JPS5857082A - Two-way pneumatic axial-flow turbine in wind tunnel - Google Patents

Two-way pneumatic axial-flow turbine in wind tunnel

Info

Publication number
JPS5857082A
JPS5857082A JP56156824A JP15682481A JPS5857082A JP S5857082 A JPS5857082 A JP S5857082A JP 56156824 A JP56156824 A JP 56156824A JP 15682481 A JP15682481 A JP 15682481A JP S5857082 A JPS5857082 A JP S5857082A
Authority
JP
Japan
Prior art keywords
turbine
shaft
arms
wind tunnel
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56156824A
Other languages
Japanese (ja)
Inventor
Shigefumi Mori
重文 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56156824A priority Critical patent/JPS5857082A/en
Publication of JPS5857082A publication Critical patent/JPS5857082A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Abstract

PURPOSE:To obtain the rotational torque of a constant direction in either direction of air-flows by providing wing-shaped blades such as NACA or the like tangentially in the same rotational direction on circumferential orbits round a shaft. CONSTITUTION:A shaft 3 supported to be rotatable in a wind tunnel 3 is equipped with a plurality of radial arms 4, 4'... and 5, 5'... at equal angles round the said shaft 3, while a plurality of wing-shaped blades 6, 6'... such as NACA or the like are respectively provided on these arms tangentially in the same rotational direction on circumferential orbits round the shaft 3. In this construction, since blades 6, 6'... on both sides of the shaft 3 is directed symmetrically against the direction of the air-flow running in the wind tunnel 2, a turbine main body 1 can obtain the rotational torque of a constant direction in either direction of air-flows.

Description

【発明の詳細な説明】 本発明は波力発電機等において風胴内を通過する両方向
の空気の流れを一方向の回転力に変換せしめる様にした
風胴内両方向性空気力軸タービンに関するものであるう 従来波力発電機等に利用するタービンld空気の流れに
対し回転軸を平行に配して成る多翼スクリュー形式であ
ったので、海面の上下運動により生じる両方向の空気の
流れのうち一方向の流れしか回転力への変換に利用する
ことが出来なかった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bidirectional aerodynamic axial turbine in a wind barrel, which converts bidirectional air flow passing through the wind barrel into unidirectional rotational force in a wave power generator or the like. Conventionally, the turbines used in wave power generators, etc. were multi-blade screw type with the rotating shaft parallel to the air flow, so the turbines used in wave power generators, etc. Only one direction of flow could be used for conversion into rotational force.

tII11図は上記のタービンを利用した一枚弁機構式
の波力発電機を示し、海面(a)に立設した風胴(’b
)の上部に発電機(Q)に連結されたタービン(のを配
設し、タービン(d)より手前位置の風胴(’b)に弁
(e)を設けたものである。この場合海面(a)の上昇
に伴う上向きの空気の流れが生じた場合は弁(e)が閉
じ、この空気の流れが直接タービン(d)f回転させ、
一方海面(a)の下降に伴い空気の流れが下向きになっ
た場合は弁(e)が開いて風胴(b)内に外気を導入せ
しめてタービン(d)の逆転防止を図っている。従って
上記の波力発電機では海面(a)の上昇時の空気の流れ
しかタービン(d)の回転に変換出来ず、波力エネルギ
ーの変換効率が非常に悪(]欠点を有している。
Figure tII11 shows a single-valve mechanism type wave power generator using the above-mentioned turbine.
A turbine connected to a generator (Q) is installed on top of a turbine (Q), and a valve (e) is installed in a wind barrel ('b) located in front of the turbine (d). When an upward air flow occurs due to the rise of (a), the valve (e) closes, and this air flow directly rotates the turbine (d) f.
On the other hand, when the air flow becomes downward as the sea level (a) falls, the valve (e) opens to introduce outside air into the wind barrel (b) to prevent the turbine (d) from reversing. Therefore, the above-mentioned wave power generator has the disadvantage that only the air flow when the sea level (a) rises can be converted into rotation of the turbine (d), and the conversion efficiency of wave energy is very poor.

又第2図は海面の下降時にもタービン(d)を回転せし
める様にした四枚弁機構式の波力発電機であって、風胴
(1))内を四枚の弁(fXjXhXi、)により二系
統の流路に区割したものであり、海面(a)の上昇に伴
いL向きの空気の流れが生じた場合は弁(叩(1)が開
くと共に弁(fXhM!閉じ、逆に海面(a)の下降に
伴い下向きの空気の流れが生じた場合は弁(g)(:1
)が閉じると共に弁(f)(h)7f開き、いずれの場
合にもタービン(d)に対し同一方向の空気、複雑な弁
機構を要すると共に空気の流路が屈折するため抵抗が大
となって効率が悪い欠点を有していた。
Figure 2 shows a wave power generator with a four-valve mechanism that allows the turbine (d) to rotate even when the sea level is falling. It is divided into two flow paths by If a downward air flow occurs as the sea level (a) falls, the valve (g) (:1
) closes and valves (f) and (h) open 7f. In both cases, the air flows in the same direction to the turbine (d), requiring a complicated valve mechanism and the air flow path being bent, resulting in large resistance. It had the disadvantage of low efficiency.

即ち波力発電機における以上の欠点はタービンが一方向
の空気の流れでしか回転しないことに起因するものであ
るため両方向の空気の流れに対しても同一方向の回転力
を生ずるタービンの開発が望まれていた。
In other words, the above-mentioned drawbacks of wave power generators are due to the fact that the turbine only rotates when air flows in one direction, so it is necessary to develop a turbine that can generate rotational force in the same direction even when air flows in both directions. It was wanted.

本発明はかかる欠点に鑑み、回転軸を中心とした円周軌
道上にNACA等の翼形のブレードを接線上で且つ回転
方向に対し同一方向に向て取付は九タービンを提供して
上記欠点を解消せんとし丸ものにして、以下本発明の一
実施例を図面に基づいて説明すると、 (11はタービン本体であって、風胴(2)内に流れ方
向に直交して回転軸(3)を回転自在に支承せしめ、該
回転軸(3)の上部および下部には回転軸(3)を中心
として放射状に伸びる複数本の腕(4) (4)’・拳
・、(5)(5)′・・・を夫々取付けせしめている。
In view of these drawbacks, the present invention provides a nine-turbine turbine in which airfoil-shaped blades such as NACA are mounted tangentially and in the same direction with respect to the rotational direction on a circumferential orbit centered on the rotation axis. An embodiment of the present invention will be described below with reference to the drawings. (11 is a turbine main body, and a rotating shaft (3 ) is rotatably supported, and a plurality of arms (4) (4)'・fist・, (5)( 5)'... are installed respectively.

尚腕(4) (4)’・・・、(5)(5)’・・・の
断面形状は回転時の空気抵抗の小さい長方六角形、惰円
形、翼形等が良い。
The cross-sectional shapes of the arms (4), (4)'..., (5), (5)', etc. are preferably rectangular hexagonal, inertia-circular, airfoil-shaped, etc., so that air resistance during rotation is small.

(6) (6)’・・・は先端が後端に比し厚大の流線
形の断面に形□成せしめ九NAOA4の翼形のブレード
であシ、上下の腕(4) (4)’・・・、 (5)(
5)’・・・の間において回転軸(3)を中心とする円
周軌道上に接線上で且つ回転方向に対し同一方向に向け
て夫々配置せしめ、腕(4) (4)’・・・、(5)
(5)’・・・の内面に固着した骨材(7) (yY−
拳・、(8)(8)’・拳・に上下向端部を嵌着支持せ
しめている。尚ブレード(6) (6)′・・・の11
4弦の長さは回転時の空力特性の関係上回転軸(3)に
近いもの程短く設定せしめている。
(6) (6)'... is formed into a streamlined cross-section with the tip thicker than the rear end.The upper and lower arms (4) are made of nine NAOA4 airfoil-shaped blades. '..., (5)(
5)'... The arms (4) are arranged tangentially on a circumferential orbit centered on the rotating shaft (3) and in the same direction with respect to the rotational direction, and the arms (4) (4)'...・,(5)
(5) Aggregate (7) fixed to the inner surface of '... (yY-
The vertical end portion is fitted and supported by the fist (8) (8)'. In addition, blade (6) (6)'...11
The length of the fourth string is set to be shorter as it is closer to the rotation axis (3) due to the aerodynamic characteristics during rotation.

又ブレード<6) (6)’・・・を支持する腕(4)
 (4)’・・・、(5)(5)’・・・の数は希望す
る回転トルクに応じて任意に設定出来、2本乃至6本の
場合の配列状縣はlI/IJ5図(イ)乃至(ホ)に図
示する通りである第6図(イ)乃至(チ)は各種風胴(
2)の断面形状を示し、この場合ブレード(6) (6
)’・・・の上下高さは夫々の風胴(2)の内面形状に
応じて調整せしめている。
Also, the arm (4) that supports the blade <6) (6)'...
The number of (4)'..., (5) (5)'... can be set arbitrarily according to the desired rotational torque, and the arrangement in the case of 2 to 6 pieces is shown in Figure 1I/IJ5 ( Figures 6 (a) to (h) are as shown in a) to (e).
2), in this case blade (6) (6
)'... are adjusted according to the inner surface shape of each wind cylinder (2).

第7図はブレード(6) (6)’・・・の中央部を外
方へ屈曲せしめたものであり、との場合タービン本体(
1)に回転軸(3)に対する求心力が作用してスラスト
荷重の減少化を図ることが出来る。
Figure 7 shows the central part of the blade (6) (6)'... bent outward;
1), a centripetal force is applied to the rotation shaft (3), and the thrust load can be reduced.

又第8図は風胴(2)内に二基のタービン本体(1)(
1)’を直列に配設せしめて空気力の有効利用を図らし
めたものである。 尚(9) (9)′・・・はタービ
ン本体(1)(1)’間に空気の流れに対して平行に配
置せしめた整流板である。
Figure 8 also shows two turbine bodies (1) (
1)' are arranged in series to make effective use of aerodynamic force. (9) (9)'... are rectifying plates arranged parallel to the air flow between the turbine bodies (1) and (1)'.

要するに本発明は、風胴(2)内に回転自在に支承せし
めた回転軸(3)に該回転軸(3)を中心として放射状
に伸びる複数本の腕(4) (4)’・・・、(5’)
(5)’・・・を等角度毎に取付け、該腕(4)(4)
’・・・、(5)(5)′・・・における回転軸(3)
を中心とした円周軌道上に複数本のNACA等の翼形の
ブレード(6)(6Y・・・を接線上で且つ回転方向に
対し同一方向に向けて夫々取付けたので、風胴(2)内
を流れる空気の流れ方向に対しタービン本体(1)は回
転軸(3)を中心として左右のグレード(6) (6)
’・・・の向きが対称°となるため空気の流れに対する
抵抗差を生じ、このことは両方向の空気の流れに対して
も同じ条件となるためタービン本体(1)はいずれの方
向の空気の流れによっても常に同一方向の回転トルクを
受けることが出来るのである。従って本発明に係る風胴
内両方向性空気力軸タービンを海面の上下運動により生
じる空気の流れを利用した波力発電機に利用せしめれば
、第1図、第2図に図示する様な空気抵抗を増大せしめ
る複雑な弁機構等を一切要することなく海面の上昇時、
下降時に生じる両方向の空気の流れに対しいずれも同一
方向の回転力に変換せしめるととが出来、その変換効率
を大巾に向上せしめることが可能となシ、更に波力発電
のみならず空気の流れを回転力に変換せしめる装着とし
て多種の分計に活用出来る等その実用的効果甚だ大なる
ものである。
In short, the present invention provides a rotating shaft (3) that is rotatably supported in a wind barrel (2), and a plurality of arms (4) (4)'... extending radially around the rotating shaft (3). , (5')
(5) Attach the arms (4) (4) at equal angles.
'..., (5) (5)'... rotation axis (3)
A plurality of airfoil-shaped blades (6) (6Y...) such as NACA were installed on a circumferential orbit centered on the wind body (2 ) The turbine body (1) has left and right grades (6) (6) centered around the rotation axis (3) in the direction of air flow inside the turbine body (1).
Since the directions of '... are symmetrical, there is a difference in resistance to the air flow, and this is the same condition for air flow in both directions, so the turbine body (1) Even with the flow, rotational torque can always be applied in the same direction. Therefore, if the in-wind barrel bidirectional aerodynamic axis turbine according to the present invention is used in a wave power generator that utilizes the air flow generated by the vertical movement of the sea surface, the air flow as shown in FIGS. When the sea level rises, there is no need for complicated valve mechanisms that increase resistance.
It is possible to convert the air flows in both directions that occur during descent into rotational force in the same direction, and it is possible to greatly improve the conversion efficiency. Its practical effects are enormous, as it can be used in a wide variety of minute meters as an attachment that converts flow into rotational force.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示すものにして、第1図、第2
図は従来の波力発電機の断面図、第3図は本発明に係る
風胴内両方向性空気力軸タービンの斜視図、第4図はタ
ービン本体の斜視図、第5図は腕の他の実施例の配列状
鯨を示す平面図、第6図は風胴の他の実施例を示す新面
図、第7図はブレードの他の実施例を示す断面図、第8
図はタービン本体を二基配設した他の実施例を示す平面
図である。 (1)タービン本体 (2)風胴 (3)回転軸(4)
 (4)’・・・(5) (5)’・・・腕 、(6)
(6)’・・・グレード以   上 出願人  森   重  文 竿l− / 第2因 2/ @4図 4   、。 哨5図 (ハ)            (ニ)(ホ) 第6図
The figures show one embodiment of the present invention.
Figure 3 is a cross-sectional view of a conventional wave power generator, Figure 3 is a perspective view of a bidirectional aerodynamic shaft turbine in a wind barrel according to the present invention, Figure 4 is a perspective view of the turbine body, and Figure 5 is a perspective view of the arm and other parts. FIG. 6 is a new view showing another embodiment of the wind body, FIG. 7 is a sectional view showing another embodiment of the blade, and FIG.
The figure is a plan view showing another embodiment in which two turbine bodies are provided. (1) Turbine body (2) Wind barrel (3) Rotating shaft (4)
(4)'...(5) (5)'...arm, (6)
(6)'...Grade or higher Applicant Mori Shige Bunkan l- / 2nd cause 2/ @4 Figure 4. Figure 5 (c) (d) (e) Figure 6

Claims (1)

【特許請求の範囲】[Claims] 風胴内に回転自在に支承せしめた回転軸に該回転軸を中
心として放射状に伸びる複数本の腕を等角度毎に取付け
、該腕における回転軸を中心とした円周軌道上に複数枚
のNACA等の翼形のブレードを接線上で且つ回転方向
に対し同一方向に向けて夫々取付けたことを特徴とする
風胴内両方向性空気力軸タービン。
A plurality of arms extending radially around the rotation shaft are attached at equal angles to a rotation shaft rotatably supported in the wind barrel, and a plurality of arms are attached on a circumferential orbit around the rotation axis in the arms. A bidirectional aerodynamic shaft turbine in a wind barrel, characterized in that airfoil-shaped blades such as NACA are attached tangentially and facing in the same direction with respect to the rotational direction.
JP56156824A 1981-10-01 1981-10-01 Two-way pneumatic axial-flow turbine in wind tunnel Pending JPS5857082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56156824A JPS5857082A (en) 1981-10-01 1981-10-01 Two-way pneumatic axial-flow turbine in wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56156824A JPS5857082A (en) 1981-10-01 1981-10-01 Two-way pneumatic axial-flow turbine in wind tunnel

Publications (1)

Publication Number Publication Date
JPS5857082A true JPS5857082A (en) 1983-04-05

Family

ID=15636143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56156824A Pending JPS5857082A (en) 1981-10-01 1981-10-01 Two-way pneumatic axial-flow turbine in wind tunnel

Country Status (1)

Country Link
JP (1) JPS5857082A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518367A (en) * 1993-10-14 1996-05-21 Verastegui; Raul E. Cross-wind-axis wind turbine
WO2002053908A1 (en) * 2001-01-05 2002-07-11 Latekols, Sia Vertical axis wind turbine
GB2396888A (en) * 2003-05-27 2004-07-07 Calum Mackinnon Wind or water currect turbine
JP2005127188A (en) * 2003-10-22 2005-05-19 Fjc:Kk Vertical shaft wind mill
JP2009185667A (en) * 2008-02-05 2009-08-20 Maekawa Seisakusho:Kk Generator
US7708257B2 (en) * 2003-05-13 2010-05-04 Ekato Solidmix Gmbh Apparatus for treating solids
CN103075295A (en) * 2012-12-22 2013-05-01 中国科学院工程热物理研究所 Comprehensive utilization system for marine energy
WO2021093899A1 (en) * 2019-11-15 2021-05-20 中国科学院广州能源研究所 Floating oscillating water column-type wave energy power generation apparatus
EP3951164A4 (en) * 2019-04-22 2022-12-28 Vladimir Stepanovich Suhin Vertical axis-type wind turbine assembly
WO2023169602A1 (en) * 2022-05-18 2023-09-14 中国科学院广州能源研究所 Gas powered-type wave energy power supply subsurface buoy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417441A (en) * 1977-07-07 1979-02-08 Univ Tokai Vertical shaft type air force turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417441A (en) * 1977-07-07 1979-02-08 Univ Tokai Vertical shaft type air force turbine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518367A (en) * 1993-10-14 1996-05-21 Verastegui; Raul E. Cross-wind-axis wind turbine
WO2002053908A1 (en) * 2001-01-05 2002-07-11 Latekols, Sia Vertical axis wind turbine
AU2002215254B2 (en) * 2001-01-05 2006-03-02 Entechnology Funds Llc Vertical axis wind turbine
CZ300294B6 (en) * 2001-01-05 2009-04-15 Latekols Sia Wind turbine having a vertical axis
EA013527B1 (en) * 2001-01-05 2010-06-30 Латеколс Сиа Vertical axis wind turbine
US7708257B2 (en) * 2003-05-13 2010-05-04 Ekato Solidmix Gmbh Apparatus for treating solids
GB2396888A (en) * 2003-05-27 2004-07-07 Calum Mackinnon Wind or water currect turbine
JP4546715B2 (en) * 2003-10-22 2010-09-15 株式会社グローバルエナジー Vertical axis windmill
JP2005127188A (en) * 2003-10-22 2005-05-19 Fjc:Kk Vertical shaft wind mill
JP2009185667A (en) * 2008-02-05 2009-08-20 Maekawa Seisakusho:Kk Generator
CN103075295A (en) * 2012-12-22 2013-05-01 中国科学院工程热物理研究所 Comprehensive utilization system for marine energy
EP3951164A4 (en) * 2019-04-22 2022-12-28 Vladimir Stepanovich Suhin Vertical axis-type wind turbine assembly
WO2021093899A1 (en) * 2019-11-15 2021-05-20 中国科学院广州能源研究所 Floating oscillating water column-type wave energy power generation apparatus
WO2023169602A1 (en) * 2022-05-18 2023-09-14 中国科学院广州能源研究所 Gas powered-type wave energy power supply subsurface buoy

Similar Documents

Publication Publication Date Title
US6629815B2 (en) Peripheral turbine support system
KR100874046B1 (en) Turbine for free flowing water
US4359311A (en) Wind turbine rotor
US4516907A (en) Wind energy converter utilizing vortex augmentation
US7094018B2 (en) Wind power generator
US4260325A (en) Panemone wind turbine
US4087196A (en) Apparatus for deriving energy from moving gas streams
US7911076B2 (en) Wind driven power generator with moveable cam
US4781523A (en) Fluid energy turbine
US4398096A (en) Aero electro turbine
US3918839A (en) Wind turbine
US4204799A (en) Horizontal wind powered reaction turbine electrical generator
CN100353053C (en) Vertical-axis wind turbine
US4204805A (en) Vertical axis wind turbine
US9328717B1 (en) Golden ratio axial flow apparatus
US4086026A (en) Windmill with radial vanes
US4329116A (en) Wind turbine of cross-flow type
JP2007529662A5 (en)
US6239506B1 (en) Wind energy collection system
JP2007529662A (en) Turbine and rotor therefor
US20110006542A1 (en) Helix Turbine System and Energy Production Means
US8137052B1 (en) Wind turbine generator
JPS5857082A (en) Two-way pneumatic axial-flow turbine in wind tunnel
US4427343A (en) Efficient wind turbine design for low velocity air flow
US20090285688A1 (en) Double wind turbine