JPS5857013A - Power plant for recovering waste heat from a plurality of cement kilns - Google Patents

Power plant for recovering waste heat from a plurality of cement kilns

Info

Publication number
JPS5857013A
JPS5857013A JP15414381A JP15414381A JPS5857013A JP S5857013 A JPS5857013 A JP S5857013A JP 15414381 A JP15414381 A JP 15414381A JP 15414381 A JP15414381 A JP 15414381A JP S5857013 A JPS5857013 A JP S5857013A
Authority
JP
Japan
Prior art keywords
waste heat
steam
steam turbine
cement
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15414381A
Other languages
Japanese (ja)
Inventor
Kanzaburo Sudo
須藤 勘三郎
Kiyoshi Yamamoto
清志 山本
Motohiko Sue
須恵 元彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Cement Co Ltd
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Chichibu Cement Co Ltd
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd, Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Chichibu Cement Co Ltd
Priority to JP15414381A priority Critical patent/JPS5857013A/en
Publication of JPS5857013A publication Critical patent/JPS5857013A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages

Abstract

PURPOSE:To permit continuous operation of kilns by allowing steam to make a detour around a steam turbine when the turbine is in stoppage and to be intro- duced into a condensing tank after condensation, in the power plant which generates power by introducing the waste heat from a plurality of cement kilns into the steam turbine. CONSTITUTION:The captioned power generating plant is equipped with the waste-heat boilers 3-1 and 3-2 into which the discharged gas from a kiln 1 is supplied through preheaters 1-1 and 1-2, steam turbine 9 into which the steam generated in the waste heat boilers is introduced through steam pipes 7-1 and 7-2, and a condenser 11, and a generator 10 is driven by the steam turbine 9. In this case, the pipe 20 for introducing the steam which passes through the steam pipe 8 making a detour around the steam turbine 9 and is introduced into a condensing tank B through a dump condenser 17 is arranged. Condensation is performed by switching steam to the damp condenser 17 side and the condensed water is returned to a condensing tank 13, when the turbine 9 is in stoppage.

Description

【発明の詳細な説明】 本発明は、複数個のセメントキルンからの廃熱を単一の
蒸気タービンに導き、発電せしめるよう構成された複数
個のセメント廃熱を回収する発電プラントに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power generation plant for recovering the waste heat from a plurality of cement kilns, which is configured to direct the waste heat from the plurality of cement kilns to a single steam turbine to generate electricity. .

近年、セメント焼成プロセスにおいて生じる廃熱を有効
に回収しようとする気運が非常に高まってきた。即ち、
サスペンションプレヒータの頂部よ多発生する約400
℃の熱と、クリンカークーラから発生する約250℃の
熱とを廃熱ボイラに導いて蒸気を発生せしめ、この蒸気
によp蒸気タービンを駆動せしめようとするものである
In recent years, there has been a great deal of momentum towards effectively recovering the waste heat generated in the cement firing process. That is,
Approximately 400, which occurs more frequently at the top of the suspension preheater.
℃ heat and approximately 250 ℃ heat generated from a clinker cooler are led to a waste heat boiler to generate steam, and this steam is intended to drive a p-steam turbine.

大型のセメント工場におっては複数個のセメントキルン
を有しているのが普通であり、又、夫々のキルンにサス
ペンションプレヒータ及ヒクリンカークーラが設けられ
ているが、これ等から排出される熱を廃熱ボイラで回収
し、発生する蒸気を蒸気タービンに導いて発電する場合
、複数個存在する個々の熱源に廃熱ボイラと蒸気タービ
ン及び発電機を設けるよりも、個々の熱源には廃熱ボイ
ラのみ設け、夫々の各廃熱ボイラから発生した蒸気をま
とめることにより単一の蒸気タービンに導き、当該蒸気
タービンの原動力により発電機を駆動せしめ発電せしめ
ることの方が、熱効率的にも、又運転管理面においても
優れていることは当然のことである。
It is common for large cement factories to have multiple cement kilns, and each kiln is equipped with a suspension preheater and a suspension preheater, but the heat emitted from these When generating electricity by collecting steam in a waste heat boiler and guiding the generated steam to a steam turbine, it is better to collect waste heat from each heat source than to install a waste heat boiler, steam turbine, and generator for each heat source. It is more thermally efficient and efficient to install only a boiler, collect the steam generated from each waste heat boiler, guide it to a single steam turbine, and use the motive power of the steam turbine to drive a generator to generate electricity. It goes without saying that they are also excellent in terms of operation management.

ところでセメントプラントは数か月毎に数日間の停止を
行ない、この期間に各部の点検及び補修等を行なう必要
があるが、複数個のキルンを有する場合は、5.停止期
間を互にずらすことにより整備期間の短縮と生産量の変
動防止を図っている。従つて複数個のキルンのうち常に
何個かが運転されていることになる。
By the way, cement plants must be shut down for a few days every few months, and during this period, each part needs to be inspected and repaired, but if there are multiple kilns, 5. By staggering the outage periods, we aim to shorten maintenance periods and prevent fluctuations in production volume. Therefore, some of the kilns are always in operation.

一方、汽力発電所のボイラにあっては1年に1回の定期
点検を、蒸気タービンにあっては2年に1回の定期点検
を行なうことが法的に義務づけられており、この定期点
検期間にはボイラあるいは蒸気タービンの停止期間を必
要とする。個々の熱源単位に設けられたボイラに対する
法的点検は、個々の熱源即ちキルンの点検、保修期間中
に実施することが可能であるが、蒸気タービンの点検の
ためには当然蒸気タービンへの熱源供給を断つ必要があ
り、蒸気タービンを単一にした場合、蒸気タービンの定
期点検毎に全キルンの操業を停止することが要求される
。上記対策として廃熱ボイラにバイパスするガスダクト
を設けた従来装置例を第1図によって説明する。第1図
はキルンが2個並設された場合が示されており、l、1
はキルン、1−1.1−2  はサスペンションブレヒ
ータ、2−1゜2−2は排ガスダクト、a−t 、 3
−2は廃熱ボイラ、4−1 、4’l、 4“−1、4
−2、4′−2,4ニー2は絞切弁、5−1 、5−2
はバイパスダクト、6−1 、6−2に1フアン、7−
1 、7−2 、8Fi蒸気管、9は蒸気タービン、1
0は発電機、11は復水器、12は復水ポンプ、13は
復水タンク、14は給水ポンプであって14−1は常備
機、14−2は予備機、15は遮断弁、16は調整弁を
示す。
On the other hand, it is legally required that steam power plant boilers be inspected once a year, and steam turbines once every two years. This period requires a boiler or steam turbine shutdown period. Legal inspections of boilers installed in individual heat source units can be carried out during the inspection and maintenance period of individual heat sources, that is, kilns, but in order to inspect steam turbines, naturally It is necessary to cut off the supply, and if a single steam turbine is used, it is required to stop the operation of all kilns at every periodic inspection of the steam turbine. An example of a conventional device in which a gas duct bypassing the waste heat boiler is provided as a countermeasure to the above will be explained with reference to FIG. Figure 1 shows the case where two kilns are installed in parallel, l, 1
is a kiln, 1-1.1-2 is a suspension break heater, 2-1゜2-2 is an exhaust gas duct, a-t, 3
-2 is waste heat boiler, 4-1, 4'l, 4"-1, 4
-2, 4'-2, 4 knee 2 is the throttle valve, 5-1, 5-2
is a bypass duct, 6-1, 1 fan in 6-2, 7-
1, 7-2, 8Fi steam pipe, 9 is steam turbine, 1
0 is a generator, 11 is a condenser, 12 is a condensate pump, 13 is a condensate tank, 14 is a water supply pump, 14-1 is a regular machine, 14-2 is a standby machine, 15 is a shutoff valve, 16 indicates a regulating valve.

上記第1図構成から明らかなように、常時はサスペンシ
ョンブレヒータ1−1 、1−2 カラ排出すhるガス
は排ガスダクト2−1 、2−2 ’i介してf熱ボイ
ラ3−1 、3−2に導かれて熱交換され、蒸気タービ
ン9によって発電機10が駆動される。そして蒸気ター
ビン9から排出された蒸気は復水器11によって復水さ
れ、復水ポンプ12i介して復水タンク13に供給され
る。そして前記復水タンクからの水は給水ポンプ14を
介して各廃熱ボイラ3−1 、3−2に供給されて動作
の一巡が完了する。したがって上記従来装置において、
例えばタービン9を定期検査のために停止する場合には
、絞切弁4’−1,5−1゜4’−2、グー2會閉路し
、4−1 、4−2を開路することにより、バイパスダ
ク) 5−1 、5−2を通ぜしめて廃熱ボイラ3−1
 、3−2からの蒸気発生を停止点せる必要がある。し
かしバイパスダクト5−1 、5−2を設けた場合は前
記バイパスダクトに設けた絞切弁4−114−2が完全
密閉できるものでないと、常時における廃熱ボイラ3−
1 、3−2の運転中にガスの一部がバイパスダク) 
5−1 、5−2 ’(H通って逃げることにより、廃
熱ボイラ3−1 、3−2の回収熱量が減少して発電出
力が低下することとなる。さらに、4’−1、グー1及
び、4’−2、グー2の絞切弁も完全密閉しうるもので
なければ当該弁を閉状態にした場合も、廃熱ボイラ3−
1 、3−2に高温ガスが漏入し内部点検等時に危険が
伴なう。しかるにサスペンションブレヒータ1−1 、
1−2から排出されるガスには約100 f/Nm”と
いう多量のダストが含捷れており、かつ約400℃とい
う高温であるため、水分を吸うことによりダストが固結
する恐れを有している。一方、サスペンションブレヒー
タの高さは60〜70 mにも及び、しかも排ガスダク
)2−1゜2−2は垂直に下っているため、この経路の
途中に単にバイパスダク) 5−1 、5−2と絞切弁
4−1゜4−2ヲ設けるのみでは、多量のダストが絞切
弁上に堆積し、その作動が円滑になら々いの与ならず、
前記堆積したダストが急激に、ガスを誘引するファン6
−1 、6−2へ直落してファンを停止し、その結果キ
ルンを止めてし甘う恐れがある。その上、サスペンショ
ンプレヒータ1−t 、 1−2 カラノ排iスは40
0℃近い高温ガスであるため熱膨張等により、完全密閉
で、しかも作動円滑な絞切弁の設置は非常に困難である
。また仮にこの種の弁が設置できたにしても、廃熱ボイ
ラを通す場合とバイパスダクトを通す場合とで、排ガス
温度及び通気抵抗に差異が生じ、絞切弁の開閉時にドラ
フトの変動を生じてキルンの操業に擾乱を与えることは
避けられない。そしてこのことはクリンカークーラに廃
熱ボイラを設けた場合にも当然起り得ることである。
As is clear from the configuration in FIG. 1, the gas normally discharged from the suspension brake heaters 1-1 and 1-2 is passed through the exhaust gas ducts 2-1 and 2-2 to the heat boiler 3-1 and 3-2 for heat exchange, and a generator 10 is driven by a steam turbine 9. The steam discharged from the steam turbine 9 is condensed by a condenser 11 and supplied to a condensate tank 13 via a condensate pump 12i. Water from the condensate tank is then supplied to each of the waste heat boilers 3-1 and 3-2 via the water supply pump 14, completing one cycle of operation. Therefore, in the above conventional device,
For example, when the turbine 9 is stopped for periodic inspection, the throttle valves 4'-1, 5-1, 4'-2, and 2 valves are closed, and 4-1 and 4-2 are opened. , bypass duct) 5-1 and 5-2 to connect the waste heat boiler 3-1.
, 3-2 must be stopped. However, when the bypass ducts 5-1 and 5-2 are provided, unless the throttle valve 4-114-2 provided in the bypass duct can be completely sealed, the waste heat boiler 3-
1. During the operation of 3-2, some of the gas flows into the bypass duct)
5-1, 5-2' (H), the amount of heat recovered by the waste heat boilers 3-1, 3-2 decreases, and the power generation output decreases. If the throttle valves 1, 4'-2, and 2 are not completely sealed, even if the valves are closed, the waste heat boiler 3-
1 and 3-2, high-temperature gas leaks and poses a danger during internal inspections, etc. However, suspension brake heater 1-1,
The gas discharged from 1-2 contains a large amount of dust, approximately 100 f/Nm'', and is at a high temperature of approximately 400°C, so there is a risk that the dust will solidify if it absorbs moisture. On the other hand, the height of the suspension brake heater is 60 to 70 m, and since the exhaust gas ducts) 2-1 and 2-2 are vertically descending, there is simply a bypass duct in the middle of this route. 1, 5-2 and the throttle valves 4-1 and 4-2, a large amount of dust will accumulate on the throttle valves and the operation will not be smooth.
A fan 6 for rapidly attracting gas from the accumulated dust.
-1 or 6-2, stopping the fan and, as a result, the kiln. Besides, suspension preheater 1-t, 1-2 carano exhaust is 40
Since the gas is at a high temperature close to 0°C, it is extremely difficult to install a throttle valve that is completely sealed and operates smoothly due to thermal expansion and other factors. Furthermore, even if this type of valve were installed, there would be differences in exhaust gas temperature and ventilation resistance between passing through the waste heat boiler and when passing through the bypass duct, resulting in fluctuations in draft when the throttle valve opens and closes. It is inevitable that this will cause disturbance to the kiln operation. Naturally, this can also occur when a waste heat boiler is provided in the clinker cooler.

本発明は上記問題点を解決することを目的としてなされ
たものであり、セメントキルンの操業を停止することな
く、単一にもうけられた蒸気タービンの駆動停止を可能
にした発電プラントを提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a power generation plant in which the drive of a single steam turbine can be stopped without stopping the operation of the cement kiln. It is an object.

以下図面を参照しつつ実施例を説明する。Examples will be described below with reference to the drawings.

第2図は本発明による発電プラントの一実施例構シ、ク
リンカークーラに廃熱ボイラをもうけた例、第4図は更
に他の実施例構成図であり、サスペンションプレヒータ
とクリンカークーラとに廃熱ボイラをもうけた例である
Fig. 2 shows the structure of one embodiment of the power generation plant according to the present invention, in which a waste heat boiler is provided in the clinker cooler, and Fig. 4 shows the structure of still another embodiment, in which the suspension preheater and the clinker cooler are provided with waste heat boiler. This is an example of a boiler.

第2図において、図中の符号1ないし3,6ないし16
は第1図に対応している。17はダンプコンデンサであ
って蒸気管18と圧力調整弁19を介して蒸気管8に接
続される。20は配管であって前記ダンプコンデンサ1
7と復水タンク13とが接続される。
In Figure 2, the numbers 1 to 3, 6 to 16 in the figure
corresponds to Fig. 1. A dump condenser 17 is connected to the steam pipe 8 via a steam pipe 18 and a pressure regulating valve 19. 20 is a pipe which connects the dump capacitor 1
7 and the condensate tank 13 are connected.

ここでサスペンションプレヒータによる排ガスダク) 
2−1 、2−2の経路途中に設けられた廃熱ボイラー
3−1 、3−2が発生した蒸気は、蒸気タービン9に
導かれ、仕事をすることによって復水器11で復水され
、更に復水ポンプ12を介して復水タンク13に送られ
る。そしてこの復水タンク13に貯えられた復水は給水
ポンプ14を介して図示しない脱気器等を経由して再び
廃熱ボイラ3−1 、3−2に送られる一連の動作をす
るが、これらの動作は第1図々示のものと同様である。
Here exhaust gas duct by suspension preheater)
The steam generated by the waste heat boilers 3-1 and 3-2 provided in the middle of the path of the steam turbines 2-1 and 2-2 is led to the steam turbine 9, and is condensed in the condenser 11 by doing work. , and is further sent to a condensate tank 13 via a condensate pump 12. Then, the condensate stored in the condensate tank 13 undergoes a series of operations in which it is sent back to the waste heat boilers 3-1 and 3-2 via the water supply pump 14, a deaerator, etc. (not shown), These operations are similar to those shown in FIG.

蒸気タービン9の内部点検を行なうためにタービンを停
止した場合、又は不測の事故等により蒸気タービン9を
停止する場合には遮断弁15が全閉となって圧力調整弁
19が開き、廃熱ボイラー3−1゜3−2からの発生蒸
気はダンプコンデンサ17に導かれることになる。
When the steam turbine 9 is stopped for internal inspection, or when the steam turbine 9 is stopped due to an unexpected accident, the shutoff valve 15 is fully closed and the pressure regulating valve 19 is opened, and the waste heat boiler is closed. The steam generated from 3-1 and 3-2 will be led to the dump condenser 17.

蒸気タービン9の不測の事故に際しても、これらの動作
が自動的に行なわれるため、何ら廃熱ボイラ3−1 、
3−2は状態変化せず、従ってセメントキルンの操業は
そのまま維持可能である。これは蒸気タービン9の定期
点検の場合においても同様である。
Even in the event of an unexpected accident in the steam turbine 9, these operations are automatically performed, so there is no need to operate the waste heat boiler 3-1,
3-2 does not change its state, so the operation of the cement kiln can be maintained as it is. This also applies to periodic inspections of the steam turbine 9.

第3図は他の実施例であり、クリンカークーラに廃熱ボ
イラをもうけた例である。図中の符号1ないし3及び6
彦いし20は第2図に対応している。
FIG. 3 shows another embodiment, in which a waste heat boiler is added to the clinker cooler. Codes 1 to 3 and 6 in the diagram
Hikoishi 20 corresponds to FIG.

21はクリンカークーラであって、前記クリンカークー
ラ21からの排ガスを廃熱ボイラ3−3 、3−4に導
くよう構成されており、その他の動作は第2図と全く同
一である。即ち、廃熱ボイラの設置位置の差異のみであ
る。
Reference numeral 21 denotes a clinker cooler, which is configured to guide exhaust gas from the clinker cooler 21 to waste heat boilers 3-3 and 3-4, and other operations are exactly the same as in FIG. 2. That is, the only difference is the installation position of the waste heat boiler.

第4図は更に他の実施例であり、サスペンションプレヒ
ータとクリンカークーラの両方に廃熱ボイラを設置した
例である。図中の符号lないし3及び6ないし21は夫
々第2図、第3図に対応している22は蒸気管、23は
遮断弁である。 したがって全体構成は第2図に示され
るサスペンションプレヒータに廃熱ボイラを設けた構成
と、第3図に示されるクリンカークーラに廃熱ボイラを
設けた構成とを一体にした構成を有し、サスペンション
プレヒータ側に設けた廃熱ボイラ3−1 、3−2から
発生する蒸気を蒸気タービン9の高圧側に導き、クリン
カークーラ側に設けた廃熱ボイラ3−3 、3−4から
発生する蒸気を蒸気タービン9の中圧側に導くよう構成
された点のみ相異する。なお動作は上記第2図及び第3
図々示の両動作を兼ね備えており、詳細は省略する。
FIG. 4 shows yet another embodiment, in which waste heat boilers are installed in both the suspension preheater and the clinker cooler. Reference numerals 1 to 3 and 6 to 21 in the drawings correspond to those in FIGS. 2 and 3, respectively. 22 is a steam pipe, and 23 is a shutoff valve. Therefore, the overall configuration has a configuration that integrates the suspension preheater provided with a waste heat boiler as shown in FIG. 2, and the structure shown in FIG. 3 in which the clinker cooler is provided with a waste heat boiler. The steam generated from the waste heat boilers 3-1 and 3-2 provided on the side is guided to the high pressure side of the steam turbine 9, and the steam generated from the waste heat boilers 3-3 and 3-4 provided on the clinker cooler side is led to the high pressure side of the steam turbine 9. The only difference is that it is configured to lead to the intermediate pressure side of the turbine 9. The operation is as shown in Figures 2 and 3 above.
Both operations shown in the figure are included, and the details will be omitted.

上記実施例においてはサスペンションプレヒータ及びク
リンカークーラが夫々2個の場合を説明したが、それら
が3個以上になっても廃熱ボイラの数が増加するだけで
あって発電プラントの基本的構成は変らないことは勿論
である。
In the above embodiment, the case where there are two suspension preheaters and two clinker coolers each has been explained, but even if there are three or more of them, the number of waste heat boilers will only increase and the basic configuration of the power generation plant will not change. Of course not.

以上説明した如く、本発明によれば複数個ある廃熱ボイ
ラからの蒸気をまとめて単一の蒸気タービンに導き、発
電機を駆動する発電プラントにおいて、前記蒸気タービ
ンに対して並列にダンプコンデンサからなる蒸気回路を
形成し、蒸気タービン停止時に切換えるよう構成したの
で、廃熱ボイラを側路するバイパスダクトの必要がなく
、かつタービンの定期点検及び不測事故等によってター
ビンが停止してもセメントキルンの操業停止することな
く廃熱ボイラの運転をそのまま継続できるので次の各効
果を奏する。
As explained above, according to the present invention, in a power generation plant in which steam from a plurality of waste heat boilers is collectively guided to a single steam turbine to drive a generator, a dump condenser is connected in parallel to the steam turbine. Since the steam circuit is configured to switch when the steam turbine is stopped, there is no need for a bypass duct to bypass the waste heat boiler, and even if the turbine is stopped due to periodic inspections or unforeseen accidents, the cement kiln can still be operated. Since the operation of the waste heat boiler can be continued without stopping the operation, the following effects are achieved.

■バイパスダクトを設けた場合に生じる絞切弁の作動不
良、堆積ダストの急激な落下による誘引ファンの停止あ
るいは弁の開閉に伴なうドラフト変動がなく、安定した
キルン操業が継続できる。
■Stable kiln operation can be continued without malfunctioning of the restrictor valve that occurs when a bypass duct is installed, with no stoppage of the induced fan due to the sudden fall of accumulated dust, or with draft fluctuations due to opening and closing of the valve.

■バイパス7.ダクトを設けた場合は完全密閉できる絞
切弁の製作は事実上不可能であって、ガスの一部がバイ
パスダクト側へ逃げるため回収熱量が減少するが、本発
明によればバイパスダクトが不要であp5ガスの有する
熱量を最大に回収できて発電々力も大きい。
■Bypass7. If a duct is provided, it is virtually impossible to manufacture a completely sealed throttle valve, and a portion of the gas escapes to the bypass duct, reducing the amount of recovered heat.However, according to the present invention, a bypass duct is not required. This allows the maximum amount of heat contained in the p5 gas to be recovered, resulting in a large amount of power generation.

■キルン数が多い場合はバイパスダクト及び絞切弁を設
ける場合に較べて設備費は廉価である。
■When there are many kilns, the equipment cost is lower than when installing bypass ducts and throttle valves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は発電プラントの従来装置例を示す図、第2図は
本発明による発電プラントの一実施例構成図であり、サ
スペンションプレヒータに廃熱ボイラをもうけた例、第
3図は他の実施例構成図であり、クリンカークーラに廃
熱ボイラをもうけた例、第4図は更に他の実施例構成図
であp、サスペンションプレヒータとクリンカークーラ
とに廃熱ボイラをもうけた例 3−1.〜3−4・・・廃熱ボイラ 4−1.4−2.4’−1,イー1.4′−2,イー2
・・・絞切弁5−1.5−2.・・・バイパスダクト6
−1 、6−2  ・・・誘引ファン7−1.7−2.
7’−1,7’−2,8,8’、18.18’、 22
・・・蒸気管9・・蒸気タービン       10・
・・発電機11・・・復水器          12
・・・復水ポンプ13・・・復水タンク       
 14・・・給水ポンプ15 、19 、19′、23
・・・遮断弁      16・・調整弁17・・・ダ
ンプコンデンサ     20・・・配管21・・・ク
リンカークーラ 特許出願人 秩父セメント株式会社 ほか14代理人弁
理土石井紀男 −反
Fig. 1 is a diagram showing an example of a conventional power generation plant, Fig. 2 is a configuration diagram of an embodiment of a power generation plant according to the present invention, an example in which a waste heat boiler is provided in a suspension preheater, and Fig. 3 is a diagram showing another example of a power generation plant according to the present invention. FIG. 4 is a configuration diagram of an example in which a waste heat boiler is provided in the clinker cooler. FIG. 4 is a configuration diagram of still another embodiment. Example 3-1. ~3-4...Waste heat boiler 4-1.4-2.4'-1, E1.4'-2, E2
... Throttle valve 5-1.5-2. ... Bypass duct 6
-1, 6-2...Induction fan 7-1.7-2.
7'-1, 7'-2, 8, 8', 18.18', 22
...Steam pipe 9...Steam turbine 10.
... Generator 11 ... Condenser 12
... Condensate pump 13 ... Condensate tank
14...Water pump 15, 19, 19', 23
... Shutoff valve 16 ... Adjustment valve 17 ... Dump condenser 20 ... Piping 21 ... Clinker cooler patent applicant Chichibu Cement Co., Ltd. and 14 other patent attorneys Norio Doishi - Anti

Claims (3)

【特許請求の範囲】[Claims] (1)複数個のセメントキルン単位から排出される廃熱
を各廃熱ボイラによって蒸気に変換し、これらの蒸気を
まとめて単一の蒸気タービンに導き発電機を駆動する発
電プラントにおいて、上記発電プラン1Jtiサスペン
シヨンプレヒータ及ヒクリンカークーラを有する各セメ
ントキルン単位のサスペンションプレヒータにもうけた
廃熱ボイラと、該廃熱ボイラからの蒸気が供給される蒸
気タービン回路と、前記蒸気タービン回路に対して並列
的にモウケたダンプコンデンサとからなり、前記タービ
ン停止時、ダンプコンデンサ側に蒸気を切換えるよう構
成されたことを特徴とする複数個のセメント廃熱を回収
する発電プラント。 +11
(1) In a power generation plant in which waste heat discharged from multiple cement kiln units is converted into steam by each waste heat boiler, and these steams are collectively guided to a single steam turbine to drive a generator, the above-mentioned power generation Plan 1 A waste heat boiler provided in the suspension preheater of each cement kiln unit having a Jti suspension preheater and a linker cooler, a steam turbine circuit to which steam from the waste heat boiler is supplied, and a parallel to the steam turbine circuit. What is claimed is: 1. A power generation plant for recovering cement waste heat from a plurality of cement waste heat sources, characterized in that the power generation plant comprises a plurality of dump condensers having a high temperature, and is configured to switch steam to the dump condenser side when the turbine is stopped. +11
(2)廃熱ボイラは各セメントキルン単位が有するクリ
ンカークーラに夫々もうけることを特徴とする特許請求
の範囲オ1項記載の複数個のセメント廃熱を回収する発
電プラント。
(2) A power generation plant for recovering a plurality of cement waste heats according to claim 1, wherein the waste heat boilers are provided in the clinker coolers of each cement kiln unit.
(3)廃熱ボイラは各セメントキルン単位が有するサス
ペンションプレヒータ及びクリンカークーラの両者に夫
々もうけることを特徴とする特許請求の範囲第1項記載
の複数個のセメント廃熱を回収する発電プラント。
(3) A power generation plant for recovering a plurality of cement waste heats according to claim 1, characterized in that waste heat boilers are provided for both the suspension preheater and the clinker cooler of each cement kiln unit.
JP15414381A 1981-09-29 1981-09-29 Power plant for recovering waste heat from a plurality of cement kilns Pending JPS5857013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15414381A JPS5857013A (en) 1981-09-29 1981-09-29 Power plant for recovering waste heat from a plurality of cement kilns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15414381A JPS5857013A (en) 1981-09-29 1981-09-29 Power plant for recovering waste heat from a plurality of cement kilns

Publications (1)

Publication Number Publication Date
JPS5857013A true JPS5857013A (en) 1983-04-05

Family

ID=15577811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15414381A Pending JPS5857013A (en) 1981-09-29 1981-09-29 Power plant for recovering waste heat from a plurality of cement kilns

Country Status (1)

Country Link
JP (1) JPS5857013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7926273B2 (en) 2006-12-26 2011-04-19 Kawasaki Plant Systems Kabushiki Kaisha Waste heat power generation system of cement calcination plant
WO2017065430A1 (en) * 2015-10-16 2017-04-20 두산중공업 주식회사 Supercritical carbon dioxide power generation system using multiple heat sources
WO2017138719A1 (en) * 2016-02-11 2017-08-17 두산중공업 주식회사 Supercritical carbon dioxide power generation system using plurality of heat sources

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575508A (en) * 1980-06-10 1982-01-12 Mitsubishi Heavy Ind Ltd Waste heat re-utilization device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575508A (en) * 1980-06-10 1982-01-12 Mitsubishi Heavy Ind Ltd Waste heat re-utilization device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7926273B2 (en) 2006-12-26 2011-04-19 Kawasaki Plant Systems Kabushiki Kaisha Waste heat power generation system of cement calcination plant
WO2017065430A1 (en) * 2015-10-16 2017-04-20 두산중공업 주식회사 Supercritical carbon dioxide power generation system using multiple heat sources
US10400636B2 (en) 2015-10-16 2019-09-03 DOOSAN Heavy Industries Construction Co., LTD Supercritical CO2 generation system applying plural heat sources
WO2017138719A1 (en) * 2016-02-11 2017-08-17 두산중공업 주식회사 Supercritical carbon dioxide power generation system using plurality of heat sources
US10202874B2 (en) 2016-02-11 2019-02-12 Doosan Heavy Industries & Construction Co., Ltd. Supercritical CO2 generation system applying plural heat sources

Similar Documents

Publication Publication Date Title
US6604354B2 (en) Combined cycle power plant
US20070017207A1 (en) Combined Cycle Power Plant
US6256978B1 (en) Power generation in a combination power plant with a gas turbine and a steam turbine
JP4540472B2 (en) Waste heat steam generator
RU2688078C2 (en) Coaling welded electric installation with oxy-ignition with heat integrating
WO2005003628A1 (en) Reheat/regenerative type thermal power plant using rankine cycle
CZ281310B6 (en) Arrangement for utilization of heat contained in coal burning boiler combustion products
SE437541B (en) COMBINED GAS TURBIN ANGTURBIN INSTALLATION WITH INTEGRATED PART COMBUSTION OF FUEL
EP3848562A1 (en) Method for improving rankine cycle efficiency
JPH0388902A (en) Gas.steam turbine complex equipment with coal-gasification apparatus
CA2932219A1 (en) Combined cycle system
US6032468A (en) Method and device for generating steam
JPS5857013A (en) Power plant for recovering waste heat from a plurality of cement kilns
CN206281365U (en) A kind of high-temp waste gas afterheat utilizing system
NO774028L (en) SYSTEM FOR UTILIZATION OF A GAS CURRENT WASTE HEAT
CN210688281U (en) Flue gas treatment system
Shabani et al. Performance assessment and leakage analysis of feed water pre-heaters in natural gas-fired steam power plants.
Harlow Engineering the Eddystone Plant for 5000-lb 1200-deg steam
Arpit et al. A state-of-the-art review of heat recovery steam generators and waste heat boilers
Hnat et al. A feasibility assessment of cogeneration from a regenerative glass furnace
RU138055U1 (en) MANEUVERED STEAM-GAS INSTALLATION WITH MULTIFUNCTIONAL VAPOR DISTRIBUTION NODES
Fiala First commercial supercritical-pressure steam-electric generating unit for philo plant
JP2766687B2 (en) Combined power plant
Warren et al. Advanced Technology Combustion Turbines in Combined-Cycle Applications
US3049104A (en) Steam generating and superheating units