JPS5857044A - Cylinder quantity control device of diesel engine - Google Patents

Cylinder quantity control device of diesel engine

Info

Publication number
JPS5857044A
JPS5857044A JP15557081A JP15557081A JPS5857044A JP S5857044 A JPS5857044 A JP S5857044A JP 15557081 A JP15557081 A JP 15557081A JP 15557081 A JP15557081 A JP 15557081A JP S5857044 A JPS5857044 A JP S5857044A
Authority
JP
Japan
Prior art keywords
fuel
diesel engine
valve
cylinder
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15557081A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimomukai
下向 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP15557081A priority Critical patent/JPS5857044A/en
Publication of JPS5857044A publication Critical patent/JPS5857044A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)

Abstract

PURPOSE:To reduce pumping loss of an engine, by equipping an angle detector, in which an angle of control levers in an injection pump is detected, building a fuel spill regulator valve in an injection nozzle and placing the injection nozzle and intake shut off valve, in a cylinder at an idle side, inoperative when an output of said angle detector is in a preset value or less. CONSTITUTION:A depressing amount of an accelerator pedal 11 is small from an idle condition to a 1/2 load condition, and control levers 12, 13 of an injection pump 4 are rotated between positions B, C, however, in this position, a slider 24a of a potentiometer 24 and a wire wound resistor 24b are in a contactless state. In consequence, a solenoid 7 of an injection nozzle 5 in the second and thrid cylinder is not electrically conducted, and a fuel spill regulator valve 6 is in a full open state, then fuel is returned to a return pipe 23. Then the depressing amount of the pedal 11 is increased, if the lever 13 exceeds the position C, an electric current is conducted to flow in the solenoid 7 through an amplifier 27 in accordance with an output of the potentiometer 24, and the regulator valve 6 is closed. Further excitation of a solenoid 9 causes an intake shut off valve 3 to fully open, and full cylinder operation can be performed.

Description

【発明の詳細な説明】 置に関し、更に詳しくは、多気筒ディーゼルエンレンの
負荷が小さい時に、その一部気筒の活動を停止させてエ
ンジンの摩擦損失を減少させることにより、燃費を向上
させ、未燃HCを低減させたディーゼルエンジンの気筒
数制御装置に関するものである。
[Detailed Description of the Invention] In more detail, when the load of a multi-cylinder diesel engine is small, the activity of some of the cylinders is stopped to reduce engine friction loss, thereby improving fuel efficiency. The present invention relates to a diesel engine cylinder number control device that reduces unburned HC.

元来、ディーゼルエンジンには吸入空気量の絞りがない
ために、無負荷運転から全負荷運転まで大量の空気を吸
入して圧縮、排気の仕事をしている。このための仕事量
は膨大なものであり、ディーゼルエンジンの全摩擦損失
の半分近くはこの圧縮、排気行程で生じるものである。
Originally, a diesel engine does not have a throttle for intake air volume, so it takes in a large amount of air, compresses it, and exhausts it from no-load to full-load operation. The amount of work required for this is enormous, and nearly half of the total friction loss in a diesel engine occurs during the compression and exhaust strokes.

特に、ディーゼルエンジンが低負荷で運転されている時
には、エンジンの正味仕事量に対する摩擦損失の比率は
大きくなっている。
In particular, when a diesel engine is operated at low load, the ratio of friction loss to the net work of the engine is large.

そこで従来、ディーセルエンジンが低負荷で運転される
時に、その圧縮、排気行程で生じる摩擦損失、いわゆる
ポンピング損失を低減させるために、吸入空気量を絞ろ
うという試みがある。
Conventionally, attempts have been made to reduce the amount of intake air when a diesel engine is operated at low load in order to reduce the friction loss, so-called pumping loss, that occurs during the compression and exhaust strokes of the diesel engine.

しかしながら、従来のディーゼルエンジンの方式では、
単に吸入空気量゛を絞ったりしてポンピング損失全大幅
に減少させると、HCが増大したり、始動性が損われた
シ、!白煙が増大する等の不具合を生じるために前記試
みは未だに実用化されていない。
However, in the conventional diesel engine system,
If you simply reduce the amount of intake air to significantly reduce the total pumping loss, HC will increase and startability will be impaired! The above-mentioned attempt has not yet been put to practical use because of problems such as increased white smoke.

また、通常の直列型ディーゼルエンジンでは燃料噴射ポ
ンプは1個しかなく、各気筒への燃料噴射量は同一であ
り、エンジン運転中に気筒毎にそれぞれの気筒への燃料
噴射量を変更することはできなかった。
In addition, a normal in-line diesel engine has only one fuel injection pump, and the amount of fuel injected into each cylinder is the same, so it is not possible to change the amount of fuel injected into each cylinder during engine operation. could not.

本発明の目的は前記従来のディーゼルエンジンの低負荷
運転時の欠点を解消し、多気筒ディーゼルエンジンの負
荷が小さい時に、その一部気筒の吸入空気全遮断すると
共に、その気筒に燃料を供給しないようにしてエンジン
のポンピング損失を低減し、燃費が良く、未燃HCの排
出量も少なくすることができる優れたディーゼルエンジ
ンの気筒数制御装置を提供することである。
An object of the present invention is to eliminate the disadvantages of the conventional diesel engine during low-load operation, and when the load of a multi-cylinder diesel engine is small, the intake air of some cylinders is completely cut off, and fuel is not supplied to that cylinder. An object of the present invention is to provide an excellent cylinder number control device for a diesel engine that can reduce pumping loss of the engine, improve fuel efficiency, and reduce the amount of unburned HC discharged.

前記目的を達成する本発明のディーゼルエンジンの気筒
数制御装置は、ディーゼルエンジンの一部気筒の吸気経
路を遮断する吸気遮断弁と、前記一部気筒への燃料供給
を制御する燃料逃し量調整弁を内蔵する燃料噴射ノズル
と、燃料噴射ポンプの燃料コントロールレバ一部に設け
られた前記レバー回転角に応じた電圧を発生するレバー
角検出器とを備え、前記電圧が設定値以下の時は前記吸
気遮断弁を全閉、かつ前記燃料逃し量調整弁を全開し、
前記電圧が設定値を越えた時は前記吸気遮断弁を全開、
かつ前記燃料逃し量調整弁を電圧の増加に応じて閉じる
ように構成したことを特徴としている。
A diesel engine cylinder number control device of the present invention that achieves the above object includes an intake cutoff valve that cuts off the intake path of some of the cylinders of the diesel engine, and a fuel release amount adjustment valve that controls fuel supply to the some of the cylinders. and a lever angle detector that generates a voltage according to the lever rotation angle, which is provided on a part of the fuel control lever of the fuel injection pump, and when the voltage is below a set value, the lever angle detector Fully close the intake cutoff valve and fully open the fuel release amount adjustment valve,
When the voltage exceeds the set value, fully open the intake cutoff valve,
Further, the fuel release amount adjusting valve is configured to close in response to an increase in voltage.

以下図面を用いて本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示すディーゼルエンジンの
気筒数制御装置の全体構成図であり、1はディーゼルエ
ンジン、2は吸気マニホルド、4は燃料噴射ポンプ、5
は燃料噴射ノズル、12゜16はアクセルペダル114
に連動して燃料噴射ポンプ4よりの燃料噴射量を調節す
るコントロールレバーである。
FIG. 1 is an overall configuration diagram of a diesel engine cylinder number control device showing an embodiment of the present invention, in which 1 is a diesel engine, 2 is an intake manifold, 4 is a fuel injection pump, and 5
is the fuel injection nozzle, 12°16 is the accelerator pedal 114
This is a control lever that adjusts the amount of fuel injected from the fuel injection pump 4 in conjunction with the .

本実施例では4気筒デイーゼルエンジン1の第2気筒(
す2)および第3気筒(φ3)の燃料噴射ノズル5に燃
料逃し量調整弁6を内蔵させてこれらの気筒への燃料の
供給を停止できるようにすると共に、前記気筒(す2.
φ3)の吸気マニホルド2には吸気遮断弁6を設けてこ
れらの気筒への吸気も遮断できるようにしている。
In this embodiment, the second cylinder (
A fuel escape amount adjusting valve 6 is built into the fuel injection nozzle 5 of the cylinder (S2) and the third cylinder (φ3) so that the supply of fuel to these cylinders can be stopped.
The intake manifold 2 of φ3) is provided with an intake cutoff valve 6 so that the intake air to these cylinders can also be cut off.

前記燃料逃し量調整弁6を内蔵した燃料噴射ノズル5の
゛構造は第2図に示す通りで、本発明では燃料噴射ノズ
ル5の高圧燃料通路5aと燃料戻し管23とを連絡する
燃料戻し通路5bを設け、その途中にこの燃料戻し通路
sbt開閉する燃料逃し量調整弁62!I−設けた。こ
の燃料逃し量調整弁6はねじ6aにより移動して前記燃
料戻し通路5bk開閉するようになっており、その開度
はソレノイド7の端子7m−7b間に印加される電圧に
比例する。即ち、印加電圧が大きい時はソレノイド7は
ラック7Cを矢印Iの方向に移動させてピニオン6bt
回転させ、燃料逃し量調整弁6が燃料戻し通路5bを閉
じるように作用し、印加電圧が小さい時はばね7dによ
りラック7cは矢印工と逆方向に移動して燃料逃し量調
整弁6は燃料戻し通FNJ5bを開くように作用する。
The structure of the fuel injection nozzle 5 incorporating the fuel relief amount adjusting valve 6 is as shown in FIG. 5b, and a fuel release amount adjustment valve 62 that opens and closes this fuel return passage sbt in the middle! I- established. The fuel release amount adjusting valve 6 is moved by a screw 6a to open and close the fuel return passage 5bk, and its opening degree is proportional to the voltage applied between the terminals 7m and 7b of the solenoid 7. That is, when the applied voltage is large, the solenoid 7 moves the rack 7C in the direction of the arrow I and moves the pinion 6bt.
When the applied voltage is small, the rack 7c is moved in the opposite direction of the arrow by the spring 7d, and the fuel escape amount adjustment valve 6 closes the fuel return passage 5b. It acts to open the return passage FNJ5b.

印加電圧がOの時は、ばね7dにより燃料逃し量調整弁
6は燃料戻し通路5bを全開する。
When the applied voltage is O, the spring 7d causes the fuel release amount adjusting valve 6 to fully open the fuel return passage 5b.

第2図の状態はソレノイド7の端子7a−7b間に最大
電圧が印加されている状態を示しており、矢印Gのよう
に燃料噴射ノズル5に供給された高圧燃料は、燃料戻し
通路5bが全閉となっているので、全量高圧燃料通路5
aに流れて先端部5cから矢印Hのように噴射される。
The state shown in FIG. 2 shows the state where the maximum voltage is applied between the terminals 7a and 7b of the solenoid 7, and the high-pressure fuel supplied to the fuel injection nozzle 5 as shown by arrow G flows through the fuel return passage 5b. Since it is fully closed, the entire high pressure fuel passage 5
a and is injected from the tip 5c in the direction of arrow H.

この噴射量はソレノイド7の端子電圧が減るにつれて減
少し、印加電圧がOの時は全量燃料戻し通12i5bか
ら燃料戻し管26に流れて燃料噴射ノズル5からは燃料
は全く噴射されない。
This injection amount decreases as the terminal voltage of the solenoid 7 decreases, and when the applied voltage is O, the entire amount flows from the fuel return passage 12i5b to the fuel return pipe 26, and no fuel is injected from the fuel injection nozzle 5.

燃料噴射ポンプ4の燃料噴射量を制御するコントロール
レバーは、本発明では第1図に示すように第1,4気筒
の燃料噴射量を制御するコントロールレバー12と第2
.3気筒の燃料噴対量を燃料逃し量調整弁6によ多制御
するコントロールレバー13とに分かれておシ、両者は
キャンセルスプリング17によって連結されている。そ
してこれらコントロールレバー12゜16はアクセルペ
ダル11が踏まれていない状態ではリターンスプリング
14とアイドルストッパ16にょシ第1図の鎖aBの位
置で静止しており、アクセルペダル11の踏み込み量に
応じて鎖線Cの位置までは一体となって回転する。
In the present invention, the control lever that controls the fuel injection amount of the fuel injection pump 4 includes a control lever 12 that controls the fuel injection amount of the first and fourth cylinders, and a second control lever that controls the fuel injection amount of the first and fourth cylinders, as shown in FIG.
.. It is divided into a control lever 13 that controls the amount of fuel injected into the three cylinders by a fuel release amount adjustment valve 6, and the two are connected by a cancel spring 17. When the accelerator pedal 11 is not depressed, these control levers 12 and 16 are at rest at the chain aB position in FIG. 1 between the return spring 14 and the idle stopper 16. They rotate as one until the position indicated by chain line C.

ところが鎖線Cの位置にはフルロードストッパ15が設
けられておシ、コントロールレバー12はこの位置で回
転を止められる。従って鎖線Cから鎖線りの間はコント
ロールレバー13のみが回転することになる。28はコ
ントロールレバー13用のフルロードストッパである。
However, a full load stopper 15 is provided at the position indicated by the chain line C, and the rotation of the control lever 12 is stopped at this position. Therefore, only the control lever 13 rotates between the chain line C and the chain line. 28 is a full load stopper for the control lever 13.

コントロールレバー16の一端には摺動子24aが設け
られており、燃料噴射ポンプ4側に設けられた巻線抵抗
24bと共にポテンショメータ24を形成している。こ
のポテンショメータ24は増幅器27のトランジスタ2
7aに接続しており、コントロールレバー16の回転に
応じて増幅器27の増幅度を可変するようになっている
A slider 24a is provided at one end of the control lever 16, and forms a potentiometer 24 together with a wire-wound resistor 24b provided on the fuel injection pump 4 side. This potentiometer 24 is connected to the transistor 2 of the amplifier 27.
7a, and the degree of amplification of the amplifier 27 can be varied in accordance with the rotation of the control lever 16.

以上が本発明の燃料制御系の構成であるが、次に吸気マ
ニホ・ルド2に設けた吸気量制御系の構成について説明
する。
The configuration of the fuel control system of the present invention has been described above. Next, the configuration of the intake air amount control system provided in the intake manifold 2 will be explained.

第2,3気筒の吸気マニホルド2に設けられた吸気遮断
弁3はレバー26によりリンク25に接続しており、こ
のリンク25はソレノイド9に吸引された時に矢印E方
向に動いてレバー26全Fのように回転させ、吸気遮断
弁3を開いて吸気を第2,3気筒に送シ込むようになっ
ている。そしてソレノイド9はリレー8がオンした時に
リンク25を吸引し、リレー8は増幅器27がオンした
時にオンしてソレノイド9とバッテリ10と全接続する
The intake cutoff valve 3 provided in the intake manifold 2 of the second and third cylinders is connected to a link 25 by a lever 26, and when this link 25 is sucked by the solenoid 9, it moves in the direction of arrow E, and the lever 26 The intake valve 3 is rotated as shown in FIG. Solenoid 9 attracts link 25 when relay 8 is turned on, and relay 8 is turned on when amplifier 27 is turned on to fully connect solenoid 9 and battery 10.

本発明のディーゼルエンジンの気前数制御装置の構成は
以上のようなもので、次にこの本発明の装置の気筒数制
御動作について説明する。
The configuration of the generous number control device for a diesel engine according to the present invention is as described above.Next, the cylinder number control operation of the device according to the present invention will be explained.

まず、エンジンの負荷条件を全負荷を1とし、その半分
を1/2のように表わして、気筒数全制御する負荷条件
の設定値を全負荷の1/2とし、この時のコントロール
レバー12,13の位置を鎖線Cの位置とすると、アイ
ドル状態(鎖線Bの位置)から1/2負荷まではアクセ
ルペダル11の踏み込み量が少ないため、燃料噴射ポン
プ4のコントロールレバー12 、13i11[BとC
の位置の間を一体になって回転するが、この間ではコン
トロールレバー16の一端に設けられた摺動子24aは
巻線抵抗24bに接触しないので増幅器27はオフであ
る。
First, the load condition of the engine is set as the full load as 1, and half of it is expressed as 1/2, and the set value of the load condition for fully controlling the number of cylinders is set as 1/2 of the full load, and the control lever 12 at this time is , 13 are indicated by chain line C. Since the amount of depression of the accelerator pedal 11 is small from the idle state (position indicated by chain line B) to 1/2 load, the control levers 12, 13i11 [B and C
During this period, the slider 24a provided at one end of the control lever 16 does not come into contact with the wire-wound resistor 24b, so the amplifier 27 is off.

従ってこの時燃料噴射ノズル5に取付けられたソレノイ
ド7の端子7a−7b間には電圧が印加されず、燃料逃
し量調整弁6は全開状態にあり、燃料噴射ポンプ4から
各気筒に噴射された燃料のうち、第2,3気筒に噴射さ
れた燃料は全量燃料戻し管26に流れて第2,3気筒に
は燃料は供給されない。また、前記のように増幅器27
がオフ状態であるので、リレー8およびソレノイド9は
作動せず、吸気遮断弁3は全閉状態であり、第2,3気
筒には吸気も全く供給されない。
Therefore, at this time, no voltage is applied between the terminals 7a and 7b of the solenoid 7 attached to the fuel injection nozzle 5, the fuel relief amount adjustment valve 6 is in the fully open state, and the fuel is injected from the fuel injection pump 4 to each cylinder. Of the fuel, all of the fuel injected into the second and third cylinders flows into the fuel return pipe 26, and no fuel is supplied to the second and third cylinders. In addition, as described above, the amplifier 27
is in the off state, the relay 8 and solenoid 9 are not operated, the intake cutoff valve 3 is in the fully closed state, and no intake air is supplied to the second and third cylinders.

次に、さらに負荷が上昇してアクセルはダル11の踏み
込み量が増加すると、第1,4気筒用のコントロールレ
バー12fdフルロードストツパ15に当り、これ以上
回転しなくなる。この時第1,4気筒は全負荷状態であ
るが、エンジン全体としての負荷は1/2となっている
Next, when the load further increases and the amount of depression of the accelerator pedal 11 increases, the control lever 12fd for the first and fourth cylinders hits the full load stopper 15 and stops rotating any further. At this time, the first and fourth cylinders are under full load, but the load on the engine as a whole is 1/2.

ところが、第2,3気筒用のコントロールレバー16は
、キャンセルスプリング17の働キによりコントロール
レバー12と一体になって回転していたが、もともと別
体であるためにコントロールレバー12が前記のように
回転を制止されてもその1″1回転を続けることができ
、鎖線Cを越えるとポテンショメータ24(7)摺動子
24Bと巻線抵抗24bk接触させる。すると増幅器2
7のトランジスタ27aにバイアス電圧が印加されて増
幅器27がオンし、ソレノイド7に電圧が印加されるの
でソレノイド7がラック7cを移動させて一ピニオン6
bt回転させ、燃料逃し量調整弁6をソレノイド7に印
加される電圧の増加に応じて閉じるので、第2゜3気筒
には燃料が噴射される。ソレノイド7の印加電圧はポテ
ンショメータ24の回転角、即ちアクセルはダル11の
踏み込み量に比例し、アクセルペダル11を一杯に踏み
込んでコントロールレバー13が鎖線りの位置でフルロ
ードストッパ28に制止された時、燃料逃し量調整弁6
が全閉となり、燃料噴射ポンプ4の第2゜3気筒への燃
料噴射量と燃料噴射ノズルからの燃料噴射量とが一致す
る。
However, the control levers 16 for the second and third cylinders rotated together with the control lever 12 due to the action of the cancel spring 17, but since they were originally separate bodies, the control lever 12 rotated as described above. Even if the rotation is stopped, it can continue its 1″ rotation, and when it crosses the chain line C, the potentiometer 24 (7) comes into contact with the slider 24B and the wire-wound resistor 24bk.Then, the amplifier 2
A bias voltage is applied to the transistor 27a of the pinion 7, turning on the amplifier 27, and a voltage is applied to the solenoid 7, so the solenoid 7 moves the rack 7c and the pinion 6 is turned on.
bt is rotated and the fuel release amount adjusting valve 6 is closed in response to an increase in the voltage applied to the solenoid 7, so that fuel is injected into the 2nd and 3rd cylinders. The voltage applied to the solenoid 7 is proportional to the rotation angle of the potentiometer 24, that is, the amount of depression of the accelerator pedal 11, and when the accelerator pedal 11 is fully depressed and the control lever 13 is stopped by the full load stopper 28 at the chain line position. , fuel release amount adjustment valve 6
is fully closed, and the amount of fuel injected into the second and third cylinders by the fuel injection pump 4 matches the amount of fuel injected from the fuel injection nozzle.

′!た、増幅器270オンと同時忙リレー8がオンして
ソレノイド9にバッテリ10が接続されるためリンク2
5が吸引され、レバー26が回転して吸気遮断弁3が全
開となり、第2,3−気筒には吸気も供給されてこれら
の気筒は工常に作動する。この間第1.4気筒は常に全
負荷で運転されており、燃料逃し量調整弁6が全閉とな
った状態で本発明のディーゼルエンジン1は最大出力を
得ることができる。
′! In addition, when the amplifier 270 is turned on, the busy relay 8 is turned on and the battery 10 is connected to the solenoid 9, so the link 2 is turned on.
5 is suctioned, the lever 26 rotates and the intake cutoff valve 3 is fully opened, and intake air is also supplied to the second and third cylinders, so that these cylinders operate normally. During this time, the 1.4th cylinder is always operated at full load, and the diesel engine 1 of the present invention can obtain maximum output with the fuel release amount regulating valve 6 fully closed.

アクセルはダル11を戻すと、今までと全く逆の順序で
エンジンは減気筒運転に戻ることになる。
When the accelerator is turned back to 11, the engine returns to reduced cylinder operation in the complete reverse order.

このように本発明のディーゼルエyジ/の気筒数制御装
置によれば、アイドル(無負荷)から1/2負荷までは
ディーセルエンジン1の第2゜3気筒は吸気遮断と燃料
遮断が同時に行なわれておシ、作動するのは第1,4気
筒のみである。
As described above, according to the diesel age/cylinder number control device of the present invention, from idle (no load) to 1/2 load, intake cutoff and fuel cutoff are performed simultaneously for the 2nd and 3rd cylinders of the diesel engine 1. However, only the first and fourth cylinders operate.

従って、アイドルから1/2負荷1では第2.3気筒の
ポンピング損失がなくなるため、第3図の実線で示すよ
うに破線で示す従来の標準ディーゼルエンジンに比べて
エンジン全体の摩擦損失が大幅に低下する。このため特
に低負荷域での使用頻度が高い乗用車用のディーセルエ
ンジン等では第4図の実線で示すように従来(破線)に
比べて大幅に燃費が向上している。
Therefore, at 1/2 load from idle to 1, the pumping loss of the 2nd and 3rd cylinders disappears, so the friction loss of the entire engine is significantly reduced, as shown by the solid line in Figure 3, compared to the conventional standard diesel engine shown by the broken line. descend. For this reason, especially in diesel engines for passenger cars that are frequently used in low load ranges, the fuel efficiency is significantly improved compared to the conventional engine (broken line), as shown by the solid line in FIG.

また、低負荷時には一般的に未燃HCも急増するが、作
動している第1,4気筒の負荷は標準ディーゼルエンジ
ンに比べて相対的に増加し、HC急増域を外れた領域で
運転されると共に、排気ガス量も1/2になるため全体
として第6図に示す(実線が本発明、破線が従来)よう
に排気ガス中の大幅なHC濃度の低減を図ることができ
る。
In addition, unburned HC generally increases rapidly at low loads, but the load on the operating No. 1 and 4 cylinders increases relatively compared to a standard diesel engine, and if the engine is operated outside the HC rapid increase range. At the same time, the amount of exhaust gas is also reduced to 1/2, so that the HC concentration in the exhaust gas can be significantly reduced as a whole as shown in FIG. 6 (the solid line shows the present invention and the broken line shows the conventional method).

本実施例では4気筒中の2気筒の作動を低負荷時に停止
させる場合について説明したが、負荷条件の差によって
は1気筒分のみ作動を停止させることも容易に実施でき
る。
In this embodiment, a case has been described in which the operation of two of the four cylinders is stopped at a low load, but depending on the difference in load conditions, it is also possible to easily stop the operation of only one cylinder.

また、3気筒や6気筒のディーゼルエンジンの場合には
それぞれその第2気筒、第4,5゜6気筒の作動を停止
させるというように、気筒数が異なっても本発明は容易
に実施することができる。
Furthermore, in the case of a 3-cylinder or 6-cylinder diesel engine, the present invention can be easily implemented even if the number of cylinders is different, such as stopping the operation of the 2nd cylinder, 4th cylinder, and 5° 6th cylinder, respectively. I can do it.

以上説明したように本発明のディーゼルエンジンの気筒
数制御装置は、多気筒ディーゼルエンジンの負荷が小さ
い時に、その一部気筒の吸入空気を遮断すると共に、そ
の気筒に燃料を供給しないようにしてエンジンのポンピ
ング損失を低減させたことにより、燃費が向上し、未燃
HCの排出量も少なくすることができて省エネルギーお
よび公害防止に優れた効果を発揮することができる。
As explained above, when the load of a multi-cylinder diesel engine is small, the diesel engine cylinder number control device of the present invention cuts off the intake air of some of the cylinders and prevents fuel from being supplied to that cylinder. By reducing the pumping loss, fuel efficiency is improved, and the amount of unburned HC discharged can be reduced, resulting in excellent effects in energy saving and pollution prevention.

なお、第孕図に示すようにディー七ルエンジ8 /1の排気マニホルヒ、吸気マニホルド2の吸気遮断弁
3に連動して全く同じ動作をするよ9 うに排気遮断弁全レバー29を介してリンク25△ に接続すればポンピング損失は一層少なくなり、上記効
果が増大する。
Furthermore, as shown in Fig. 9, the exhaust manifold of the diesel engine 8/1 and the intake cutoff valve 3 of the intake manifold 2 operate in exactly the same way, so that the link 25 is connected via the exhaust cutoff valve full lever 29. If connected to Δ, the pumping loss will be further reduced and the above effect will be enhanced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すディーゼルエンジンの
気筒数制御装置の全体構成図、第2図は第1図に示した
燃料逃し量調整弁を内蔵する燃料噴射ノズルの構造全示
す断面図、第3図から第5図は本発明のディーゼルエン
ジンと従来ノ標準ディーゼルエンジンの性能比較を示す
線図であって第3図は回転数対摩擦損失、第4図は負荷
条件対燃費率、第5図は負荷条件対HC濃度の関係を示
す線図、第6図は本発明の別の実施例を示すディーゼル
エンジンの吸排気系の構成図である。 1・・ディーゼルエンジン、2・・・吸気マニホルド、
3 吸気遮断弁、4・・・燃料噴射ポンプ、5・燃料噴
射ノズノペ6・・・燃料逃し量調整弁、8・・リレー、
7,9・・・ソレノイド、11・・・アクセルスタル、
12.13・・・コントロールレノ2−122・・・燃
料噴射管、23・・・燃料戻し管、24・・・ポテンシ
ョメータ、27・・増幅器 代理人 弁理士 小 川 信 − 弁理士 野 口 賢 照 弁理士斎下和彦
Fig. 1 is an overall configuration diagram of a diesel engine cylinder number control device showing an embodiment of the present invention, and Fig. 2 is a cross-sectional view showing the entire structure of a fuel injection nozzle incorporating the fuel relief amount adjusting valve shown in Fig. 1. Figures 3 to 5 are graphs showing a performance comparison between the diesel engine of the present invention and a conventional standard diesel engine, with Figure 3 being the rotational speed vs. friction loss, and Figure 4 being the load condition vs. fuel efficiency. , FIG. 5 is a diagram showing the relationship between load conditions and HC concentration, and FIG. 6 is a configuration diagram of an intake and exhaust system of a diesel engine showing another embodiment of the present invention. 1...Diesel engine, 2...Intake manifold,
3. Intake cutoff valve, 4..Fuel injection pump, 5.Fuel injection nozzle 6..Fuel release amount adjustment valve, 8..Relay,
7, 9... Solenoid, 11... Axel star,
12.13...Control Reno 2-122...Fuel injection pipe, 23...Fuel return pipe, 24...Potentiometer, 27...Amplifier agent Shin Ogawa, patent attorney - Teru Noguchi, patent attorney Patent attorney Kazuhiko Saishita

Claims (1)

【特許請求の範囲】[Claims] ディーゼルエンジンの一部気筒の吸気経路を遮断する吸
気遮断弁と、前記−邪気筒への燃料供給を制御する燃料
逃し量調整弁を内蔵する燃料噴射ノズルと、燃料噴射ポ
ンプの燃料コントロールレバ一部に設けられた、前記レ
バー回転角に応じた電圧を発生するレバー角横田器とを
備え、前記電圧が設定値以下の時は前記吸気遮断弁を全
閉、かつ前記燃料逃し量調整弁を全開し、^1」配電圧
が設定値を越えた時は前記吸気遮断弁を全開、かつ前記
燃料逃し量調整弁を電圧の増加に応じて閉じるように構
成したディーゼルエンジンの気筒数制御装置。
An intake cutoff valve that cuts off the intake path of some cylinders of a diesel engine, a fuel injection nozzle that incorporates a fuel relief amount adjustment valve that controls fuel supply to the above-mentioned cylinder, and a part of a fuel control lever of a fuel injection pump. and a lever angle Yokota device that generates a voltage according to the lever rotation angle, and when the voltage is below a set value, the intake cutoff valve is fully closed and the fuel release amount adjustment valve is fully opened. ^1'' A diesel engine cylinder number control device configured to fully open the intake cutoff valve when the distribution voltage exceeds a set value, and close the fuel release amount adjustment valve in accordance with an increase in voltage.
JP15557081A 1981-09-30 1981-09-30 Cylinder quantity control device of diesel engine Pending JPS5857044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15557081A JPS5857044A (en) 1981-09-30 1981-09-30 Cylinder quantity control device of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15557081A JPS5857044A (en) 1981-09-30 1981-09-30 Cylinder quantity control device of diesel engine

Publications (1)

Publication Number Publication Date
JPS5857044A true JPS5857044A (en) 1983-04-05

Family

ID=15608925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15557081A Pending JPS5857044A (en) 1981-09-30 1981-09-30 Cylinder quantity control device of diesel engine

Country Status (1)

Country Link
JP (1) JPS5857044A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413825A (en) * 1977-07-05 1979-02-01 Nissan Diesel Motor Co Ltd Idling controller for multicylinder diesel engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413825A (en) * 1977-07-05 1979-02-01 Nissan Diesel Motor Co Ltd Idling controller for multicylinder diesel engine

Similar Documents

Publication Publication Date Title
US4201180A (en) Split engine operation of closed loop controlled multi-cylinder internal combustion engine with air-admission valve
JP2753874B2 (en) Multi-cylinder engine intake system
JPS6118659B2 (en)
JPS641656B2 (en)
US4181109A (en) Exhaust gas recirculation apparatus
JPS58101238A (en) Suction device for engine associated with supercharger
JPS5857044A (en) Cylinder quantity control device of diesel engine
JPS5857047A (en) Cylinder quantity control device of diesel engine
JPH0326835A (en) Fuel supply device of internal combustion engine
JPS58107814A (en) Variable nozzle control device of discharge turbo supercharger
JPS5857045A (en) Cylinder quantity control device of diesel engine
JPS6054491B2 (en) compression ignition internal combustion engine
JPS5813744B2 (en) Internal combustion engine exhaust gas recirculation device
JPS5857041A (en) Cylinder quantity control device of diesel engine
JPH05163954A (en) Decelerating air bypass valve controller of engine with supercharger
JPH0355655B2 (en)
JPS5857042A (en) Cylinder quantity control device of diesel engine
JPS595169Y2 (en) cylinder number control engine
JPH0154534B2 (en)
JPH0223804Y2 (en)
JPH06280684A (en) Egr system of 4-stroke engine
JPS5833371B2 (en) engine supercharging device
JPH0229848B2 (en)
JPS6118673B2 (en)
JPS5857046A (en) Cylinder quantity control device of diesel engine