thermal shock cracking of the mold was observed.

なお昇温速度が1 ℃/min以上のものについては、
鋳込時に微小な音と共にき裂の発生するのが認められた
For those with a temperature increase rate of 1 °C/min or more,
Cracks were observed to occur with a slight sound during casting.

Claims (1)

【特許請求の範囲】[Claims] 1 硅酸質ガラス中空球−アルミニウム系複合材を80
00′C,以上に加熱して耐熱性セラミックを製造する
に当り、力ロ熱温度600℃より700°Cの間を通過
する際の昇温速度を20℃/H以下に制御することを特
徴とする軽量耐熱性セラミックの製造方法。
1 Silica glass hollow sphere-aluminum composite material 80
When producing heat-resistant ceramics by heating to 00'C or more, the heating rate is controlled to 20C/H or less when passing through the thermal temperature between 600C and 700C. A method for manufacturing lightweight heat-resistant ceramic.
JP17623880A 1980-12-11 1980-12-11 Manufacturing method of lightweight heat-resistant ceramic Expired JPS5857388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17623880A JPS5857388B2 (en) 1980-12-11 1980-12-11 Manufacturing method of lightweight heat-resistant ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17623880A JPS5857388B2 (en) 1980-12-11 1980-12-11 Manufacturing method of lightweight heat-resistant ceramic

Publications (2)

Publication Number Publication Date
JPS5798641A JPS5798641A (en) 1982-06-18
JPS5857388B2 true JPS5857388B2 (en) 1983-12-20

Family

ID=16010047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17623880A Expired JPS5857388B2 (en) 1980-12-11 1980-12-11 Manufacturing method of lightweight heat-resistant ceramic

Country Status (1)

Country Link
JP (1) JPS5857388B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210612B1 (en) 1997-03-31 2001-04-03 Pouvair Corporation Method for the manufacture of porous ceramic articles

Also Published As

Publication number Publication date
JPS5798641A (en) 1982-06-18

Similar Documents

Publication Publication Date Title
US3764575A (en) Salt core containing synthetic resin and water-glass as binders
JP2010503601A (en) Manufacturing method of glass ceramic material in thin plate shape, thin plate including them and method of using them
US3126597A (en) Decarburization in casting of steel
JPS5857388B2 (en) Manufacturing method of lightweight heat-resistant ceramic
US2244777A (en) Refractory product and method of making the same
JP6598961B1 (en) Inorganic fiber molded body
JP2016501131A (en) Composition of ceramic layers for making molds and other products
CN106191400B (en) The Technology for Heating Processing of anti-oxidant decarburization protective agent and preparation method thereof and H13 moulds
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JPS63273562A (en) Production of ti-al alloy casting
JP2543650B2 (en) Mold for glass molding
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JPH0218562B2 (en)
WO2021117909A1 (en) Non-combustible magnesium alloy and method for producing same
JP2937252B2 (en) How to fire graphite refractories
JPH05123820A (en) Mold for precision casting of titanium or tianium alloy
JPS5864284A (en) Manufacture of silicon carbide sintered body
JPH05302104A (en) Production of aluminum or aluminum alloy composite material
JPS62153126A (en) Frame mold for bottle glass
JPS5856740B2 (en) Silver alloy for glazing
JPS63242463A (en) Glass molded member made of nickel base alloy
JP2010077005A (en) Crucible for melting silicon and release agent used for the same
Mityakin et al. Some features of the microstructure of a silaceous ceramic concrete
JPH08150467A (en) Manufacture of nozzle for continuous casting
SU1245400A1 (en) Method of calcination of shell mould