JPS5857019A - Supercharge device of multi-cylinder engine - Google Patents

Supercharge device of multi-cylinder engine

Info

Publication number
JPS5857019A
JPS5857019A JP15443981A JP15443981A JPS5857019A JP S5857019 A JPS5857019 A JP S5857019A JP 15443981 A JP15443981 A JP 15443981A JP 15443981 A JP15443981 A JP 15443981A JP S5857019 A JPS5857019 A JP S5857019A
Authority
JP
Japan
Prior art keywords
cylinder
supercharger
supercharging
engine
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15443981A
Other languages
Japanese (ja)
Inventor
Asao Tadokoro
朝雄 田所
Haruo Okimoto
沖本 晴男
Ikuo Matsuda
松田 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP15443981A priority Critical patent/JPS5857019A/en
Publication of JPS5857019A publication Critical patent/JPS5857019A/en
Priority to US06/672,857 priority patent/US4566422A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/36Engines with pumps other than of reciprocating-piston type with rotary pumps of positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To efficiently distribute supercharged air to each cylinder, by constituting a supercharger with a compound positive displacement pump having plural delivery ports, connecting each delivery port to a different cylinder through respectively independent auxiliary intake system and preventing a supercharge change. CONSTITUTION:In case of application to a 6-cylinder engine, an intake system is constituted by main and auxiliary intake systems 3, 4, and the auxiliary intake system 4 is formed by equipping a manifold passage 14, the upstream end of which is communicated to a place in the vicinity of the downstream branch part of a manifold passage 5 in a main intake passage 8 of the main intake system 3. Branch passages 15a, 15b are divided from the manifold passage 14, and a supercharger 18, consisting of a compound positive displacement pump, is arranged across these passages 15a, 15b. Then upstream and downstream sides of the branch passages 15a, 15b are connected to intake ports 19a, 19b and delivery ports 20a, 20b provided in symmetrical positions of the supercharger 18. Further downstream ends of the branch passage 15a, 15b are connected to each cylinder 1a-1f through each independent branch passage 16a-16f.

Description

【発明の詳細な説明】 本発明は、多気筒エンジンの過給装置に関し、特に新気
を自然吸入させる主吸気系と、過給気を供給する補助吸
気系とを備えた多気筒エンジンの過給装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a supercharging device for a multi-cylinder engine, and particularly to a supercharging device for a multi-cylinder engine that is equipped with a main intake system that naturally sucks fresh air and an auxiliary intake system that supplies supercharged air. This relates to a feeding device.

従来よシ、エンジンの過給装置として、エンジンの単一
の吸気系にターボ過給機を備えて、エンジンに吸気を過
給することによりエンジンの出力性能を向上させるよう
にしたものは知られている。
Conventionally, as an engine supercharging device, it is known that a turbo supercharger is installed in a single intake system of the engine, and the output performance of the engine is improved by supercharging the intake air into the engine. ing.

しかし、このターボ過給方式では、排気流により回転す
るタービンによってブロアを駆動し、該プロアにより吸
気過給を行うものであるため、特にエンジンの低回転域
では排気流の減少により過給不足が生じ、出力性能の向
上を十分に図り得ないとともに、応答性が悪いという問
題があった。
However, in this turbocharging method, the blower is driven by a turbine rotated by the exhaust flow, and the intake air is supercharged by the blower, so the reduction in the exhaust flow can lead to insufficient supercharging, especially in the low engine speed range. Therefore, there were problems in that the output performance could not be sufficiently improved and the responsiveness was poor.

そのため、従来、例えば特開昭55−69’i’22号
公報に開示されているように、エンジンの吸気系を主吸
気系と補助吸気系とにより構成するとともに、上記補助
吸気系に過給機を設け、上記主吸気系から新気をエンジ
ンに供給するのに加えて、所定のタイミングで(すなわ
ち少なくともエンジンの圧縮行程において)上記補助吸
気系から過給気をエンジンに供給するようにして、エン
ジンによって駆動される過給機により、エンジンの低回
転域においても過給不足を生じることなく、応答性良く
吸気過給を行い得るようにしたいわゆる部分過給方式の
ものが提案されている。
Therefore, conventionally, as disclosed in Japanese Patent Application Laid-Open No. 55-69'i'22, the intake system of the engine is composed of a main intake system and an auxiliary intake system, and the auxiliary intake system is supercharged. In addition to supplying fresh air to the engine from the main intake system, supercharging air is supplied to the engine from the auxiliary intake system at a predetermined timing (that is, at least during the compression stroke of the engine). , a so-called partial supercharging system has been proposed that uses a supercharger driven by the engine to perform intake supercharging with good responsiveness without causing insufficient supercharging even in the low engine speed range. .

しかるに、このような部分過給方式を多気筒エンジンに
採用した場合、上記提示した公報に開示されているよう
に、1つの過給機により該過給機からの過給気を各々独
立分岐した補助吸気系を介して各気筒に供給するように
すると、4気筒、6気筒・・等、気筒数が増加するに従
って過給機の回転数を増大させる必要があり、過給機の
耐久性の点で問題があった。
However, when such a partial supercharging system is adopted for a multi-cylinder engine, as disclosed in the above-mentioned publication, a single supercharger separates the supercharged air from the supercharger into separate branches. If each cylinder is supplied via an auxiliary intake system, the rotation speed of the supercharger must be increased as the number of cylinders increases (4 cylinders, 6 cylinders, etc.), which reduces the durability of the supercharger. There was a problem with that.

さらに、このような部分過給方式においては、過給機と
して容積型ポンプを使用すると、該容積型過給機が過給
気を吐出するときと吐出しないときとで圧力変化が生じ
、過給脈動が生じる。そのため、上記容積型過給機の過
給気吐出タイミングとエンジン側の過給タイミング(少
なくともエンジンの圧縮行程時)とが常に対応しないと
、過給気がエンジンに効率良く供給されるときとそうで
ないときとが生じ、エンジン回転当りの過給変動が生じ
る。その結果、本来の過給効果が十分に発揮され得ない
という問題がある。
Furthermore, in such a partial supercharging system, when a positive displacement pump is used as a supercharger, pressure changes occur between when the positive displacement turbocharger discharges supercharged air and when it does not discharge supercharged air. Pulsation occurs. Therefore, if the supercharged air discharge timing of the positive displacement supercharger and the engine-side supercharging timing (at least during the engine's compression stroke) do not always correspond, the supercharged air will not be efficiently supplied to the engine. There will be times when the engine speed is not the same, and supercharging fluctuations will occur per engine revolution. As a result, there is a problem that the original supercharging effect cannot be fully exhibited.

そこで、本発明は斯かる諸点に鑑みてなされたものであ
り、上記のような部分過給方式の多気筒エンジンの過給
装置において、過給機を複数の吐出口を有する複室容積
型ポンプにより構成するとともに、上記各吐出口を各々
独立した補助吸気系を介して異なる気筒に連結する一方
、少なくともエンジンの圧縮行程において上記各吐出口
から過給気を吐出するように各吐出口の過給気吐出タイ
ミングを各気筒の作動行程に同期させるようにすること
により、気筒数の増加に従って過給機の回転数を増大さ
せる必要がなく、過給機の耐久性の向上を図りつつ、過
給変動を防止して、各気筒への過給気の分配を効率良く
かつ確実に行うことができ、補助吸気系による過給効果
を有効に発揮できるようにした多気筒エンジンの過給装
置を提供せんとするものである。
Therefore, the present invention has been made in view of these points, and in a supercharging device for a partially supercharging multi-cylinder engine as described above, the supercharger is replaced by a multi-chamber displacement pump having a plurality of discharge ports. Each of the above-mentioned discharge ports is connected to a different cylinder via an independent auxiliary intake system, and the above-mentioned discharge ports are connected to different cylinders via independent auxiliary intake systems. By synchronizing the charge air discharge timing with the operating stroke of each cylinder, there is no need to increase the rotation speed of the supercharger as the number of cylinders increases, and while improving the durability of the supercharger, it is possible to A supercharging system for multi-cylinder engines that prevents supply fluctuations, efficiently and reliably distributes supercharging air to each cylinder, and effectively utilizes the supercharging effect of the auxiliary intake system. This is what we intend to provide.

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図は本発明を6気筒エンジンに適用した例を示し、
1は第1〜第6気筒1a〜1fを有する6気筒エンジン
、2は各気筒1a〜1fの燃焼室で、第1気筒1a−第
4気筒1d−第2気筒1b=第6気筒1f−第3気筒1
C−第5気筒1eの順序で点火される。6および4はそ
れぞれエンジン1の吸気系を構成する主吸気系および補
助吸気系である。上記主吸気系5は、上流端がエアクリ
ーナ(図示せず)に接続された集合通路5と、該集合通
路5の下流端から2つに分岐した第1および第2群分岐
通路6a、6bと、該第1群分岐通路6aの下流端から
3つに分岐し各々独立して第1〜第3気筒1a〜1Cの
各燃焼室2に連通ずる第1〜第3独立分岐通路7a〜7
Cと、上記第2群分岐通路6bの下流端から3つに分岐
し各々独立して第4〜第6気筒1d〜1fの各燃焼室2
に連通ずる第4〜第6独立分岐通路7d〜7fとからな
る主吸気通路8によって構成されている。該主吸気通路
8の各群分波通路6a、6bには、アクセルペダル(図
示せず)と連動し、各群分波通路6a16bからエンジ
ン1に供給される吸気量を制御する主絞り弁9a、9b
が配設されている。
FIG. 1 shows an example in which the present invention is applied to a 6-cylinder engine,
1 is a six-cylinder engine having first to sixth cylinders 1a to 1f, 2 is a combustion chamber of each cylinder 1a to 1f, and 1st cylinder 1a - 4th cylinder 1d - 2nd cylinder 1b = 6th cylinder 1f - 1st cylinder 3 cylinder 1
The cylinders are ignited in the order of C-fifth cylinder 1e. 6 and 4 are a main intake system and an auxiliary intake system, respectively, which constitute the intake system of the engine 1. The main intake system 5 includes a collection passage 5 whose upstream end is connected to an air cleaner (not shown), and first and second group branch passages 6a and 6b branched into two from the downstream end of the collection passage 5. , first to third independent branch passages 7a to 7 which branch into three from the downstream end of the first group branch passage 6a and each independently communicate with each combustion chamber 2 of the first to third cylinders 1a to 1C.
C, and the combustion chambers 2 of the fourth to sixth cylinders 1d to 1f which are branched into three from the downstream end of the second group branch passage 6b and are independently connected to each other.
The main intake passage 8 is composed of fourth to sixth independent branch passages 7d to 7f communicating with each other. Each group branching passage 6a, 6b of the main intake passage 8 has a main throttle valve 9a that operates in conjunction with an accelerator pedal (not shown) to control the amount of intake air supplied to the engine 1 from each group branching passage 6a16b. , 9b
is installed.

また、主吸気通路8の各独立分岐通路7a〜7fには燃
料噴射弁10a〜10fが、また主吸気通路8の集合通
路5には全吸入空気量を検出するエアフローメータ11
がそれぞれ配設され、該エアフローメータ11の検出信
号は、上記各燃料噴射弁10a〜10fからの燃料噴射
量を制御する燃料噴射制御回路12に入力されており、
よってエンジン1の吸入空気量に応じた量の燃料を各燃
料噴射弁10a〜10fから均等噴射し、各独立分岐通
路7a〜7fを介して各気筒1a〜1fに分散供給する
ようにした燃料噴射式の燃料供給装置15を構成してい
る。
Further, fuel injection valves 10a to 10f are installed in each of the independent branch passages 7a to 7f of the main intake passage 8, and an air flow meter 11 is installed in the collective passage 5 of the main intake passage 8 to detect the total amount of intake air.
are respectively arranged, and the detection signal of the air flow meter 11 is input to a fuel injection control circuit 12 that controls the amount of fuel injected from each of the fuel injection valves 10a to 10f,
Therefore, fuel injection is performed in which an amount of fuel corresponding to the intake air amount of the engine 1 is uniformly injected from each fuel injection valve 10a to 10f, and distributed and supplied to each cylinder 1a to 1f via each independent branch passage 7a to 7f. This constitutes a fuel supply device 15 of the type.

一方、上記補助吸気系4は、上流端が上記主吸気通路8
の集合通路5下流分岐部付近に連通ずる集合通路14と
、該集合通路14の下流端から2つに分岐した第1およ
び第2群分岐通路15a。
On the other hand, the auxiliary intake system 4 has an upstream end connected to the main intake passage 8.
A collective passageway 14 communicating with the vicinity of the downstream branch of the collective passageway 5, and a first and second group branch passageway 15a branched into two from the downstream end of the collective passageway 14.

151)と、該第1群分岐通路15aの下流端から3つ
に分岐し各々独立して第1〜第3気筒1a〜1Cの各燃
焼室2に連通ずる第1〜第3独立分岐通路16a〜16
Cと、上記第2群分岐通路15bの下流端から3つに分
岐し各々独立して第4〜第6気筒1d〜1fの各燃焼室
2に連通ずる第4〜第6独立分岐通路16d〜16fと
からなる補助吸気通路17によって構成されている。該
補助吸気通路17には両群分岐通路15a、15bに跨
って過給機18が配設されている。該過給機18は、例
えばロータリピストン型ポンプよりなる複室容積型ポン
プにより構成され、第1および第2吸入口19a、19
bと第1および第2吐出口20al  2C1をそれぞ
れ対称位置に有するトロコイド状のケーシング21内を
、エンジン1によって駆動される偏心軸22の回転に伴
い三角形状のロータ25が遊星回転運動してポンプ作用
を行うものであり、上記第1吸入口19aおよび第1吐
出口20aがそれぞれ第1群分岐通路15aの上流側お
よび下流側に連通されており、また上記第2吸入口19
1)および第2吐出に20bがそれぞれ第2群分岐通路
151)の上流側および下流側に連通されており、よっ
て各吐出口20a、20bは補助吸気通路17の各独立
分岐通路16.a〜16fを介して異なる各気筒1a〜
1fに連結されている。さらに、上記補助吸気通路17
の各群分岐通路15a1151)の過給機18下流には
、上記主絞り弁9a+  9bと連動され、主絞り弁9
a、9bが設定開度に開かれるまでは、すなわちエンジ
ンの設定負荷以下のときには閉作動したままで、主絞り
弁9a、9bが設定開度以上に開かれると、すなわちエ
ンジンが設定負荷以上になると開作動する補助絞り弁2
4a、24bが配設されており、該補助絞り弁24a、
24’bが開作動するエンジンの設定負荷以上のとき、
過給機18の各吐出口20a、20bからの過給気を補
助吸気通路17を介して各気筒1FL〜1fに供給する
ようにしている。
151), and first to third independent branch passages 16a that branch into three from the downstream end of the first group branch passage 15a and each independently communicate with each combustion chamber 2 of the first to third cylinders 1a to 1C. ~16
C, and fourth to sixth independent branch passages 16d to 16d which branch into three from the downstream end of the second group branch passage 15b and each independently communicate with each combustion chamber 2 of the fourth to sixth cylinders 1d to 1f. 16f. A supercharger 18 is disposed in the auxiliary intake passage 17, spanning both group branch passages 15a and 15b. The supercharger 18 is constituted by a multi-chamber displacement pump, such as a rotary piston pump, and has first and second suction ports 19a, 19.
A triangular rotor 25 rotates planetarily within a trochoidal casing 21 having a symmetrical opening 2C and a first and second discharge ports 20al and 2C1 as the eccentric shaft 22 driven by the engine 1 rotates. The first suction port 19a and the first discharge port 20a communicate with the upstream and downstream sides of the first group branch passage 15a, respectively, and the second suction port 19
1) and the second outlet 20b are connected to the upstream and downstream sides of the second group branch passage 151), respectively, so that each discharge port 20a, 20b communicates with each independent branch passage 16.1 of the auxiliary intake passage 17. Each different cylinder 1a~ via a~16f
It is connected to 1f. Furthermore, the auxiliary intake passage 17
downstream of the supercharger 18 of each group branch passage 15a1151), the main throttle valve 9 is linked with the main throttle valves 9a+9b.
The main throttle valves 9a and 9b remain closed until they are opened to the set opening, that is, when the engine load is below the set load. Auxiliary throttle valve 2 opens when
4a, 24b are arranged, and the auxiliary throttle valve 24a,
When 24'b is equal to or higher than the set load of the engine that operates to open,
He is trying to supply supercharging air from each discharge port 20a, 20b of supercharger 18 to each cylinder 1FL-1f via auxiliary intake passage 17.

また、上記補助吸気通路17の各群分岐通路15a、1
5bには、それぞれ、一端が群分岐通路15a1151
)の過給機18下流で補助絞り弁24 al  24 
b上流に開口し、他端が群分岐通路15a115bの過
給機18上流に開口して該過給機18をバイパスするバ
イパス通路25a、25わが設けられ、該各バイパス通
路25a、25bKli’)+)−7弁26a、26b
が介設されており、過給機18下流の群分岐通路15a
、15bの圧力(過給圧)が設定圧以上になると、上記
IJ IJ−フ弁26a、26bの開作動にょシその圧
力をバイパス通路25al  25bを介して過給機1
8上流の群分岐通路15a、15bに逃がして、上記過
給圧を設定圧に保持するようにしている。
Further, each group branch passage 15a, 1 of the auxiliary intake passage 17 is
5b, each end has a group branching passage 15a1151.
) Auxiliary throttle valve 24 al 24 downstream of the turbocharger 18
Bypass passages 25a and 25 are provided which open upstream b and whose other end opens upstream of the supercharger 18 of the group branch passage 15a115b to bypass the supercharger 18, and each bypass passage 25a, 25bKli')+ )-7 valves 26a, 26b
is interposed, and the group branch passage 15a downstream of the supercharger 18
, 15b (supercharging pressure) exceeds the set pressure, the IJ valves 26a, 26b are opened and the pressure is transferred to the supercharger 1 via the bypass passages 25al and 25b.
The supercharging pressure is maintained at the set pressure by releasing the supercharging pressure to the group branch passages 15a and 15b upstream of the supercharging pressure.

さらに、上記主吸気通路8の各独立分岐通路7a〜7f
の燃焼室2への開口部には各々主吸気弁27、が配設さ
れ、また上記補助吸気通路17の各独立分岐通路16a
〜16fの燃焼室2への開口部には各々補助吸気弁28
が配設されており、各気筒1a〜1fにおける両吸気弁
27.28のバルブタイミングは、第2図に示すように
、主吸気弁27の開弁終期すなわち吸気行程後半から圧
縮行程にかけて補助吸気弁28が一部オーバラツプして
開くように設定されている。尚、補助吸気通路17から
主吸気通路8への過給気の逆流を防止する点からは、オ
ーバラップさせずに主吸気弁27の閉弁後、すなわち圧
縮行程において補助吸気弁28を開くように設定するこ
とが好ましい。また、29は各気筒1a〜1fの燃焼室
2の排気通路(図示せず)開口部に配設された排気弁で
ある。
Furthermore, each independent branch passage 7a to 7f of the main intake passage 8
A main intake valve 27 is disposed at each opening to the combustion chamber 2, and each independent branch passage 16a of the auxiliary intake passage 17 is provided with a main intake valve 27.
Auxiliary intake valves 28 are installed at the openings to the combustion chambers 2 to 16f, respectively.
As shown in FIG. 2, the valve timing of both intake valves 27 and 28 in each cylinder 1a to 1f is set at the auxiliary intake from the end of opening of the main intake valve 27, that is, from the latter half of the intake stroke to the compression stroke. The valves 28 are set to partially overlap and open. From the point of view of preventing backflow of supercharging air from the auxiliary intake passage 17 to the main intake passage 8, the auxiliary intake valve 28 should be opened after the main intake valve 27 is closed, that is, during the compression stroke, without overlapping. It is preferable to set it to . Moreover, 29 is an exhaust valve disposed at the opening of an exhaust passage (not shown) of the combustion chamber 2 of each cylinder 1a to 1f.

以上により、エンジンの設定負荷以下では、主吸気系′
5 (主吸気通路8)から新気としての混合気を自然吸
入によりエンジン1 (第1〜第6気筒1a〜lf)に
供給する一方、エンジンの設定負荷以上では、主吸気系
5がらの新気に加えて所定のタイミング(少なくともエ
ンジンの圧縮行程)において補助吸気系4(補助吸気通
路17)がら過給機18によシ過給気としての加圧空気
をエンジン1 (第1〜第6気筒1a〜1f)に供給す
るようにしたいわゆる部分過給システムが構成されてい
る。
As a result of the above, when the engine load is below the set load, the main intake system
5 (main intake passage 8) to supply the air-fuel mixture as fresh air to the engine 1 (1st to 6th cylinders 1a to lf) by natural intake. In addition to air, the auxiliary intake system 4 (auxiliary intake passage 17) supplies pressurized air as supercharging air to the engine 1 (first to sixth A so-called partial supercharging system is configured to supply fuel to cylinders 1a to 1f).

そして、本発明の特徴として、上記第1〜第6気筒1a
〜1fは、上述の如く、第1〜第3気筒1a〜1C群と
第4〜第6気筒1d〜1f群とに点火順序が連続しない
2つのグループに分けられ、第1〜第3気筒1a〜10
群に対しては、複室容積型ポンプよりなる過給機18の
第1吐出口20aが各々独立した補助吸気通路17の第
1〜第3独立分岐通路16a〜16Cを介して第1〜第
3気筒1a〜1Cの各々に連結されている一方、上記第
4〜第6気筒1d〜1f群に対しては、上記過給機18
の第2吐出口20bが各々独立した補助吸気通路17の
第4〜第6独立分岐通路16d〜16fを介して第4〜
第6気筒1d〜1fの各々に連結されている。
As a feature of the present invention, the first to sixth cylinders 1a
-1f are divided into two groups, the first to third cylinders 1a to 1C group and the fourth to sixth cylinders 1d to 1f, as described above, and the ignition order of the first to third cylinders 1a to 1f is not consecutive. ~10
For the group, the first discharge port 20a of the supercharger 18 consisting of a multi-chamber displacement pump is connected to the first to third independent branch passages 16a to 16C of the auxiliary intake passage 17, respectively. The supercharger 18 is connected to each of the three cylinders 1a to 1C, while the fourth to sixth cylinder groups 1d to 1f are connected to the supercharger 18.
The second discharge port 20b connects the fourth to sixth independent branch passages 16d to 16f of the auxiliary intake passage 17,
It is connected to each of the sixth cylinders 1d to 1f.

さらに、上記過給機18は、第2図に示すように、例え
ば4サイクルエンジンの場合工/ジン回転に対し偏心軸
22が2=3の割合で回転して、該過給機18の第1吐
出口20aからの過給気吐出タイミ、ングが第1〜第3
気筒1a〜1Cの各補助吸気弁28の開弁タイミング(
第2図中、一点鎖線で表示する範囲。尚、実線で表示し
た範囲は主吸気弁27の開弁タイミングである。)と同
期するように、好ましくは常に合致するように設定され
ており、少なくとも第1〜第3気筒1a〜1Cの各々の
圧縮行程において上記第1吐出口2゜aから過給気を常
に対応して吐出するようになされている。また、上記過
給機18の第2吐出口20bからの過給気吐出タイミン
グが第4〜第6気筒1d〜1fの各補助吸気弁28の開
弁タイミングと同期するように、好ましくは常に合致す
るように設定されておシ、少なくとも第4〜第6気筒1
d〜1fの各々の圧縮行程において上記第2吐出口20
1)から過給気を常に対応して吐出するようになされて
いる。
Furthermore, as shown in FIG. 2, in the case of a four-cycle engine, the eccentric shaft 22 of the supercharger 18 rotates at a ratio of 2=3 with respect to the engine/engine rotation, so that the The supercharging air discharge timing from the 1 discharge port 20a is 1st to 3rd.
Opening timing of each auxiliary intake valve 28 of cylinders 1a to 1C (
In Figure 2, the range is indicated by a chain line. Note that the range indicated by the solid line is the opening timing of the main intake valve 27. ), preferably to always match, so that supercharging air is always supplied from the first discharge port 2°a at least in the compression stroke of each of the first to third cylinders 1a to 1C. The liquid is then discharged. Preferably, the timing of discharge of supercharged air from the second discharge port 20b of the supercharger 18 is always synchronized with the opening timing of each auxiliary intake valve 28 of the fourth to sixth cylinders 1d to 1f. At least the 4th to 6th cylinders 1
In each compression stroke from d to 1f, the second discharge port 20
1), the supercharging air is always discharged in a corresponding manner.

したがって、上記実施例においては、エンジンが設定負
荷以下の非過給時には、補助吸気通路17からの過給気
(加圧空気)の供給は行われず、第1〜第6気筒1a〜
1fの各燃焼室2内には主吸気通路8からの新気(混合
気)のみが供給され2るので、通常のエンジンと同様に
良好なエンジン性能を確保することができる。
Therefore, in the above embodiment, when the engine is under a set load and is not supercharged, supercharging air (pressurized air) is not supplied from the auxiliary intake passage 17, and the first to sixth cylinders 1a to
Since only fresh air (mixture) from the main intake passage 8 is supplied into each combustion chamber 2 of 1f, good engine performance can be ensured as in a normal engine.

一方、エンジンが設定負荷以上の過給時には、各気筒1
a〜1fの燃焼室2内において、主吸気通路8からの新
気(混合気)に対し、補助吸気通路17から過給気(加
圧空気)が応答性良く過給されるので、過給不足を生じ
ることがなく、良好な出力性能が得られる。
On the other hand, when the engine is supercharging at a load higher than the set load, each cylinder
In the combustion chambers 2 of a to 1f, supercharging air (pressurized air) is supercharged from the auxiliary intake passage 17 with good response to fresh air (air mixture) from the main intake passage 8, so that supercharging is achieved. Good output performance can be obtained without causing any shortage.

その際、過給機18が第1および第2吐出口20a、2
01)を有する複室容積型ポンプにより構成され、かつ
各吐出口20a+  20bが各々独立した補助吸気通
路17の第1〜第6独立分岐通路16a〜16fを介し
て第1〜第6気筒1a〜1fに連結されて、各気筒1a
〜1fの燃焼室2に過給気が分配供給されるので、上記
過給機18の回転数は単室容積型ポンプに較べて半分の
回転数で済み、本例の如き6気筒エンジン1の場合は3
気筒エンジン並みの回転数でよく、気筒数の増加に従っ
て過給機18の回転数を大きく増大させる必要がなく、
よって過給機18の耐久性を向上させることができる。
At that time, the supercharger 18 first and second discharge ports 20a, 2
01), and each discharge port 20a+20b connects the first to sixth cylinders 1a to 16 through the first to sixth independent branch passages 16a to 16f of the auxiliary intake passage 17, which are independent from each other. 1f, each cylinder 1a
Since the supercharged air is distributed and supplied to the combustion chamber 2 of ~1f, the number of revolutions of the supercharger 18 is half that of a single-chamber displacement pump, and the number of revolutions of the supercharger 18 is half that of a single-chamber displacement pump. In case 3
The rotation speed of the supercharger 18 may be the same as that of a cylinder engine, and there is no need to greatly increase the rotation speed of the supercharger 18 as the number of cylinders increases.
Therefore, the durability of the supercharger 18 can be improved.

さらに、上記過給機18の第1および第2吐出口20a
、20bからの過給気吐出タイミングが第1〜第6気筒
1a〜1fの作動行程である補助吸気弁28の開弁タイ
ミングと同期して、少なくとも各気筒1a〜1fの圧縮
行程において上記各吐出口20a、201)から過給気
が常に対応して吐出されるので、容積型過給機18の過
給脈動による各気筒1a〜1fの過給変動が防止され、
各気筒1a〜1fへの過給気の分配が常に効率よくかつ
確実に行われることになり、よって補助吸気系4による
過給効果が有効に発揮され、過給時の出力性能をより一
層向上させることができる。
Furthermore, the first and second discharge ports 20a of the supercharger 18
, 20b is synchronized with the opening timing of the auxiliary intake valve 28, which is the operating stroke of the first to sixth cylinders 1a to 1f, so that the timing of the discharge of the supercharged air from the first to sixth cylinders 1a to 1f is synchronized with the opening timing of the auxiliary intake valve 28, which is the operating stroke of the first to sixth cylinders 1a to 1f. Since supercharging air is always discharged from the outlets 20a, 201) in a corresponding manner, supercharging fluctuations in each cylinder 1a to 1f due to supercharging pulsations of the positive displacement supercharger 18 are prevented,
Supercharging air is always distributed efficiently and reliably to each cylinder 1a to 1f, so the supercharging effect of the auxiliary intake system 4 is effectively exhibited, further improving output performance during supercharging. can be done.

また、上記実施例の如き6気筒エンジ/1の場合にば・
、点火順序が連続しない第1〜第3気筒1a〜1C群と
第4〜第6気筒1d〜1f群との2グループに分けるこ
とができ、該第1−第3気筒1a〜10群に対しては過
給機18の第1吐出口20aから過給気が供給され、第
4〜第6気筒1d〜1f群に対しては第2吐出口20b
がら過給気が供給されるので、第2図に示す如ぐ気筒1
a〜1f間における過給干渉、すなわち補助吸気弁28
0開弁タイミングがオーバラップする気筒間での過給気
の引き合いにより生ずる過給効率の低下が防止され、過
給効果を一層向上させることができる利点を有する。
In addition, in the case of a 6-cylinder engine/1 as in the above embodiment,
can be divided into two groups, the first to third cylinders 1a to 1C group and the fourth to sixth cylinders 1d to 1f group, in which the ignition order is not consecutive, and for the first to third cylinders 1a to 10 group. The supercharged air is supplied from the first discharge port 20a of the supercharger 18, and the second discharge port 20b is supplied to the fourth to sixth cylinder groups 1d to 1f.
Since supercharging air is supplied to cylinder 1 as shown in Fig. 2,
Supercharging interference between a and 1f, that is, the auxiliary intake valve 28
This has the advantage that a reduction in supercharging efficiency caused by the attraction of supercharging air between cylinders whose 0 valve opening timings overlap is prevented, and the supercharging effect can be further improved.

尚、本発明は上記実施例に限定されるものではなく、そ
の他種々の変形例をも包含するものである。例えば、上
記実施例では、第1〜第6気筒1a〜1fの過給タイミ
ングを補助吸気弁28の開弁タイミングで制御し、該補
助吸気弁28の開弁タイミングに過給機18の第1およ
び第2吐出口20a、20bからの過給気吐出タイミン
グを同期させるようにしたが、上記補助吸気弁28の開
弁タイミングを拡大して補助吸気弁28のバルブリフト
量を増大させる一方、上記過給機18の各吐出口20a
l  201)からの過給気吐出タイミングによって各
気筒1a〜1fの過給タイミングを決めるようにしても
よい。この場合、補助吸気弁28のバルブリフト量の増
大により過給時の過給抵抗が減少して、過給効果をより
一層向上させることができるとともに、補助吸気弁28
が逆流防止弁としての機能だけでよく、その動弁機構の
簡略化を図ることができる。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, in the above embodiment, the supercharging timing of the first to sixth cylinders 1a to 1f is controlled by the opening timing of the auxiliary intake valve 28, and the In addition, the timing of discharge of supercharged air from the second discharge ports 20a and 20b is synchronized, but the opening timing of the auxiliary intake valve 28 is expanded to increase the valve lift amount of the auxiliary intake valve 28. Each discharge port 20a of the supercharger 18
The supercharging timing for each cylinder 1a to 1f may be determined based on the supercharging air discharge timing from 1201). In this case, the increase in the valve lift amount of the auxiliary intake valve 28 reduces the supercharging resistance during supercharging, making it possible to further improve the supercharging effect, and further improving the supercharging effect.
The valve only needs to function as a check valve, and the valve operating mechanism can be simplified.

また、上記実施例では、6気筒エンジンに適用した例に
ついて述べたが、本発明はその他の多気筒エンジンに対
しても適用可能であるのは勿論であるが、上述の如く6
気筒エンジンの場合には過給干渉を防止できるので好適
である。また、過給機18として2つの吐出口20al
  201)を有する複室容積型ポンプよりなるものに
ついて述べたが、3つ以上の吐出口を有する複室容積型
ポンプを採用してもよく、また、ロータリピストン型ポ
ンプの他、ベーン型ポンプ等の各種の複室容積型ポンプ
を使用してもよい。
Further, in the above embodiment, an example was described in which the present invention was applied to a 6-cylinder engine, but it goes without saying that the present invention can also be applied to other multi-cylinder engines.
In the case of a cylindrical engine, this is preferable because supercharging interference can be prevented. In addition, two discharge ports 20al are used as the supercharger 18.
201), but a multi-chamber displacement pump having three or more discharge ports may also be used, and in addition to rotary piston type pumps, vane type pumps, etc. A variety of dual chamber positive displacement pumps may be used.

さらに、上記実施例では、主吸気系6に設ける燃料供給
装置15として燃料噴射方式のものについて述べたが、
本発明は気化器方式のものにも適用可能である。しかし
、この気化器方式の場合、吸入空気流によるベンチュリ
負圧により燃料を吸引する関係上、全吸入空気が流れる
主吸気通路8の補助吸気通路17上流端開ロ部よりも上
流の位置に気化器を設ける必要があり、そのため、燃料
が補助吸気通路17の過給機18に流入して該過給機1
8を汚損する嫌いがあるので、−上記実施例の如き燃料
噴射方式に好適である。また、燃料供給装置1′5は主
吸気系6と共に補助吸気系4にも設けてもよい。
Furthermore, in the above embodiment, a fuel injection system was described as the fuel supply device 15 provided in the main intake system 6;
The present invention is also applicable to a vaporizer type. However, in the case of this carburetor system, since the fuel is sucked by the venturi negative pressure caused by the intake air flow, the fuel is vaporized at a position upstream of the opening at the upstream end of the auxiliary intake passage 17 of the main intake passage 8 through which all the intake air flows. Therefore, fuel flows into the supercharger 18 in the auxiliary intake passage 17 and the supercharger 1
8, so it is suitable for the fuel injection system as in the above embodiment. Further, the fuel supply device 1'5 may be provided in the auxiliary intake system 4 as well as the main intake system 6.

さらにまた、上記実施例では、過給機18をエンジン1
により常時駆動して、非過給域では過給気をリリーフす
るようにしたが、クラッチ手段を用いて過給域でのみ過
給機18を駆動させるようにしてもよく、駆動損失の低
減化の点で有利である。
Furthermore, in the above embodiment, the supercharger 18 is connected to the engine 1.
Although the supercharger 18 is constantly driven and the supercharged air is relieved in the non-supercharging region, a clutch means may be used to drive the supercharger 18 only in the supercharging region, thereby reducing driving loss. It is advantageous in this respect.

以上説明したように、本発明によれば、部分過給方式の
多気筒エンジンの過給装置において、過給機を複数の吐
出口を有する複室容積型ポンプにより構成するとともに
、上記各吐出口を各々独立した補助吸気系を介して異な
る気筒に連結する一方、少なくとも各気筒の圧縮行程に
おいて上記各吐出口から過給気を吐出するように上記各
吐出口の過給気吐出タイミングを各気筒の作動行程に同
期させるようにしたので、気筒数の増加に伴い過給機の
回転数を増大させる必要がなく、過給機の耐久性の向上
を図ることができるとともに、各気筒への過給気の分配
を効率良くかつ確実に行うことができ、過給域での補助
吸気系による過給効果を有効に発揮させて過給時の出力
性能の向上を一層図ることができるものである。
As explained above, according to the present invention, in a supercharging device for a partially supercharging multi-cylinder engine, the supercharger is constituted by a multi-chamber displacement pump having a plurality of discharge ports, and each of the discharge ports are connected to different cylinders via independent auxiliary intake systems, and the supercharged air discharge timing of each discharge port is adjusted to each cylinder so that supercharged air is discharged from each discharge port at least during the compression stroke of each cylinder. Since the engine speed is synchronized with the operating stroke of each cylinder, there is no need to increase the rotational speed of the supercharger as the number of cylinders increases. It is possible to distribute supply air efficiently and reliably, and to effectively demonstrate the supercharging effect of the auxiliary intake system in the supercharging region, further improving output performance during supercharging. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は6気筒エンジン
の適用例を示す全体概略構成図、第2図は6気筒エンジ
ンにおける各気筒の主および補助吸気弁の開弁タイミン
グと複室容積型過給機の各吐出口の過給気吐出タイミン
グとの関係を示す説明図である。 1・・エンジン、1a〜1f・・気筒、2・・燃焼室、
5・・主吸気系、4・・補助吸気系、8・・主吸気通路
、9a、9b・・主絞り弁、1′5・・燃料供給装置、
17・・補助吸気通路、18・・過給機、19a、19
b、−吸入口、20a、20b−・吐出口、24a。 24b・・補助絞り弁、27・・主吸気弁、28・・補
助吸気弁。 第1図
The drawings show an embodiment of the present invention, and FIG. 1 is an overall schematic configuration diagram showing an application example of a six-cylinder engine, and FIG. FIG. 3 is an explanatory diagram showing the relationship between each discharge port of the positive displacement supercharger and the supercharged air discharge timing. 1...Engine, 1a to 1f...Cylinder, 2...Combustion chamber,
5... Main intake system, 4... Auxiliary intake system, 8... Main intake passage, 9a, 9b... Main throttle valve, 1'5... Fuel supply device,
17...Auxiliary intake passage, 18...Supercharger, 19a, 19
b, - Suction port, 20a, 20b--Discharge port, 24a. 24b...Auxiliary throttle valve, 27...Main intake valve, 28...Auxiliary intake valve. Figure 1

Claims (1)

【特許請求の範囲】[Claims] [+)  エンジンの吸気系を主吸気系と補助吸気系と
により構成するとともに、上記補助吸気系に過給機を設
け、上記主吸気系から新気をエンジンに供給するのに加
えて、所定のタイミングで上記補助吸気系から過給気を
エンジンに供給するようにした多気筒ニシジンの過給装
置において、上記過給機を複数の吐出口を有する複室容
積型ポンプによシ構成するとともに、上記各吐出口を各
々独立した上記補助吸気系を介して異なる気筒に連結す
る一方、少なくともエンジンの圧縮行程において上記各
吐出口から過給気を吐出するように各吐出口の過給気吐
出タイミングを各気筒の作動行程に同期させるようにし
たことを特徴とする多気筒エンジンの過給装置。
[+] The intake system of the engine is composed of a main intake system and an auxiliary intake system, and a supercharger is provided in the auxiliary intake system, and in addition to supplying fresh air to the engine from the main intake system, In the multi-cylinder Nishijin supercharging device which supplies supercharging air to the engine from the auxiliary intake system at the timing of , each of the discharge ports is connected to a different cylinder via the independent auxiliary intake system, and supercharged air is discharged from each of the discharge ports so that supercharged air is discharged from each of the discharge ports at least during the compression stroke of the engine. A supercharging device for a multi-cylinder engine, characterized in that timing is synchronized with the operating stroke of each cylinder.
JP15443981A 1981-09-22 1981-09-28 Supercharge device of multi-cylinder engine Pending JPS5857019A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15443981A JPS5857019A (en) 1981-09-28 1981-09-28 Supercharge device of multi-cylinder engine
US06/672,857 US4566422A (en) 1981-09-22 1984-11-19 Fuel intake system for a supercharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15443981A JPS5857019A (en) 1981-09-28 1981-09-28 Supercharge device of multi-cylinder engine

Publications (1)

Publication Number Publication Date
JPS5857019A true JPS5857019A (en) 1983-04-05

Family

ID=15584213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15443981A Pending JPS5857019A (en) 1981-09-22 1981-09-28 Supercharge device of multi-cylinder engine

Country Status (1)

Country Link
JP (1) JPS5857019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158636U (en) * 1984-09-25 1986-04-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158636U (en) * 1984-09-25 1986-04-19

Similar Documents

Publication Publication Date Title
US6874463B1 (en) Engine and method of operation with cylinder deactivation
US4566422A (en) Fuel intake system for a supercharged engine
JPS5857019A (en) Supercharge device of multi-cylinder engine
JP3119925B2 (en) Engine control device
JPS5851221A (en) Supercharging system for engine
JP3325595B2 (en) Engine combustion control device
EP0046156B1 (en) Turbocharged engine with pressurized gas recirculation
JPH0586847A (en) Exhaust emission control device for engine having mechanical supercharger
JP3115078B2 (en) Engine intake system
JPS5833371B2 (en) engine supercharging device
JPH04298658A (en) Fuel control device for engine
JP2858707B2 (en) Engine control device
JPH037549Y2 (en)
JP2858709B2 (en) Engine control device
JPS61197732A (en) Variable cylinder type internal-combustion engine
JPS5916512Y2 (en) Separate supercharged engine
JPH0340214B2 (en)
JP2858708B2 (en) Engine control device
JPS6014891Y2 (en) supercharged engine
JPH01310136A (en) Exhaust sensor mounting structure of engine with turbo-supercharger
JPS60192825A (en) Air-intake device for engine associated with supercharger
JPH0586949A (en) Engine with supercharger
JPS60101220A (en) Internal-combustion engine with supercharger
JPH04284148A (en) Exhaust gas recirculating device for engine with supercharger
JPH04310436A (en) Controller of engine with supercharger