JPS5857266A - Manufacture of air electrode - Google Patents

Manufacture of air electrode

Info

Publication number
JPS5857266A
JPS5857266A JP56155052A JP15505281A JPS5857266A JP S5857266 A JPS5857266 A JP S5857266A JP 56155052 A JP56155052 A JP 56155052A JP 15505281 A JP15505281 A JP 15505281A JP S5857266 A JPS5857266 A JP S5857266A
Authority
JP
Japan
Prior art keywords
carbonic
phthalocyanine
air electrode
transition metal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56155052A
Other languages
Japanese (ja)
Other versions
JPH0119624B2 (en
Inventor
Katsuo Deguchi
勝男 出口
Kunihiko Otaguro
大田黒 国彦
Denkichi Sasage
捧 伝吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP56155052A priority Critical patent/JPS5857266A/en
Publication of JPS5857266A publication Critical patent/JPS5857266A/en
Publication of JPH0119624B2 publication Critical patent/JPH0119624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain an air electrode, in which a phthalocyanine compound of a transition metal homogeneously adheres to a carbonic body, by impregnating the carbonic body with an aqueous solution in which an amino acid salt of the said transition metal and a phthalocyanine precursor are dissolved, and subjecting the carbonic body impregnated with the solution to heat treatment. CONSTITUTION:A carbonic body is impregnated with an aqueous mixture solution, which consists of a water solution of a phthalocyanine precursor such as 1,3-dimino isoindolenine and a water solution of an amino acid salt of a transition metal such as an iron salt of bis (beta-hydroxyethyl) glycine, by a dipping method or something similar. After that, the carbonic body impregnated with the solution is dried, and heated so as to make the phthalocyanine compound of the above transition metal to homogeneously adhere to the carbonic body, thereby obtaining an air electrode. The air electrode obtained by the means mentioned above has an excellent polarization characteristic since a large amount of the metal phthalocyanine adheres homogeneously to the carbonic of the electrode.

Description

【発明の詳細な説明】 本発明は、空気電池や燃料電池などに使用する空気極の
製造方法に関し、史に詳しくは、炭素体への触媒の付加
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an air electrode used in an air cell, a fuel cell, etc., and more specifically to a method for adding a catalyst to a carbon body.

従来、空気電池や燃料電池などの空気極は。Conventionally, air electrodes such as air cells and fuel cells.

活性炭などに酸素還元能力を高めるためνこ金属フタロ
シアニンなどの触媒を用いてし−たが、金属フタロシア
ニンは水に不溶のため、キノリンなどの有機溶媒に飽和
Vこなるまで溶解し、この1− 溶液に活性炭を浸漬し引ぎ上は乾燥し、有機溶媒を飛散
させ活性炭表面に金属フタロシアニンを触媒として付着
せしめていたが、金属フタロシアニンは、飽和溶解量が
少ないため、上述のような操作を何回も繰り返す必要が
あった。又。
Catalysts such as metal phthalocyanine have been used to enhance the oxygen reduction ability of activated carbon, etc. However, metal phthalocyanine is insoluble in water, so it dissolves in organic solvents such as quinoline until it reaches saturation. Activated carbon was immersed in a solution, the top was dried, and the organic solvent was scattered to cause metal phthalocyanine to adhere to the activated carbon surface as a catalyst. However, metal phthalocyanine has a small amount of saturated solubility, so it is difficult to perform the above operations. I had to repeat it several times. or.

特殊な有機溶媒を使用しているところから、乾燥させる
ためtこ高価な装置を使用する必要があり、さらに蒸発
飛散させた有機溶媒の蒸気は安全性に問題があった。
Since a special organic solvent is used, it is necessary to use expensive equipment for drying, and furthermore, the vapor of the organic solvent that evaporates and scatters poses a safety problem.

そこで、金属フタロシアニンにスルフオフ基などの水溶
性基をつけて水に可溶にさせて、上述の問題を解消せん
としたものもあるが、金属フタロシアニンの炭素体への
付着量は未だ十分なものではなかった。
Therefore, some attempts have been made to solve the above problem by attaching a water-soluble group such as a sulfophyl group to metal phthalocyanine to make it soluble in water, but the amount of metal phthalocyanine attached to carbon bodies is still insufficient. It wasn't.

本発明者らは、金属フタロシアニンを炭素体pこそのま
ま付着せしめるのではなく、アミノ酸塩とフタロシアニ
ンの前駆体が水に可溶であることを利用し、これらを炭
素体に含浸させることによって金属7タロシアニ7にせ
しめれば。
The present inventors did not directly attach metal phthalocyanine to the carbon body, but utilized the fact that amino acid salts and phthalocyanine precursors are soluble in water, and by impregnating the carbon body with these, the metal 7 If you let Tarosiani 7 do it.

=2− 金属フタロシアニンの炭素体への付着量も増し。=2- The amount of metal phthalocyanine attached to the carbon body also increases.

しかも均一に付着するとの発想に立ち、鋭意研究の結果
、遂に本発明を完成したものであって。
Moreover, based on the idea that it would adhere uniformly, the present invention was finally completed as a result of intensive research.

即ち1本発明は、炭素体に遷移金属のアミノ酸塩を溶解
した水溶液と、フタロシアニン前駆体駆体を溶解した水
溶液とを含浸せしめ、熱処理して、・炭素体に遷移金属
のフタロシアニンを付着せしめたことを特徴とする空気
極の製造方法を要旨とするものである。
Namely, in the present invention, a carbon body is impregnated with an aqueous solution in which an amino acid salt of a transition metal is dissolved and an aqueous solution in which a phthalocyanine precursor is dissolved, and then heat-treated to cause the phthalocyanine of a transition metal to adhere to the carbon body. The gist of the present invention is a method for manufacturing an air electrode characterized by the following.

本発明の製造法によれば、炭素体tこ遷移金属のアミノ
酸塩の水溶液とフタロシアニン前駆体の水溶液とを含浸
せしめることにより、炭素体表面およびその細孔に容易
に遷移金属のアミノ酸塩およびフタロシアニン前駆体が
吸着もしくは浸透し、熱処理、更lこ必要に応じて還元
することにより、化学量的にrR素体表面、細孔に遷移
金属の7タロシ7ニンが均一にしかも多量に付着してい
るものと推考される。
According to the production method of the present invention, by impregnating a carbon body with an aqueous solution of an amino acid salt of a transition metal and an aqueous solution of a phthalocyanine precursor, the surface of the carbon body and its pores can be easily filled with the amino acid salt of a transition metal and phthalocyanine. By adsorbing or penetrating the precursor, heat treatment, and reduction as necessary, the transition metal 7-talocin-7 is stoichiometrically adhered to the rR element surface and pores uniformly and in large quantities. It is assumed that there are.

以下9本発明について詳細に説明する。Below, nine aspects of the present invention will be explained in detail.

6一 本発明に使用する炭素体としては、一般に使用されてい
るファーネスブラック、チャンネルブラック、サーマル
ブラックなどのカーボンブラックや、木材、木炭、ヤシ
殻炭、パーム核炭。
6. Carbon bodies used in the present invention include commonly used carbon blacks such as furnace black, channel black, and thermal black, as well as wood, charcoal, coconut shell charcoal, and palm kernel charcoal.

石炭1石油残有1合成樹脂、有機廃棄物などを使用して
作られた活性炭や黒鉛などの“1種もしくは2種以上の
混合物が挙けられ、必要に応じて押出成形、射出成形、
加圧成形などにより二定の形状とする。
Examples include one or a mixture of two or more of activated carbon and graphite made using coal, petroleum residue, synthetic resin, organic waste, etc., and extrusion molding, injection molding,
It is made into a fixed shape by pressure molding or the like.

遷移金属のアミノ酸塩は、ニッケル、コバルト、クロム
、鉄、銅などの遷移金属の水溶性金VA塩と下記構造式
で表わされるβ−ヒドロキシエチル基を有するアミノ酸
などのアルカリ金属塩を加えることにより容易に得られ
る。例えば。
Amino acid salts of transition metals can be produced by adding water-soluble gold VA salts of transition metals such as nickel, cobalt, chromium, iron, and copper and alkali metal salts such as amino acids having a β-hydroxyethyl group represented by the following structural formula. easily obtained. for example.

ビス(β−ヒドロキシエチル)グリシンのナトリウム塩
の水溶液に塩化第二銅水溶液を加えて。
Add cupric chloride aqueous solution to an aqueous solution of sodium salt of bis(β-hydroxyethyl)glycine.

溶液を濃縮すると、ビス(β−ヒトpキシエチル〕グリ
ンン銅が紺色の結晶として得られる。
Concentrating the solution yields bis(β-human p-xyethyl)green copper as dark blue crystals.

4− (グリシン誘導体) (グリシン誘導体) (ザルコシン誘導体) (アラニ°ン誘導体)   (7ラ;= >elf;4
k)(セリン誘導体) 5− ()(D C?(J 0)(J )団CHJ CHjS
QJ H(タウリン誘導体) フタロシアニン前駆体としては、1.3−シイ、ノイソ
インドレニンまたはその誘導体JP。
4- (Glycine derivative) (Glycine derivative) (Sarcosine derivative) (Alanine derivative) (7 la; = >elf; 4
k) (Serine derivative) 5- () (D C? (J 0) (J) group CHJ CHjS
QJ H (taurine derivative) As the phthalocyanine precursor, 1,3-cy, noisoindolenine or its derivative JP.

1.1−ジアルコキシ−6−イミツイソインドレニンが
使用でき、具体例を挙けると下記構造式て表わされるも
のが挙げられる。
1.1-Dialkoxy-6-imitsuisoindolenine can be used, and specific examples include those represented by the following structural formula.

臀H 1( H (1,3−ジイミノインインドレニン)H 1 (1,3−ジイミノインインドレニンの誘導体)6− −〇HユC−HJQ)( 11 (1,S−ジイミノインインドレニンのM導体)NCH
Buttock H 1 ( H (1,3-diiminoindolenine) H 1 (derivative of 1,3-diiminoindolenine) 6- -〇H YuC-HJQ) ( 11 (1,S-diiminoindolenine) M conductor of indolenine) NCH
.

1 1 QI−II (1,3−ジイミノイソインドレニンの誘導体)7− 四 (+,1ージェトキシー3ーイミノイソインドレニン)
+1 N (1.1−ビス(β−オキシエトキン)−5−イミノイ
ソインドレニン) このフタロシアニン前駆体の使用量は,炭素体に対して
1〜50重蓋%が好ましく特に5〜20重置%が好まし
い。
1 1 QI-II (derivative of 1,3-diiminoisoindolenine) 7-4 (+,1-jetoxy 3-iminoisoindolenine)
+1 N (1.1-bis(β-oxyethquin)-5-iminoisoindolenine) The amount of this phthalocyanine precursor to be used is preferably 1 to 50%, particularly 5 to 20%, based on the carbon body. is preferred.

又.遷移金属のアミノ酸塩の使用i7t3フタGl ’
y 7二ン4ff 躯体に対するモル比でフタロンアニ
ノ前駆体:遷移金属のアミノ酸塩τ4:158− 〜2が好ましい。
or. Use of amino acid salts of transition metals i7t3 lid Gl'
The molar ratio of the phthalone anino precursor to the transition metal amino acid salt τ4 to the y7dyne4ff structure is preferably 158-2.

空気極の製造に際しては,上述のフタa7ア二7 前駆
体の5%水溶液(フタロシアニン前駆体の種類によって
は.アルコール、グリコ− ルを適宜使用)に、フタロ
シアニン前駆体とアミノ酸金属塩を溶解させ.この溶液
tこ炭素体を浸漬し.常乾して150℃で加熱するか,
溶液中ハイドロキノン、ヒドラヅ°ンなどの還元剤を1
%添加して80℃に加温することにより.炭素体表面に
金属フタロシアニンを均一に付着せしめることができる
。尚,フタロン7ニン前駆体の水溶液もしく itアミ
ノ酸金属塩を炭素体Vこ浸漬し.常乾後.残りの水溶液
に更に浸漬してもよい。
When manufacturing the air electrode, the phthalocyanine precursor and the amino acid metal salt are dissolved in a 5% aqueous solution of the lid precursor described above (depending on the type of phthalocyanine precursor, alcohol or glycol may be used as appropriate). .. The carbon body was immersed in this solution. Dry it at room temperature and heat it at 150℃, or
Add a reducing agent such as hydroquinone or hydradun to the solution.
% and heated to 80℃. Metal phthalocyanine can be uniformly attached to the surface of the carbon body. Note that the carbon material V was immersed in an aqueous solution of a phthalone 7-nin precursor or an it-amino acid metal salt. After drying. It may be further immersed in the remaining aqueous solution.

以下.実施例に従い本発明を更に詳細に説明するが.実
施例中「部」とあるのは「重置部」を示す。
below. The present invention will be explained in more detail with reference to Examples. In the examples, "part" indicates "overlapping part".

実施例1 粒径α1〜1μのヤシ殻活性#210部,粒径9− 01〜05μの黒鉛10部,熱可塑性樹脂(塩化ビニル
樹脂)5部を混合し,押出成型により+ft径10龍の
丸棒を作り,その後,200℃に加熱して熱可塑性樹脂
を分解して炭素体とした。
Example 1 10 parts of active coconut shell #2 with particle size α1~1μ, 10 parts of graphite with particle size 9-01~05μ, and 5 parts of thermoplastic resin (vinyl chloride resin) were mixed and extrusion molded to produce a A round bar was made and then heated to 200°C to decompose the thermoplastic resin and form a carbon body.

この炭素体を1.5−ジアミノイソインドレニンの5%
水溶液とN,N−ビス(β−ヒドロキシエチル)グリ7
ンの鉄塩(1.3−ジアミノインインドレーンの4モル
に対して1.5モルトする#)の水溶液との混合溶液に
浸漬してから室間ドロ9!気気流中乾燥させる。乾燥し
た炭素体を150℃,10分加熱することをこより.鉄
フタロシアニンを炭素体表面に均一tこ付着せしめた空
気極を得た。
This carbon body is 5% of 1.5-diaminoisoindolenine.
Aqueous solution and N,N-bis(β-hydroxyethyl)gly7
After soaking in an aqueous solution of iron salt (1.5 moles for 4 moles of 1.3-diaminoindorene) and an aqueous solution of 9! Dry in a stream of air. By heating the dried carbon body at 150°C for 10 minutes. An air electrode was obtained in which iron phthalocyanine was uniformly deposited on the surface of a carbon body.

実施例2 粒径0.1〜1μのヤシ殻活性炭10部,粒径01〜0
5μの黒鉛10部.熱可塑性樹脂(塩化ヒ=ル樹脂)1
8部を加圧成形により断面が10關×10關の角棒を作
り,その後200℃をこIJ11熱して熱可塑性樹脂を
分解して炭素体とし10− た。
Example 2 10 parts of coconut shell activated carbon with a particle size of 0.1-1μ, particle size 01-0
10 parts of 5μ graphite. Thermoplastic resin (Hylic chloride resin) 1
Eight parts were pressure-molded to form a square bar with a cross section of 10 x 10 squares, and then heated to 200°C to decompose the thermoplastic resin and form a carbon body.

この炭素体を1−ビス(β−ヒドロキシエチル)−3−
イミノイソインドレニンの5%水溶液とN−β−ヒドロ
キシエチルザルコシンのコバルト塩(1−ビス(β−ヒ
ドロキシエチル)−3−7ミノイソインドレニン4モル
に対して1.5モルとなる量)との混合水溶液に浸漬し
てから、室温下、空気気流中乾燥させる。乾燥し?、:
 炭素体を150℃、10分加熱することによりコバル
トフタロシアニンをi 素体表面ニ均一に付着せしめた
空気極を得た。
This carbon body is 1-bis(β-hydroxyethyl)-3-
5% aqueous solution of iminoisoindolenine and cobalt salt of N-β-hydroxyethylsarcosine (amount to be 1.5 mol per 4 mol of 1-bis(β-hydroxyethyl)-3-7minoisoindolenine) ) and then dried in a stream of air at room temperature. Is it dry? , :
By heating the carbon body at 150° C. for 10 minutes, an air electrode was obtained in which cobalt phthalocyanine was uniformly adhered to the surface of the i element body.

比較例1 実施例1の炭素体重スルホン化した鉄フタロシアニン5
%水溶液に浸漬した後、室温下、空気気流中乾燥させる
。乾燥した炭素体を150℃、10分加熱することによ
り鉄フタロシアニンを炭素体表面に付着せしめた空気極
7を得た。
Comparative Example 1 Carbon weight sulfonated iron phthalocyanine 5 of Example 1
% aqueous solution and then dried in a stream of air at room temperature. By heating the dried carbon body at 150° C. for 10 minutes, an air electrode 7 having iron phthalocyanine adhered to the surface of the carbon body was obtained.

上記実施例1,2.比較例1で得られた空気極の分極曲
線を第1図に示す。
Examples 1 and 2 above. The polarization curve of the air electrode obtained in Comparative Example 1 is shown in FIG.

以Fのように本発明の製造方法に得られた空気極は、金
属フタロシアニンが炭素体表面に均一、多tiこ付着さ
れているために空気極の分極特性か優れているものであ
る。
As described in F below, the air electrode obtained by the manufacturing method of the present invention has excellent polarization characteristics because the metal phthalocyanine is uniformly and in large numbers adhered to the surface of the carbon body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1,2.比較例1で得られた空気極の
分極曲線であり、■〜■は順に実施例1.実施例2.比
較例1で得られた分極曲線を示すものであり、縦軸は電
流密度(mA/cd ) 。 横軸は電位(V/SCE )を示すものである。 特許出願人 ぺんてる株式会社
FIG. 1 shows examples 1 and 2. These are the polarization curves of the air electrode obtained in Comparative Example 1, and ■ to ■ are the polarization curves of Example 1. Example 2. It shows the polarization curve obtained in Comparative Example 1, where the vertical axis is current density (mA/cd). The horizontal axis indicates the potential (V/SCE). Patent applicant Pentel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 炭素体に遷移金属のアミノ酸塩を溶解した溶液と、ブタ
ロシアニン前駆体を溶解した水溶液とを含浸せしめ、熱
処理して、炭素体に遷移金属のフタロシアニンを付着せ
しめたことを特徴とする空気極の製造方法。
Manufacture of an air electrode characterized in that a carbon body is impregnated with a solution of an amino acid salt of a transition metal dissolved therein and an aqueous solution of a butalocyanine precursor dissolved therein, and heat treated to adhere a phthalocyanine of a transition metal to the carbon body. Method.
JP56155052A 1981-09-30 1981-09-30 Manufacture of air electrode Granted JPS5857266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56155052A JPS5857266A (en) 1981-09-30 1981-09-30 Manufacture of air electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155052A JPS5857266A (en) 1981-09-30 1981-09-30 Manufacture of air electrode

Publications (2)

Publication Number Publication Date
JPS5857266A true JPS5857266A (en) 1983-04-05
JPH0119624B2 JPH0119624B2 (en) 1989-04-12

Family

ID=15597613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155052A Granted JPS5857266A (en) 1981-09-30 1981-09-30 Manufacture of air electrode

Country Status (1)

Country Link
JP (1) JPS5857266A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154468A (en) * 1984-01-24 1985-08-14 Nippon Telegr & Teleph Corp <Ntt> Manufacture of positive electrode for fuel cell and air cell
JPH05345934A (en) * 1992-06-11 1993-12-27 Japan Steel Works Ltd:The Electrode for remelting electroslag and production of alloy using the electrode
JPH06220572A (en) * 1993-01-21 1994-08-09 Japan Steel Works Ltd:The Production of iron-base heat resistant alloy
JP2018029011A (en) * 2016-08-18 2018-02-22 埼玉県 Oxygen reduction catalyst, production method thereof and fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154468A (en) * 1984-01-24 1985-08-14 Nippon Telegr & Teleph Corp <Ntt> Manufacture of positive electrode for fuel cell and air cell
JPH05345934A (en) * 1992-06-11 1993-12-27 Japan Steel Works Ltd:The Electrode for remelting electroslag and production of alloy using the electrode
JPH06220572A (en) * 1993-01-21 1994-08-09 Japan Steel Works Ltd:The Production of iron-base heat resistant alloy
JP2018029011A (en) * 2016-08-18 2018-02-22 埼玉県 Oxygen reduction catalyst, production method thereof and fuel cell

Also Published As

Publication number Publication date
JPH0119624B2 (en) 1989-04-12

Similar Documents

Publication Publication Date Title
ATE78955T1 (en) PROCESS FOR THE MANUFACTURE OF A PLASTIC-BOND GAS DIFFUSION ELECTRODE CONTAINING A MANGANESE OXIDE CATALYST OF PREMIUM COMPOSITION OF A MIXTURE OF DIMANGONETRIOXIDE AND PENTOMANGONEOCTOXIDE.
CN110773156B (en) Transition metal monatomic catalyst, preparation method and application thereof
WO2021008196A1 (en) Catalyst for electrocatalytic carbon dioxide reduction and preparation method thereof
CN106466617A (en) A kind of preparation method of superhigh specific surface area richness nitrogen porous charcoal desulfurizing agent
CN106654278A (en) Novel carbon spheres and preparation method and application thereof
CN108314003A (en) A kind of preparation method of the porous carbon particle of N doping
JPS5857266A (en) Manufacture of air electrode
CN103663539A (en) CuO nanometer sheet and preparation method thereof
KR100706450B1 (en) Method for preparing the mixed electrode catalyst materials for a solid electrolyte fuel cell
JPS595566A (en) Air pole
KR910006147A (en) Zirconium dioxide powder, preparation method thereof, and use thereof and sintered product prepared therefrom
CN112174108A (en) Preparation method of communicated mesoporous carbon-based composite electrode material
CN114220667B (en) Hollow nickel hydroxide needled microsphere electrode material and preparation method and application thereof
JPS5571613A (en) Production of fibrous activated carbon
JPS57171721A (en) Production of carbon fiber
JPH0119625B2 (en)
SU542416A1 (en) Method of making the oxygen electrode of a fuel cell
JPS57162752A (en) Electrically-conductive composition
JPH0119629B2 (en)
CN114918423A (en) High-grain boundary density copper simple substance nano-particle catalyst and preparation method and application thereof
CN116495721A (en) Vanadium oxide/carbon quantum dot modified hard carbon electrode material
JPS58189964A (en) Cell
JPS58131657A (en) Manufacture of air electrode
JPH0711961B2 (en) Method for manufacturing gas diffusion electrode
CN117524741A (en) Active carbon composite material and preparation method thereof